linux/net/sunrpc/sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/sched.c
   4 *
   5 * Scheduling for synchronous and asynchronous RPC requests.
   6 *
   7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   8 *
   9 * TCP NFS related read + write fixes
  10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  11 */
  12
  13#include <linux/module.h>
  14
  15#include <linux/sched.h>
  16#include <linux/interrupt.h>
  17#include <linux/slab.h>
  18#include <linux/mempool.h>
  19#include <linux/smp.h>
  20#include <linux/spinlock.h>
  21#include <linux/mutex.h>
  22#include <linux/freezer.h>
  23#include <linux/sched/mm.h>
  24
  25#include <linux/sunrpc/clnt.h>
  26
  27#include "sunrpc.h"
  28
  29#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  30#define RPCDBG_FACILITY         RPCDBG_SCHED
  31#endif
  32
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/sunrpc.h>
  35
  36/*
  37 * RPC slabs and memory pools
  38 */
  39#define RPC_BUFFER_MAXSIZE      (2048)
  40#define RPC_BUFFER_POOLSIZE     (8)
  41#define RPC_TASK_POOLSIZE       (8)
  42static struct kmem_cache        *rpc_task_slabp __read_mostly;
  43static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
  44static mempool_t        *rpc_task_mempool __read_mostly;
  45static mempool_t        *rpc_buffer_mempool __read_mostly;
  46
  47static void                     rpc_async_schedule(struct work_struct *);
  48static void                      rpc_release_task(struct rpc_task *task);
  49static void __rpc_queue_timer_fn(struct timer_list *t);
  50
  51/*
  52 * RPC tasks sit here while waiting for conditions to improve.
  53 */
  54static struct rpc_wait_queue delay_queue;
  55
  56/*
  57 * rpciod-related stuff
  58 */
  59struct workqueue_struct *rpciod_workqueue __read_mostly;
  60struct workqueue_struct *xprtiod_workqueue __read_mostly;
  61
  62unsigned long
  63rpc_task_timeout(const struct rpc_task *task)
  64{
  65        unsigned long timeout = READ_ONCE(task->tk_timeout);
  66
  67        if (timeout != 0) {
  68                unsigned long now = jiffies;
  69                if (time_before(now, timeout))
  70                        return timeout - now;
  71        }
  72        return 0;
  73}
  74EXPORT_SYMBOL_GPL(rpc_task_timeout);
  75
  76/*
  77 * Disable the timer for a given RPC task. Should be called with
  78 * queue->lock and bh_disabled in order to avoid races within
  79 * rpc_run_timer().
  80 */
  81static void
  82__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  83{
  84        if (list_empty(&task->u.tk_wait.timer_list))
  85                return;
  86        dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  87        task->tk_timeout = 0;
  88        list_del(&task->u.tk_wait.timer_list);
  89        if (list_empty(&queue->timer_list.list))
  90                del_timer(&queue->timer_list.timer);
  91}
  92
  93static void
  94rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  95{
  96        timer_reduce(&queue->timer_list.timer, expires);
  97}
  98
  99/*
 100 * Set up a timer for the current task.
 101 */
 102static void
 103__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
 104                unsigned long timeout)
 105{
 106        dprintk("RPC: %5u setting alarm for %u ms\n",
 107                task->tk_pid, jiffies_to_msecs(timeout - jiffies));
 108
 109        task->tk_timeout = timeout;
 110        rpc_set_queue_timer(queue, timeout);
 111        list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 112}
 113
 114static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 115{
 116        if (queue->priority != priority) {
 117                queue->priority = priority;
 118                queue->nr = 1U << priority;
 119        }
 120}
 121
 122static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 123{
 124        rpc_set_waitqueue_priority(queue, queue->maxpriority);
 125}
 126
 127/*
 128 * Add a request to a queue list
 129 */
 130static void
 131__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
 132{
 133        struct rpc_task *t;
 134
 135        list_for_each_entry(t, q, u.tk_wait.list) {
 136                if (t->tk_owner == task->tk_owner) {
 137                        list_add_tail(&task->u.tk_wait.links,
 138                                        &t->u.tk_wait.links);
 139                        /* Cache the queue head in task->u.tk_wait.list */
 140                        task->u.tk_wait.list.next = q;
 141                        task->u.tk_wait.list.prev = NULL;
 142                        return;
 143                }
 144        }
 145        INIT_LIST_HEAD(&task->u.tk_wait.links);
 146        list_add_tail(&task->u.tk_wait.list, q);
 147}
 148
 149/*
 150 * Remove request from a queue list
 151 */
 152static void
 153__rpc_list_dequeue_task(struct rpc_task *task)
 154{
 155        struct list_head *q;
 156        struct rpc_task *t;
 157
 158        if (task->u.tk_wait.list.prev == NULL) {
 159                list_del(&task->u.tk_wait.links);
 160                return;
 161        }
 162        if (!list_empty(&task->u.tk_wait.links)) {
 163                t = list_first_entry(&task->u.tk_wait.links,
 164                                struct rpc_task,
 165                                u.tk_wait.links);
 166                /* Assume __rpc_list_enqueue_task() cached the queue head */
 167                q = t->u.tk_wait.list.next;
 168                list_add_tail(&t->u.tk_wait.list, q);
 169                list_del(&task->u.tk_wait.links);
 170        }
 171        list_del(&task->u.tk_wait.list);
 172}
 173
 174/*
 175 * Add new request to a priority queue.
 176 */
 177static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 178                struct rpc_task *task,
 179                unsigned char queue_priority)
 180{
 181        if (unlikely(queue_priority > queue->maxpriority))
 182                queue_priority = queue->maxpriority;
 183        __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
 184}
 185
 186/*
 187 * Add new request to wait queue.
 188 *
 189 * Swapper tasks always get inserted at the head of the queue.
 190 * This should avoid many nasty memory deadlocks and hopefully
 191 * improve overall performance.
 192 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 193 */
 194static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 195                struct rpc_task *task,
 196                unsigned char queue_priority)
 197{
 198        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 199        if (RPC_IS_QUEUED(task))
 200                return;
 201
 202        INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
 203        if (RPC_IS_PRIORITY(queue))
 204                __rpc_add_wait_queue_priority(queue, task, queue_priority);
 205        else if (RPC_IS_SWAPPER(task))
 206                list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 207        else
 208                list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 209        task->tk_waitqueue = queue;
 210        queue->qlen++;
 211        /* barrier matches the read in rpc_wake_up_task_queue_locked() */
 212        smp_wmb();
 213        rpc_set_queued(task);
 214
 215        dprintk("RPC: %5u added to queue %p \"%s\"\n",
 216                        task->tk_pid, queue, rpc_qname(queue));
 217}
 218
 219/*
 220 * Remove request from a priority queue.
 221 */
 222static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 223{
 224        __rpc_list_dequeue_task(task);
 225}
 226
 227/*
 228 * Remove request from queue.
 229 * Note: must be called with spin lock held.
 230 */
 231static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 232{
 233        __rpc_disable_timer(queue, task);
 234        if (RPC_IS_PRIORITY(queue))
 235                __rpc_remove_wait_queue_priority(task);
 236        else
 237                list_del(&task->u.tk_wait.list);
 238        queue->qlen--;
 239        dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 240                        task->tk_pid, queue, rpc_qname(queue));
 241}
 242
 243static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 244{
 245        int i;
 246
 247        spin_lock_init(&queue->lock);
 248        for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 249                INIT_LIST_HEAD(&queue->tasks[i]);
 250        queue->maxpriority = nr_queues - 1;
 251        rpc_reset_waitqueue_priority(queue);
 252        queue->qlen = 0;
 253        timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0);
 254        INIT_LIST_HEAD(&queue->timer_list.list);
 255        rpc_assign_waitqueue_name(queue, qname);
 256}
 257
 258void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 259{
 260        __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 261}
 262EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 263
 264void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 265{
 266        __rpc_init_priority_wait_queue(queue, qname, 1);
 267}
 268EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 269
 270void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 271{
 272        del_timer_sync(&queue->timer_list.timer);
 273}
 274EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 275
 276static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 277{
 278        freezable_schedule_unsafe();
 279        if (signal_pending_state(mode, current))
 280                return -ERESTARTSYS;
 281        return 0;
 282}
 283
 284#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 285static void rpc_task_set_debuginfo(struct rpc_task *task)
 286{
 287        static atomic_t rpc_pid;
 288
 289        task->tk_pid = atomic_inc_return(&rpc_pid);
 290}
 291#else
 292static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 293{
 294}
 295#endif
 296
 297static void rpc_set_active(struct rpc_task *task)
 298{
 299        rpc_task_set_debuginfo(task);
 300        set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 301        trace_rpc_task_begin(task, NULL);
 302}
 303
 304/*
 305 * Mark an RPC call as having completed by clearing the 'active' bit
 306 * and then waking up all tasks that were sleeping.
 307 */
 308static int rpc_complete_task(struct rpc_task *task)
 309{
 310        void *m = &task->tk_runstate;
 311        wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 312        struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 313        unsigned long flags;
 314        int ret;
 315
 316        trace_rpc_task_complete(task, NULL);
 317
 318        spin_lock_irqsave(&wq->lock, flags);
 319        clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 320        ret = atomic_dec_and_test(&task->tk_count);
 321        if (waitqueue_active(wq))
 322                __wake_up_locked_key(wq, TASK_NORMAL, &k);
 323        spin_unlock_irqrestore(&wq->lock, flags);
 324        return ret;
 325}
 326
 327/*
 328 * Allow callers to wait for completion of an RPC call
 329 *
 330 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 331 * to enforce taking of the wq->lock and hence avoid races with
 332 * rpc_complete_task().
 333 */
 334int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 335{
 336        if (action == NULL)
 337                action = rpc_wait_bit_killable;
 338        return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 339                        action, TASK_KILLABLE);
 340}
 341EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 342
 343/*
 344 * Make an RPC task runnable.
 345 *
 346 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 347 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 348 * the wait queue operation.
 349 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 350 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 351 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 352 * the RPC_TASK_RUNNING flag.
 353 */
 354static void rpc_make_runnable(struct workqueue_struct *wq,
 355                struct rpc_task *task)
 356{
 357        bool need_wakeup = !rpc_test_and_set_running(task);
 358
 359        rpc_clear_queued(task);
 360        if (!need_wakeup)
 361                return;
 362        if (RPC_IS_ASYNC(task)) {
 363                INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 364                queue_work(wq, &task->u.tk_work);
 365        } else
 366                wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 367}
 368
 369/*
 370 * Prepare for sleeping on a wait queue.
 371 * By always appending tasks to the list we ensure FIFO behavior.
 372 * NB: An RPC task will only receive interrupt-driven events as long
 373 * as it's on a wait queue.
 374 */
 375static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 376                struct rpc_task *task,
 377                unsigned char queue_priority)
 378{
 379        dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 380                        task->tk_pid, rpc_qname(q), jiffies);
 381
 382        trace_rpc_task_sleep(task, q);
 383
 384        __rpc_add_wait_queue(q, task, queue_priority);
 385
 386}
 387
 388static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 389                struct rpc_task *task, unsigned long timeout,
 390                unsigned char queue_priority)
 391{
 392        if (time_is_after_jiffies(timeout)) {
 393                __rpc_sleep_on_priority(q, task, queue_priority);
 394                __rpc_add_timer(q, task, timeout);
 395        } else
 396                task->tk_status = -ETIMEDOUT;
 397}
 398
 399static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
 400{
 401        if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
 402                task->tk_callback = action;
 403}
 404
 405static bool rpc_sleep_check_activated(struct rpc_task *task)
 406{
 407        /* We shouldn't ever put an inactive task to sleep */
 408        if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
 409                task->tk_status = -EIO;
 410                rpc_put_task_async(task);
 411                return false;
 412        }
 413        return true;
 414}
 415
 416void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
 417                                rpc_action action, unsigned long timeout)
 418{
 419        if (!rpc_sleep_check_activated(task))
 420                return;
 421
 422        rpc_set_tk_callback(task, action);
 423
 424        /*
 425         * Protect the queue operations.
 426         */
 427        spin_lock_bh(&q->lock);
 428        __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
 429        spin_unlock_bh(&q->lock);
 430}
 431EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
 432
 433void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 434                                rpc_action action)
 435{
 436        if (!rpc_sleep_check_activated(task))
 437                return;
 438
 439        rpc_set_tk_callback(task, action);
 440
 441        WARN_ON_ONCE(task->tk_timeout != 0);
 442        /*
 443         * Protect the queue operations.
 444         */
 445        spin_lock_bh(&q->lock);
 446        __rpc_sleep_on_priority(q, task, task->tk_priority);
 447        spin_unlock_bh(&q->lock);
 448}
 449EXPORT_SYMBOL_GPL(rpc_sleep_on);
 450
 451void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 452                struct rpc_task *task, unsigned long timeout, int priority)
 453{
 454        if (!rpc_sleep_check_activated(task))
 455                return;
 456
 457        priority -= RPC_PRIORITY_LOW;
 458        /*
 459         * Protect the queue operations.
 460         */
 461        spin_lock_bh(&q->lock);
 462        __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
 463        spin_unlock_bh(&q->lock);
 464}
 465EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
 466
 467void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 468                int priority)
 469{
 470        if (!rpc_sleep_check_activated(task))
 471                return;
 472
 473        WARN_ON_ONCE(task->tk_timeout != 0);
 474        priority -= RPC_PRIORITY_LOW;
 475        /*
 476         * Protect the queue operations.
 477         */
 478        spin_lock_bh(&q->lock);
 479        __rpc_sleep_on_priority(q, task, priority);
 480        spin_unlock_bh(&q->lock);
 481}
 482EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 483
 484/**
 485 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
 486 * @wq: workqueue on which to run task
 487 * @queue: wait queue
 488 * @task: task to be woken up
 489 *
 490 * Caller must hold queue->lock, and have cleared the task queued flag.
 491 */
 492static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
 493                struct rpc_wait_queue *queue,
 494                struct rpc_task *task)
 495{
 496        dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 497                        task->tk_pid, jiffies);
 498
 499        /* Has the task been executed yet? If not, we cannot wake it up! */
 500        if (!RPC_IS_ACTIVATED(task)) {
 501                printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 502                return;
 503        }
 504
 505        trace_rpc_task_wakeup(task, queue);
 506
 507        __rpc_remove_wait_queue(queue, task);
 508
 509        rpc_make_runnable(wq, task);
 510
 511        dprintk("RPC:       __rpc_wake_up_task done\n");
 512}
 513
 514/*
 515 * Wake up a queued task while the queue lock is being held
 516 */
 517static struct rpc_task *
 518rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
 519                struct rpc_wait_queue *queue, struct rpc_task *task,
 520                bool (*action)(struct rpc_task *, void *), void *data)
 521{
 522        if (RPC_IS_QUEUED(task)) {
 523                smp_rmb();
 524                if (task->tk_waitqueue == queue) {
 525                        if (action == NULL || action(task, data)) {
 526                                __rpc_do_wake_up_task_on_wq(wq, queue, task);
 527                                return task;
 528                        }
 529                }
 530        }
 531        return NULL;
 532}
 533
 534static void
 535rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
 536                struct rpc_wait_queue *queue, struct rpc_task *task)
 537{
 538        rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL);
 539}
 540
 541/*
 542 * Wake up a queued task while the queue lock is being held
 543 */
 544static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 545{
 546        rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
 547}
 548
 549/*
 550 * Wake up a task on a specific queue
 551 */
 552void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
 553                struct rpc_wait_queue *queue,
 554                struct rpc_task *task)
 555{
 556        if (!RPC_IS_QUEUED(task))
 557                return;
 558        spin_lock_bh(&queue->lock);
 559        rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
 560        spin_unlock_bh(&queue->lock);
 561}
 562
 563/*
 564 * Wake up a task on a specific queue
 565 */
 566void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 567{
 568        if (!RPC_IS_QUEUED(task))
 569                return;
 570        spin_lock_bh(&queue->lock);
 571        rpc_wake_up_task_queue_locked(queue, task);
 572        spin_unlock_bh(&queue->lock);
 573}
 574EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 575
 576static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
 577{
 578        task->tk_status = *(int *)status;
 579        return true;
 580}
 581
 582static void
 583rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
 584                struct rpc_task *task, int status)
 585{
 586        rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 587                        task, rpc_task_action_set_status, &status);
 588}
 589
 590/**
 591 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
 592 * @queue: pointer to rpc_wait_queue
 593 * @task: pointer to rpc_task
 594 * @status: integer error value
 595 *
 596 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
 597 * set to the value of @status.
 598 */
 599void
 600rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
 601                struct rpc_task *task, int status)
 602{
 603        if (!RPC_IS_QUEUED(task))
 604                return;
 605        spin_lock_bh(&queue->lock);
 606        rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 607        spin_unlock_bh(&queue->lock);
 608}
 609
 610/*
 611 * Wake up the next task on a priority queue.
 612 */
 613static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 614{
 615        struct list_head *q;
 616        struct rpc_task *task;
 617
 618        /*
 619         * Service a batch of tasks from a single owner.
 620         */
 621        q = &queue->tasks[queue->priority];
 622        if (!list_empty(q) && --queue->nr) {
 623                task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 624                goto out;
 625        }
 626
 627        /*
 628         * Service the next queue.
 629         */
 630        do {
 631                if (q == &queue->tasks[0])
 632                        q = &queue->tasks[queue->maxpriority];
 633                else
 634                        q = q - 1;
 635                if (!list_empty(q)) {
 636                        task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 637                        goto new_queue;
 638                }
 639        } while (q != &queue->tasks[queue->priority]);
 640
 641        rpc_reset_waitqueue_priority(queue);
 642        return NULL;
 643
 644new_queue:
 645        rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 646out:
 647        return task;
 648}
 649
 650static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 651{
 652        if (RPC_IS_PRIORITY(queue))
 653                return __rpc_find_next_queued_priority(queue);
 654        if (!list_empty(&queue->tasks[0]))
 655                return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 656        return NULL;
 657}
 658
 659/*
 660 * Wake up the first task on the wait queue.
 661 */
 662struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
 663                struct rpc_wait_queue *queue,
 664                bool (*func)(struct rpc_task *, void *), void *data)
 665{
 666        struct rpc_task *task = NULL;
 667
 668        dprintk("RPC:       wake_up_first(%p \"%s\")\n",
 669                        queue, rpc_qname(queue));
 670        spin_lock_bh(&queue->lock);
 671        task = __rpc_find_next_queued(queue);
 672        if (task != NULL)
 673                task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
 674                                task, func, data);
 675        spin_unlock_bh(&queue->lock);
 676
 677        return task;
 678}
 679
 680/*
 681 * Wake up the first task on the wait queue.
 682 */
 683struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 684                bool (*func)(struct rpc_task *, void *), void *data)
 685{
 686        return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
 687}
 688EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 689
 690static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 691{
 692        return true;
 693}
 694
 695/*
 696 * Wake up the next task on the wait queue.
 697*/
 698struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 699{
 700        return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 701}
 702EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 703
 704/**
 705 * rpc_wake_up - wake up all rpc_tasks
 706 * @queue: rpc_wait_queue on which the tasks are sleeping
 707 *
 708 * Grabs queue->lock
 709 */
 710void rpc_wake_up(struct rpc_wait_queue *queue)
 711{
 712        struct list_head *head;
 713
 714        spin_lock_bh(&queue->lock);
 715        head = &queue->tasks[queue->maxpriority];
 716        for (;;) {
 717                while (!list_empty(head)) {
 718                        struct rpc_task *task;
 719                        task = list_first_entry(head,
 720                                        struct rpc_task,
 721                                        u.tk_wait.list);
 722                        rpc_wake_up_task_queue_locked(queue, task);
 723                }
 724                if (head == &queue->tasks[0])
 725                        break;
 726                head--;
 727        }
 728        spin_unlock_bh(&queue->lock);
 729}
 730EXPORT_SYMBOL_GPL(rpc_wake_up);
 731
 732/**
 733 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 734 * @queue: rpc_wait_queue on which the tasks are sleeping
 735 * @status: status value to set
 736 *
 737 * Grabs queue->lock
 738 */
 739void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 740{
 741        struct list_head *head;
 742
 743        spin_lock_bh(&queue->lock);
 744        head = &queue->tasks[queue->maxpriority];
 745        for (;;) {
 746                while (!list_empty(head)) {
 747                        struct rpc_task *task;
 748                        task = list_first_entry(head,
 749                                        struct rpc_task,
 750                                        u.tk_wait.list);
 751                        task->tk_status = status;
 752                        rpc_wake_up_task_queue_locked(queue, task);
 753                }
 754                if (head == &queue->tasks[0])
 755                        break;
 756                head--;
 757        }
 758        spin_unlock_bh(&queue->lock);
 759}
 760EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 761
 762static void __rpc_queue_timer_fn(struct timer_list *t)
 763{
 764        struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
 765        struct rpc_task *task, *n;
 766        unsigned long expires, now, timeo;
 767
 768        spin_lock(&queue->lock);
 769        expires = now = jiffies;
 770        list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 771                timeo = task->tk_timeout;
 772                if (time_after_eq(now, timeo)) {
 773                        dprintk("RPC: %5u timeout\n", task->tk_pid);
 774                        task->tk_status = -ETIMEDOUT;
 775                        rpc_wake_up_task_queue_locked(queue, task);
 776                        continue;
 777                }
 778                if (expires == now || time_after(expires, timeo))
 779                        expires = timeo;
 780        }
 781        if (!list_empty(&queue->timer_list.list))
 782                rpc_set_queue_timer(queue, expires);
 783        spin_unlock(&queue->lock);
 784}
 785
 786static void __rpc_atrun(struct rpc_task *task)
 787{
 788        if (task->tk_status == -ETIMEDOUT)
 789                task->tk_status = 0;
 790}
 791
 792/*
 793 * Run a task at a later time
 794 */
 795void rpc_delay(struct rpc_task *task, unsigned long delay)
 796{
 797        rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
 798}
 799EXPORT_SYMBOL_GPL(rpc_delay);
 800
 801/*
 802 * Helper to call task->tk_ops->rpc_call_prepare
 803 */
 804void rpc_prepare_task(struct rpc_task *task)
 805{
 806        task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 807}
 808
 809static void
 810rpc_init_task_statistics(struct rpc_task *task)
 811{
 812        /* Initialize retry counters */
 813        task->tk_garb_retry = 2;
 814        task->tk_cred_retry = 2;
 815        task->tk_rebind_retry = 2;
 816
 817        /* starting timestamp */
 818        task->tk_start = ktime_get();
 819}
 820
 821static void
 822rpc_reset_task_statistics(struct rpc_task *task)
 823{
 824        task->tk_timeouts = 0;
 825        task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
 826        rpc_init_task_statistics(task);
 827}
 828
 829/*
 830 * Helper that calls task->tk_ops->rpc_call_done if it exists
 831 */
 832void rpc_exit_task(struct rpc_task *task)
 833{
 834        task->tk_action = NULL;
 835        if (task->tk_ops->rpc_call_done != NULL) {
 836                task->tk_ops->rpc_call_done(task, task->tk_calldata);
 837                if (task->tk_action != NULL) {
 838                        /* Always release the RPC slot and buffer memory */
 839                        xprt_release(task);
 840                        rpc_reset_task_statistics(task);
 841                }
 842        }
 843}
 844
 845void rpc_signal_task(struct rpc_task *task)
 846{
 847        struct rpc_wait_queue *queue;
 848
 849        if (!RPC_IS_ACTIVATED(task))
 850                return;
 851        set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 852        smp_mb__after_atomic();
 853        queue = READ_ONCE(task->tk_waitqueue);
 854        if (queue)
 855                rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
 856}
 857
 858void rpc_exit(struct rpc_task *task, int status)
 859{
 860        task->tk_status = status;
 861        task->tk_action = rpc_exit_task;
 862        rpc_wake_up_queued_task(task->tk_waitqueue, task);
 863}
 864EXPORT_SYMBOL_GPL(rpc_exit);
 865
 866void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 867{
 868        if (ops->rpc_release != NULL)
 869                ops->rpc_release(calldata);
 870}
 871
 872/*
 873 * This is the RPC `scheduler' (or rather, the finite state machine).
 874 */
 875static void __rpc_execute(struct rpc_task *task)
 876{
 877        struct rpc_wait_queue *queue;
 878        int task_is_async = RPC_IS_ASYNC(task);
 879        int status = 0;
 880
 881        dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 882                        task->tk_pid, task->tk_flags);
 883
 884        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 885        if (RPC_IS_QUEUED(task))
 886                return;
 887
 888        for (;;) {
 889                void (*do_action)(struct rpc_task *);
 890
 891                /*
 892                 * Perform the next FSM step or a pending callback.
 893                 *
 894                 * tk_action may be NULL if the task has been killed.
 895                 * In particular, note that rpc_killall_tasks may
 896                 * do this at any time, so beware when dereferencing.
 897                 */
 898                do_action = task->tk_action;
 899                if (task->tk_callback) {
 900                        do_action = task->tk_callback;
 901                        task->tk_callback = NULL;
 902                }
 903                if (!do_action)
 904                        break;
 905                trace_rpc_task_run_action(task, do_action);
 906                do_action(task);
 907
 908                /*
 909                 * Lockless check for whether task is sleeping or not.
 910                 */
 911                if (!RPC_IS_QUEUED(task))
 912                        continue;
 913
 914                /*
 915                 * Signalled tasks should exit rather than sleep.
 916                 */
 917                if (RPC_SIGNALLED(task))
 918                        rpc_exit(task, -ERESTARTSYS);
 919
 920                /*
 921                 * The queue->lock protects against races with
 922                 * rpc_make_runnable().
 923                 *
 924                 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 925                 * rpc_task, rpc_make_runnable() can assign it to a
 926                 * different workqueue. We therefore cannot assume that the
 927                 * rpc_task pointer may still be dereferenced.
 928                 */
 929                queue = task->tk_waitqueue;
 930                spin_lock_bh(&queue->lock);
 931                if (!RPC_IS_QUEUED(task)) {
 932                        spin_unlock_bh(&queue->lock);
 933                        continue;
 934                }
 935                rpc_clear_running(task);
 936                spin_unlock_bh(&queue->lock);
 937                if (task_is_async)
 938                        return;
 939
 940                /* sync task: sleep here */
 941                dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 942                status = out_of_line_wait_on_bit(&task->tk_runstate,
 943                                RPC_TASK_QUEUED, rpc_wait_bit_killable,
 944                                TASK_KILLABLE);
 945                if (status < 0) {
 946                        /*
 947                         * When a sync task receives a signal, it exits with
 948                         * -ERESTARTSYS. In order to catch any callbacks that
 949                         * clean up after sleeping on some queue, we don't
 950                         * break the loop here, but go around once more.
 951                         */
 952                        dprintk("RPC: %5u got signal\n", task->tk_pid);
 953                        set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 954                        rpc_exit(task, -ERESTARTSYS);
 955                }
 956                dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 957        }
 958
 959        dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 960                        task->tk_status);
 961        /* Release all resources associated with the task */
 962        rpc_release_task(task);
 963}
 964
 965/*
 966 * User-visible entry point to the scheduler.
 967 *
 968 * This may be called recursively if e.g. an async NFS task updates
 969 * the attributes and finds that dirty pages must be flushed.
 970 * NOTE: Upon exit of this function the task is guaranteed to be
 971 *       released. In particular note that tk_release() will have
 972 *       been called, so your task memory may have been freed.
 973 */
 974void rpc_execute(struct rpc_task *task)
 975{
 976        bool is_async = RPC_IS_ASYNC(task);
 977
 978        rpc_set_active(task);
 979        rpc_make_runnable(rpciod_workqueue, task);
 980        if (!is_async)
 981                __rpc_execute(task);
 982}
 983
 984static void rpc_async_schedule(struct work_struct *work)
 985{
 986        unsigned int pflags = memalloc_nofs_save();
 987
 988        __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 989        memalloc_nofs_restore(pflags);
 990}
 991
 992/**
 993 * rpc_malloc - allocate RPC buffer resources
 994 * @task: RPC task
 995 *
 996 * A single memory region is allocated, which is split between the
 997 * RPC call and RPC reply that this task is being used for. When
 998 * this RPC is retired, the memory is released by calling rpc_free.
 999 *
1000 * To prevent rpciod from hanging, this allocator never sleeps,
1001 * returning -ENOMEM and suppressing warning if the request cannot
1002 * be serviced immediately. The caller can arrange to sleep in a
1003 * way that is safe for rpciod.
1004 *
1005 * Most requests are 'small' (under 2KiB) and can be serviced from a
1006 * mempool, ensuring that NFS reads and writes can always proceed,
1007 * and that there is good locality of reference for these buffers.
1008 */
1009int rpc_malloc(struct rpc_task *task)
1010{
1011        struct rpc_rqst *rqst = task->tk_rqstp;
1012        size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1013        struct rpc_buffer *buf;
1014        gfp_t gfp = GFP_NOFS;
1015
1016        if (RPC_IS_SWAPPER(task))
1017                gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1018
1019        size += sizeof(struct rpc_buffer);
1020        if (size <= RPC_BUFFER_MAXSIZE)
1021                buf = mempool_alloc(rpc_buffer_mempool, gfp);
1022        else
1023                buf = kmalloc(size, gfp);
1024
1025        if (!buf)
1026                return -ENOMEM;
1027
1028        buf->len = size;
1029        dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1030                        task->tk_pid, size, buf);
1031        rqst->rq_buffer = buf->data;
1032        rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1033        return 0;
1034}
1035EXPORT_SYMBOL_GPL(rpc_malloc);
1036
1037/**
1038 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1039 * @task: RPC task
1040 *
1041 */
1042void rpc_free(struct rpc_task *task)
1043{
1044        void *buffer = task->tk_rqstp->rq_buffer;
1045        size_t size;
1046        struct rpc_buffer *buf;
1047
1048        buf = container_of(buffer, struct rpc_buffer, data);
1049        size = buf->len;
1050
1051        dprintk("RPC:       freeing buffer of size %zu at %p\n",
1052                        size, buf);
1053
1054        if (size <= RPC_BUFFER_MAXSIZE)
1055                mempool_free(buf, rpc_buffer_mempool);
1056        else
1057                kfree(buf);
1058}
1059EXPORT_SYMBOL_GPL(rpc_free);
1060
1061/*
1062 * Creation and deletion of RPC task structures
1063 */
1064static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1065{
1066        memset(task, 0, sizeof(*task));
1067        atomic_set(&task->tk_count, 1);
1068        task->tk_flags  = task_setup_data->flags;
1069        task->tk_ops = task_setup_data->callback_ops;
1070        task->tk_calldata = task_setup_data->callback_data;
1071        INIT_LIST_HEAD(&task->tk_task);
1072
1073        task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1074        task->tk_owner = current->tgid;
1075
1076        /* Initialize workqueue for async tasks */
1077        task->tk_workqueue = task_setup_data->workqueue;
1078
1079        task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
1080
1081        task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1082
1083        if (task->tk_ops->rpc_call_prepare != NULL)
1084                task->tk_action = rpc_prepare_task;
1085
1086        rpc_init_task_statistics(task);
1087
1088        dprintk("RPC:       new task initialized, procpid %u\n",
1089                                task_pid_nr(current));
1090}
1091
1092static struct rpc_task *
1093rpc_alloc_task(void)
1094{
1095        return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1096}
1097
1098/*
1099 * Create a new task for the specified client.
1100 */
1101struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1102{
1103        struct rpc_task *task = setup_data->task;
1104        unsigned short flags = 0;
1105
1106        if (task == NULL) {
1107                task = rpc_alloc_task();
1108                flags = RPC_TASK_DYNAMIC;
1109        }
1110
1111        rpc_init_task(task, setup_data);
1112        task->tk_flags |= flags;
1113        dprintk("RPC:       allocated task %p\n", task);
1114        return task;
1115}
1116
1117/*
1118 * rpc_free_task - release rpc task and perform cleanups
1119 *
1120 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1121 * in order to work around a workqueue dependency issue.
1122 *
1123 * Tejun Heo states:
1124 * "Workqueue currently considers two work items to be the same if they're
1125 * on the same address and won't execute them concurrently - ie. it
1126 * makes a work item which is queued again while being executed wait
1127 * for the previous execution to complete.
1128 *
1129 * If a work function frees the work item, and then waits for an event
1130 * which should be performed by another work item and *that* work item
1131 * recycles the freed work item, it can create a false dependency loop.
1132 * There really is no reliable way to detect this short of verifying
1133 * every memory free."
1134 *
1135 */
1136static void rpc_free_task(struct rpc_task *task)
1137{
1138        unsigned short tk_flags = task->tk_flags;
1139
1140        put_rpccred(task->tk_op_cred);
1141        rpc_release_calldata(task->tk_ops, task->tk_calldata);
1142
1143        if (tk_flags & RPC_TASK_DYNAMIC) {
1144                dprintk("RPC: %5u freeing task\n", task->tk_pid);
1145                mempool_free(task, rpc_task_mempool);
1146        }
1147}
1148
1149static void rpc_async_release(struct work_struct *work)
1150{
1151        unsigned int pflags = memalloc_nofs_save();
1152
1153        rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1154        memalloc_nofs_restore(pflags);
1155}
1156
1157static void rpc_release_resources_task(struct rpc_task *task)
1158{
1159        xprt_release(task);
1160        if (task->tk_msg.rpc_cred) {
1161                put_cred(task->tk_msg.rpc_cred);
1162                task->tk_msg.rpc_cred = NULL;
1163        }
1164        rpc_task_release_client(task);
1165}
1166
1167static void rpc_final_put_task(struct rpc_task *task,
1168                struct workqueue_struct *q)
1169{
1170        if (q != NULL) {
1171                INIT_WORK(&task->u.tk_work, rpc_async_release);
1172                queue_work(q, &task->u.tk_work);
1173        } else
1174                rpc_free_task(task);
1175}
1176
1177static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1178{
1179        if (atomic_dec_and_test(&task->tk_count)) {
1180                rpc_release_resources_task(task);
1181                rpc_final_put_task(task, q);
1182        }
1183}
1184
1185void rpc_put_task(struct rpc_task *task)
1186{
1187        rpc_do_put_task(task, NULL);
1188}
1189EXPORT_SYMBOL_GPL(rpc_put_task);
1190
1191void rpc_put_task_async(struct rpc_task *task)
1192{
1193        rpc_do_put_task(task, task->tk_workqueue);
1194}
1195EXPORT_SYMBOL_GPL(rpc_put_task_async);
1196
1197static void rpc_release_task(struct rpc_task *task)
1198{
1199        dprintk("RPC: %5u release task\n", task->tk_pid);
1200
1201        WARN_ON_ONCE(RPC_IS_QUEUED(task));
1202
1203        rpc_release_resources_task(task);
1204
1205        /*
1206         * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1207         * so it should be safe to use task->tk_count as a test for whether
1208         * or not any other processes still hold references to our rpc_task.
1209         */
1210        if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1211                /* Wake up anyone who may be waiting for task completion */
1212                if (!rpc_complete_task(task))
1213                        return;
1214        } else {
1215                if (!atomic_dec_and_test(&task->tk_count))
1216                        return;
1217        }
1218        rpc_final_put_task(task, task->tk_workqueue);
1219}
1220
1221int rpciod_up(void)
1222{
1223        return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1224}
1225
1226void rpciod_down(void)
1227{
1228        module_put(THIS_MODULE);
1229}
1230
1231/*
1232 * Start up the rpciod workqueue.
1233 */
1234static int rpciod_start(void)
1235{
1236        struct workqueue_struct *wq;
1237
1238        /*
1239         * Create the rpciod thread and wait for it to start.
1240         */
1241        dprintk("RPC:       creating workqueue rpciod\n");
1242        wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1243        if (!wq)
1244                goto out_failed;
1245        rpciod_workqueue = wq;
1246        /* Note: highpri because network receive is latency sensitive */
1247        wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1248        if (!wq)
1249                goto free_rpciod;
1250        xprtiod_workqueue = wq;
1251        return 1;
1252free_rpciod:
1253        wq = rpciod_workqueue;
1254        rpciod_workqueue = NULL;
1255        destroy_workqueue(wq);
1256out_failed:
1257        return 0;
1258}
1259
1260static void rpciod_stop(void)
1261{
1262        struct workqueue_struct *wq = NULL;
1263
1264        if (rpciod_workqueue == NULL)
1265                return;
1266        dprintk("RPC:       destroying workqueue rpciod\n");
1267
1268        wq = rpciod_workqueue;
1269        rpciod_workqueue = NULL;
1270        destroy_workqueue(wq);
1271        wq = xprtiod_workqueue;
1272        xprtiod_workqueue = NULL;
1273        destroy_workqueue(wq);
1274}
1275
1276void
1277rpc_destroy_mempool(void)
1278{
1279        rpciod_stop();
1280        mempool_destroy(rpc_buffer_mempool);
1281        mempool_destroy(rpc_task_mempool);
1282        kmem_cache_destroy(rpc_task_slabp);
1283        kmem_cache_destroy(rpc_buffer_slabp);
1284        rpc_destroy_wait_queue(&delay_queue);
1285}
1286
1287int
1288rpc_init_mempool(void)
1289{
1290        /*
1291         * The following is not strictly a mempool initialisation,
1292         * but there is no harm in doing it here
1293         */
1294        rpc_init_wait_queue(&delay_queue, "delayq");
1295        if (!rpciod_start())
1296                goto err_nomem;
1297
1298        rpc_task_slabp = kmem_cache_create("rpc_tasks",
1299                                             sizeof(struct rpc_task),
1300                                             0, SLAB_HWCACHE_ALIGN,
1301                                             NULL);
1302        if (!rpc_task_slabp)
1303                goto err_nomem;
1304        rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1305                                             RPC_BUFFER_MAXSIZE,
1306                                             0, SLAB_HWCACHE_ALIGN,
1307                                             NULL);
1308        if (!rpc_buffer_slabp)
1309                goto err_nomem;
1310        rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1311                                                    rpc_task_slabp);
1312        if (!rpc_task_mempool)
1313                goto err_nomem;
1314        rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1315                                                      rpc_buffer_slabp);
1316        if (!rpc_buffer_mempool)
1317                goto err_nomem;
1318        return 0;
1319err_nomem:
1320        rpc_destroy_mempool();
1321        return -ENOMEM;
1322}
1323