linux/security/security.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/lsm_hooks.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <linux/string.h>
  29#include <linux/msg.h>
  30#include <net/flow.h>
  31
  32#define MAX_LSM_EVM_XATTR       2
  33
  34/* How many LSMs were built into the kernel? */
  35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  36
  37struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  38static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
  39
  40static struct kmem_cache *lsm_file_cache;
  41static struct kmem_cache *lsm_inode_cache;
  42
  43char *lsm_names;
  44static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  45
  46/* Boot-time LSM user choice */
  47static __initdata const char *chosen_lsm_order;
  48static __initdata const char *chosen_major_lsm;
  49
  50static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  51
  52/* Ordered list of LSMs to initialize. */
  53static __initdata struct lsm_info **ordered_lsms;
  54static __initdata struct lsm_info *exclusive;
  55
  56static __initdata bool debug;
  57#define init_debug(...)                                         \
  58        do {                                                    \
  59                if (debug)                                      \
  60                        pr_info(__VA_ARGS__);                   \
  61        } while (0)
  62
  63static bool __init is_enabled(struct lsm_info *lsm)
  64{
  65        if (!lsm->enabled)
  66                return false;
  67
  68        return *lsm->enabled;
  69}
  70
  71/* Mark an LSM's enabled flag. */
  72static int lsm_enabled_true __initdata = 1;
  73static int lsm_enabled_false __initdata = 0;
  74static void __init set_enabled(struct lsm_info *lsm, bool enabled)
  75{
  76        /*
  77         * When an LSM hasn't configured an enable variable, we can use
  78         * a hard-coded location for storing the default enabled state.
  79         */
  80        if (!lsm->enabled) {
  81                if (enabled)
  82                        lsm->enabled = &lsm_enabled_true;
  83                else
  84                        lsm->enabled = &lsm_enabled_false;
  85        } else if (lsm->enabled == &lsm_enabled_true) {
  86                if (!enabled)
  87                        lsm->enabled = &lsm_enabled_false;
  88        } else if (lsm->enabled == &lsm_enabled_false) {
  89                if (enabled)
  90                        lsm->enabled = &lsm_enabled_true;
  91        } else {
  92                *lsm->enabled = enabled;
  93        }
  94}
  95
  96/* Is an LSM already listed in the ordered LSMs list? */
  97static bool __init exists_ordered_lsm(struct lsm_info *lsm)
  98{
  99        struct lsm_info **check;
 100
 101        for (check = ordered_lsms; *check; check++)
 102                if (*check == lsm)
 103                        return true;
 104
 105        return false;
 106}
 107
 108/* Append an LSM to the list of ordered LSMs to initialize. */
 109static int last_lsm __initdata;
 110static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 111{
 112        /* Ignore duplicate selections. */
 113        if (exists_ordered_lsm(lsm))
 114                return;
 115
 116        if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 117                return;
 118
 119        /* Enable this LSM, if it is not already set. */
 120        if (!lsm->enabled)
 121                lsm->enabled = &lsm_enabled_true;
 122        ordered_lsms[last_lsm++] = lsm;
 123
 124        init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 125                   is_enabled(lsm) ? "en" : "dis");
 126}
 127
 128/* Is an LSM allowed to be initialized? */
 129static bool __init lsm_allowed(struct lsm_info *lsm)
 130{
 131        /* Skip if the LSM is disabled. */
 132        if (!is_enabled(lsm))
 133                return false;
 134
 135        /* Not allowed if another exclusive LSM already initialized. */
 136        if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 137                init_debug("exclusive disabled: %s\n", lsm->name);
 138                return false;
 139        }
 140
 141        return true;
 142}
 143
 144static void __init lsm_set_blob_size(int *need, int *lbs)
 145{
 146        int offset;
 147
 148        if (*need > 0) {
 149                offset = *lbs;
 150                *lbs += *need;
 151                *need = offset;
 152        }
 153}
 154
 155static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 156{
 157        if (!needed)
 158                return;
 159
 160        lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 161        lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 162        /*
 163         * The inode blob gets an rcu_head in addition to
 164         * what the modules might need.
 165         */
 166        if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 167                blob_sizes.lbs_inode = sizeof(struct rcu_head);
 168        lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 169        lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 170        lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 171        lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 172}
 173
 174/* Prepare LSM for initialization. */
 175static void __init prepare_lsm(struct lsm_info *lsm)
 176{
 177        int enabled = lsm_allowed(lsm);
 178
 179        /* Record enablement (to handle any following exclusive LSMs). */
 180        set_enabled(lsm, enabled);
 181
 182        /* If enabled, do pre-initialization work. */
 183        if (enabled) {
 184                if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 185                        exclusive = lsm;
 186                        init_debug("exclusive chosen: %s\n", lsm->name);
 187                }
 188
 189                lsm_set_blob_sizes(lsm->blobs);
 190        }
 191}
 192
 193/* Initialize a given LSM, if it is enabled. */
 194static void __init initialize_lsm(struct lsm_info *lsm)
 195{
 196        if (is_enabled(lsm)) {
 197                int ret;
 198
 199                init_debug("initializing %s\n", lsm->name);
 200                ret = lsm->init();
 201                WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 202        }
 203}
 204
 205/* Populate ordered LSMs list from comma-separated LSM name list. */
 206static void __init ordered_lsm_parse(const char *order, const char *origin)
 207{
 208        struct lsm_info *lsm;
 209        char *sep, *name, *next;
 210
 211        /* LSM_ORDER_FIRST is always first. */
 212        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 213                if (lsm->order == LSM_ORDER_FIRST)
 214                        append_ordered_lsm(lsm, "first");
 215        }
 216
 217        /* Process "security=", if given. */
 218        if (chosen_major_lsm) {
 219                struct lsm_info *major;
 220
 221                /*
 222                 * To match the original "security=" behavior, this
 223                 * explicitly does NOT fallback to another Legacy Major
 224                 * if the selected one was separately disabled: disable
 225                 * all non-matching Legacy Major LSMs.
 226                 */
 227                for (major = __start_lsm_info; major < __end_lsm_info;
 228                     major++) {
 229                        if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 230                            strcmp(major->name, chosen_major_lsm) != 0) {
 231                                set_enabled(major, false);
 232                                init_debug("security=%s disabled: %s\n",
 233                                           chosen_major_lsm, major->name);
 234                        }
 235                }
 236        }
 237
 238        sep = kstrdup(order, GFP_KERNEL);
 239        next = sep;
 240        /* Walk the list, looking for matching LSMs. */
 241        while ((name = strsep(&next, ",")) != NULL) {
 242                bool found = false;
 243
 244                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 245                        if (lsm->order == LSM_ORDER_MUTABLE &&
 246                            strcmp(lsm->name, name) == 0) {
 247                                append_ordered_lsm(lsm, origin);
 248                                found = true;
 249                        }
 250                }
 251
 252                if (!found)
 253                        init_debug("%s ignored: %s\n", origin, name);
 254        }
 255
 256        /* Process "security=", if given. */
 257        if (chosen_major_lsm) {
 258                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 259                        if (exists_ordered_lsm(lsm))
 260                                continue;
 261                        if (strcmp(lsm->name, chosen_major_lsm) == 0)
 262                                append_ordered_lsm(lsm, "security=");
 263                }
 264        }
 265
 266        /* Disable all LSMs not in the ordered list. */
 267        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 268                if (exists_ordered_lsm(lsm))
 269                        continue;
 270                set_enabled(lsm, false);
 271                init_debug("%s disabled: %s\n", origin, lsm->name);
 272        }
 273
 274        kfree(sep);
 275}
 276
 277static void __init lsm_early_cred(struct cred *cred);
 278static void __init lsm_early_task(struct task_struct *task);
 279
 280static void __init ordered_lsm_init(void)
 281{
 282        struct lsm_info **lsm;
 283
 284        ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 285                                GFP_KERNEL);
 286
 287        if (chosen_lsm_order) {
 288                if (chosen_major_lsm) {
 289                        pr_info("security= is ignored because it is superseded by lsm=\n");
 290                        chosen_major_lsm = NULL;
 291                }
 292                ordered_lsm_parse(chosen_lsm_order, "cmdline");
 293        } else
 294                ordered_lsm_parse(builtin_lsm_order, "builtin");
 295
 296        for (lsm = ordered_lsms; *lsm; lsm++)
 297                prepare_lsm(*lsm);
 298
 299        init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
 300        init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
 301        init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
 302        init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
 303        init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
 304        init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
 305
 306        /*
 307         * Create any kmem_caches needed for blobs
 308         */
 309        if (blob_sizes.lbs_file)
 310                lsm_file_cache = kmem_cache_create("lsm_file_cache",
 311                                                   blob_sizes.lbs_file, 0,
 312                                                   SLAB_PANIC, NULL);
 313        if (blob_sizes.lbs_inode)
 314                lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 315                                                    blob_sizes.lbs_inode, 0,
 316                                                    SLAB_PANIC, NULL);
 317
 318        lsm_early_cred((struct cred *) current->cred);
 319        lsm_early_task(current);
 320        for (lsm = ordered_lsms; *lsm; lsm++)
 321                initialize_lsm(*lsm);
 322
 323        kfree(ordered_lsms);
 324}
 325
 326/**
 327 * security_init - initializes the security framework
 328 *
 329 * This should be called early in the kernel initialization sequence.
 330 */
 331int __init security_init(void)
 332{
 333        int i;
 334        struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 335
 336        pr_info("Security Framework initializing\n");
 337
 338        for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 339             i++)
 340                INIT_HLIST_HEAD(&list[i]);
 341
 342        /* Load LSMs in specified order. */
 343        ordered_lsm_init();
 344
 345        return 0;
 346}
 347
 348/* Save user chosen LSM */
 349static int __init choose_major_lsm(char *str)
 350{
 351        chosen_major_lsm = str;
 352        return 1;
 353}
 354__setup("security=", choose_major_lsm);
 355
 356/* Explicitly choose LSM initialization order. */
 357static int __init choose_lsm_order(char *str)
 358{
 359        chosen_lsm_order = str;
 360        return 1;
 361}
 362__setup("lsm=", choose_lsm_order);
 363
 364/* Enable LSM order debugging. */
 365static int __init enable_debug(char *str)
 366{
 367        debug = true;
 368        return 1;
 369}
 370__setup("lsm.debug", enable_debug);
 371
 372static bool match_last_lsm(const char *list, const char *lsm)
 373{
 374        const char *last;
 375
 376        if (WARN_ON(!list || !lsm))
 377                return false;
 378        last = strrchr(list, ',');
 379        if (last)
 380                /* Pass the comma, strcmp() will check for '\0' */
 381                last++;
 382        else
 383                last = list;
 384        return !strcmp(last, lsm);
 385}
 386
 387static int lsm_append(char *new, char **result)
 388{
 389        char *cp;
 390
 391        if (*result == NULL) {
 392                *result = kstrdup(new, GFP_KERNEL);
 393                if (*result == NULL)
 394                        return -ENOMEM;
 395        } else {
 396                /* Check if it is the last registered name */
 397                if (match_last_lsm(*result, new))
 398                        return 0;
 399                cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 400                if (cp == NULL)
 401                        return -ENOMEM;
 402                kfree(*result);
 403                *result = cp;
 404        }
 405        return 0;
 406}
 407
 408/**
 409 * security_add_hooks - Add a modules hooks to the hook lists.
 410 * @hooks: the hooks to add
 411 * @count: the number of hooks to add
 412 * @lsm: the name of the security module
 413 *
 414 * Each LSM has to register its hooks with the infrastructure.
 415 */
 416void __init security_add_hooks(struct security_hook_list *hooks, int count,
 417                                char *lsm)
 418{
 419        int i;
 420
 421        for (i = 0; i < count; i++) {
 422                hooks[i].lsm = lsm;
 423                hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 424        }
 425        if (lsm_append(lsm, &lsm_names) < 0)
 426                panic("%s - Cannot get early memory.\n", __func__);
 427}
 428
 429int call_lsm_notifier(enum lsm_event event, void *data)
 430{
 431        return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
 432}
 433EXPORT_SYMBOL(call_lsm_notifier);
 434
 435int register_lsm_notifier(struct notifier_block *nb)
 436{
 437        return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
 438}
 439EXPORT_SYMBOL(register_lsm_notifier);
 440
 441int unregister_lsm_notifier(struct notifier_block *nb)
 442{
 443        return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
 444}
 445EXPORT_SYMBOL(unregister_lsm_notifier);
 446
 447/**
 448 * lsm_cred_alloc - allocate a composite cred blob
 449 * @cred: the cred that needs a blob
 450 * @gfp: allocation type
 451 *
 452 * Allocate the cred blob for all the modules
 453 *
 454 * Returns 0, or -ENOMEM if memory can't be allocated.
 455 */
 456static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 457{
 458        if (blob_sizes.lbs_cred == 0) {
 459                cred->security = NULL;
 460                return 0;
 461        }
 462
 463        cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 464        if (cred->security == NULL)
 465                return -ENOMEM;
 466        return 0;
 467}
 468
 469/**
 470 * lsm_early_cred - during initialization allocate a composite cred blob
 471 * @cred: the cred that needs a blob
 472 *
 473 * Allocate the cred blob for all the modules
 474 */
 475static void __init lsm_early_cred(struct cred *cred)
 476{
 477        int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 478
 479        if (rc)
 480                panic("%s: Early cred alloc failed.\n", __func__);
 481}
 482
 483/**
 484 * lsm_file_alloc - allocate a composite file blob
 485 * @file: the file that needs a blob
 486 *
 487 * Allocate the file blob for all the modules
 488 *
 489 * Returns 0, or -ENOMEM if memory can't be allocated.
 490 */
 491static int lsm_file_alloc(struct file *file)
 492{
 493        if (!lsm_file_cache) {
 494                file->f_security = NULL;
 495                return 0;
 496        }
 497
 498        file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 499        if (file->f_security == NULL)
 500                return -ENOMEM;
 501        return 0;
 502}
 503
 504/**
 505 * lsm_inode_alloc - allocate a composite inode blob
 506 * @inode: the inode that needs a blob
 507 *
 508 * Allocate the inode blob for all the modules
 509 *
 510 * Returns 0, or -ENOMEM if memory can't be allocated.
 511 */
 512int lsm_inode_alloc(struct inode *inode)
 513{
 514        if (!lsm_inode_cache) {
 515                inode->i_security = NULL;
 516                return 0;
 517        }
 518
 519        inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 520        if (inode->i_security == NULL)
 521                return -ENOMEM;
 522        return 0;
 523}
 524
 525/**
 526 * lsm_task_alloc - allocate a composite task blob
 527 * @task: the task that needs a blob
 528 *
 529 * Allocate the task blob for all the modules
 530 *
 531 * Returns 0, or -ENOMEM if memory can't be allocated.
 532 */
 533static int lsm_task_alloc(struct task_struct *task)
 534{
 535        if (blob_sizes.lbs_task == 0) {
 536                task->security = NULL;
 537                return 0;
 538        }
 539
 540        task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 541        if (task->security == NULL)
 542                return -ENOMEM;
 543        return 0;
 544}
 545
 546/**
 547 * lsm_ipc_alloc - allocate a composite ipc blob
 548 * @kip: the ipc that needs a blob
 549 *
 550 * Allocate the ipc blob for all the modules
 551 *
 552 * Returns 0, or -ENOMEM if memory can't be allocated.
 553 */
 554static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 555{
 556        if (blob_sizes.lbs_ipc == 0) {
 557                kip->security = NULL;
 558                return 0;
 559        }
 560
 561        kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 562        if (kip->security == NULL)
 563                return -ENOMEM;
 564        return 0;
 565}
 566
 567/**
 568 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 569 * @mp: the msg_msg that needs a blob
 570 *
 571 * Allocate the ipc blob for all the modules
 572 *
 573 * Returns 0, or -ENOMEM if memory can't be allocated.
 574 */
 575static int lsm_msg_msg_alloc(struct msg_msg *mp)
 576{
 577        if (blob_sizes.lbs_msg_msg == 0) {
 578                mp->security = NULL;
 579                return 0;
 580        }
 581
 582        mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 583        if (mp->security == NULL)
 584                return -ENOMEM;
 585        return 0;
 586}
 587
 588/**
 589 * lsm_early_task - during initialization allocate a composite task blob
 590 * @task: the task that needs a blob
 591 *
 592 * Allocate the task blob for all the modules
 593 */
 594static void __init lsm_early_task(struct task_struct *task)
 595{
 596        int rc = lsm_task_alloc(task);
 597
 598        if (rc)
 599                panic("%s: Early task alloc failed.\n", __func__);
 600}
 601
 602/*
 603 * Hook list operation macros.
 604 *
 605 * call_void_hook:
 606 *      This is a hook that does not return a value.
 607 *
 608 * call_int_hook:
 609 *      This is a hook that returns a value.
 610 */
 611
 612#define call_void_hook(FUNC, ...)                               \
 613        do {                                                    \
 614                struct security_hook_list *P;                   \
 615                                                                \
 616                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 617                        P->hook.FUNC(__VA_ARGS__);              \
 618        } while (0)
 619
 620#define call_int_hook(FUNC, IRC, ...) ({                        \
 621        int RC = IRC;                                           \
 622        do {                                                    \
 623                struct security_hook_list *P;                   \
 624                                                                \
 625                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 626                        RC = P->hook.FUNC(__VA_ARGS__);         \
 627                        if (RC != 0)                            \
 628                                break;                          \
 629                }                                               \
 630        } while (0);                                            \
 631        RC;                                                     \
 632})
 633
 634/* Security operations */
 635
 636int security_binder_set_context_mgr(struct task_struct *mgr)
 637{
 638        return call_int_hook(binder_set_context_mgr, 0, mgr);
 639}
 640
 641int security_binder_transaction(struct task_struct *from,
 642                                struct task_struct *to)
 643{
 644        return call_int_hook(binder_transaction, 0, from, to);
 645}
 646
 647int security_binder_transfer_binder(struct task_struct *from,
 648                                    struct task_struct *to)
 649{
 650        return call_int_hook(binder_transfer_binder, 0, from, to);
 651}
 652
 653int security_binder_transfer_file(struct task_struct *from,
 654                                  struct task_struct *to, struct file *file)
 655{
 656        return call_int_hook(binder_transfer_file, 0, from, to, file);
 657}
 658
 659int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 660{
 661        return call_int_hook(ptrace_access_check, 0, child, mode);
 662}
 663
 664int security_ptrace_traceme(struct task_struct *parent)
 665{
 666        return call_int_hook(ptrace_traceme, 0, parent);
 667}
 668
 669int security_capget(struct task_struct *target,
 670                     kernel_cap_t *effective,
 671                     kernel_cap_t *inheritable,
 672                     kernel_cap_t *permitted)
 673{
 674        return call_int_hook(capget, 0, target,
 675                                effective, inheritable, permitted);
 676}
 677
 678int security_capset(struct cred *new, const struct cred *old,
 679                    const kernel_cap_t *effective,
 680                    const kernel_cap_t *inheritable,
 681                    const kernel_cap_t *permitted)
 682{
 683        return call_int_hook(capset, 0, new, old,
 684                                effective, inheritable, permitted);
 685}
 686
 687int security_capable(const struct cred *cred,
 688                     struct user_namespace *ns,
 689                     int cap,
 690                     unsigned int opts)
 691{
 692        return call_int_hook(capable, 0, cred, ns, cap, opts);
 693}
 694
 695int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 696{
 697        return call_int_hook(quotactl, 0, cmds, type, id, sb);
 698}
 699
 700int security_quota_on(struct dentry *dentry)
 701{
 702        return call_int_hook(quota_on, 0, dentry);
 703}
 704
 705int security_syslog(int type)
 706{
 707        return call_int_hook(syslog, 0, type);
 708}
 709
 710int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 711{
 712        return call_int_hook(settime, 0, ts, tz);
 713}
 714
 715int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 716{
 717        struct security_hook_list *hp;
 718        int cap_sys_admin = 1;
 719        int rc;
 720
 721        /*
 722         * The module will respond with a positive value if
 723         * it thinks the __vm_enough_memory() call should be
 724         * made with the cap_sys_admin set. If all of the modules
 725         * agree that it should be set it will. If any module
 726         * thinks it should not be set it won't.
 727         */
 728        hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 729                rc = hp->hook.vm_enough_memory(mm, pages);
 730                if (rc <= 0) {
 731                        cap_sys_admin = 0;
 732                        break;
 733                }
 734        }
 735        return __vm_enough_memory(mm, pages, cap_sys_admin);
 736}
 737
 738int security_bprm_set_creds(struct linux_binprm *bprm)
 739{
 740        return call_int_hook(bprm_set_creds, 0, bprm);
 741}
 742
 743int security_bprm_check(struct linux_binprm *bprm)
 744{
 745        int ret;
 746
 747        ret = call_int_hook(bprm_check_security, 0, bprm);
 748        if (ret)
 749                return ret;
 750        return ima_bprm_check(bprm);
 751}
 752
 753void security_bprm_committing_creds(struct linux_binprm *bprm)
 754{
 755        call_void_hook(bprm_committing_creds, bprm);
 756}
 757
 758void security_bprm_committed_creds(struct linux_binprm *bprm)
 759{
 760        call_void_hook(bprm_committed_creds, bprm);
 761}
 762
 763int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 764{
 765        return call_int_hook(fs_context_dup, 0, fc, src_fc);
 766}
 767
 768int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 769{
 770        return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 771}
 772
 773int security_sb_alloc(struct super_block *sb)
 774{
 775        return call_int_hook(sb_alloc_security, 0, sb);
 776}
 777
 778void security_sb_free(struct super_block *sb)
 779{
 780        call_void_hook(sb_free_security, sb);
 781}
 782
 783void security_free_mnt_opts(void **mnt_opts)
 784{
 785        if (!*mnt_opts)
 786                return;
 787        call_void_hook(sb_free_mnt_opts, *mnt_opts);
 788        *mnt_opts = NULL;
 789}
 790EXPORT_SYMBOL(security_free_mnt_opts);
 791
 792int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 793{
 794        return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 795}
 796EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 797
 798int security_sb_remount(struct super_block *sb,
 799                        void *mnt_opts)
 800{
 801        return call_int_hook(sb_remount, 0, sb, mnt_opts);
 802}
 803EXPORT_SYMBOL(security_sb_remount);
 804
 805int security_sb_kern_mount(struct super_block *sb)
 806{
 807        return call_int_hook(sb_kern_mount, 0, sb);
 808}
 809
 810int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 811{
 812        return call_int_hook(sb_show_options, 0, m, sb);
 813}
 814
 815int security_sb_statfs(struct dentry *dentry)
 816{
 817        return call_int_hook(sb_statfs, 0, dentry);
 818}
 819
 820int security_sb_mount(const char *dev_name, const struct path *path,
 821                       const char *type, unsigned long flags, void *data)
 822{
 823        return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 824}
 825
 826int security_sb_umount(struct vfsmount *mnt, int flags)
 827{
 828        return call_int_hook(sb_umount, 0, mnt, flags);
 829}
 830
 831int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 832{
 833        return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 834}
 835
 836int security_sb_set_mnt_opts(struct super_block *sb,
 837                                void *mnt_opts,
 838                                unsigned long kern_flags,
 839                                unsigned long *set_kern_flags)
 840{
 841        return call_int_hook(sb_set_mnt_opts,
 842                                mnt_opts ? -EOPNOTSUPP : 0, sb,
 843                                mnt_opts, kern_flags, set_kern_flags);
 844}
 845EXPORT_SYMBOL(security_sb_set_mnt_opts);
 846
 847int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 848                                struct super_block *newsb,
 849                                unsigned long kern_flags,
 850                                unsigned long *set_kern_flags)
 851{
 852        return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 853                                kern_flags, set_kern_flags);
 854}
 855EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 856
 857int security_add_mnt_opt(const char *option, const char *val, int len,
 858                         void **mnt_opts)
 859{
 860        return call_int_hook(sb_add_mnt_opt, -EINVAL,
 861                                        option, val, len, mnt_opts);
 862}
 863EXPORT_SYMBOL(security_add_mnt_opt);
 864
 865int security_move_mount(const struct path *from_path, const struct path *to_path)
 866{
 867        return call_int_hook(move_mount, 0, from_path, to_path);
 868}
 869
 870int security_inode_alloc(struct inode *inode)
 871{
 872        int rc = lsm_inode_alloc(inode);
 873
 874        if (unlikely(rc))
 875                return rc;
 876        rc = call_int_hook(inode_alloc_security, 0, inode);
 877        if (unlikely(rc))
 878                security_inode_free(inode);
 879        return rc;
 880}
 881
 882static void inode_free_by_rcu(struct rcu_head *head)
 883{
 884        /*
 885         * The rcu head is at the start of the inode blob
 886         */
 887        kmem_cache_free(lsm_inode_cache, head);
 888}
 889
 890void security_inode_free(struct inode *inode)
 891{
 892        integrity_inode_free(inode);
 893        call_void_hook(inode_free_security, inode);
 894        /*
 895         * The inode may still be referenced in a path walk and
 896         * a call to security_inode_permission() can be made
 897         * after inode_free_security() is called. Ideally, the VFS
 898         * wouldn't do this, but fixing that is a much harder
 899         * job. For now, simply free the i_security via RCU, and
 900         * leave the current inode->i_security pointer intact.
 901         * The inode will be freed after the RCU grace period too.
 902         */
 903        if (inode->i_security)
 904                call_rcu((struct rcu_head *)inode->i_security,
 905                                inode_free_by_rcu);
 906}
 907
 908int security_dentry_init_security(struct dentry *dentry, int mode,
 909                                        const struct qstr *name, void **ctx,
 910                                        u32 *ctxlen)
 911{
 912        return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
 913                                name, ctx, ctxlen);
 914}
 915EXPORT_SYMBOL(security_dentry_init_security);
 916
 917int security_dentry_create_files_as(struct dentry *dentry, int mode,
 918                                    struct qstr *name,
 919                                    const struct cred *old, struct cred *new)
 920{
 921        return call_int_hook(dentry_create_files_as, 0, dentry, mode,
 922                                name, old, new);
 923}
 924EXPORT_SYMBOL(security_dentry_create_files_as);
 925
 926int security_inode_init_security(struct inode *inode, struct inode *dir,
 927                                 const struct qstr *qstr,
 928                                 const initxattrs initxattrs, void *fs_data)
 929{
 930        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 931        struct xattr *lsm_xattr, *evm_xattr, *xattr;
 932        int ret;
 933
 934        if (unlikely(IS_PRIVATE(inode)))
 935                return 0;
 936
 937        if (!initxattrs)
 938                return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
 939                                     dir, qstr, NULL, NULL, NULL);
 940        memset(new_xattrs, 0, sizeof(new_xattrs));
 941        lsm_xattr = new_xattrs;
 942        ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
 943                                                &lsm_xattr->name,
 944                                                &lsm_xattr->value,
 945                                                &lsm_xattr->value_len);
 946        if (ret)
 947                goto out;
 948
 949        evm_xattr = lsm_xattr + 1;
 950        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 951        if (ret)
 952                goto out;
 953        ret = initxattrs(inode, new_xattrs, fs_data);
 954out:
 955        for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 956                kfree(xattr->value);
 957        return (ret == -EOPNOTSUPP) ? 0 : ret;
 958}
 959EXPORT_SYMBOL(security_inode_init_security);
 960
 961int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 962                                     const struct qstr *qstr, const char **name,
 963                                     void **value, size_t *len)
 964{
 965        if (unlikely(IS_PRIVATE(inode)))
 966                return -EOPNOTSUPP;
 967        return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
 968                             qstr, name, value, len);
 969}
 970EXPORT_SYMBOL(security_old_inode_init_security);
 971
 972#ifdef CONFIG_SECURITY_PATH
 973int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
 974                        unsigned int dev)
 975{
 976        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 977                return 0;
 978        return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
 979}
 980EXPORT_SYMBOL(security_path_mknod);
 981
 982int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
 983{
 984        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 985                return 0;
 986        return call_int_hook(path_mkdir, 0, dir, dentry, mode);
 987}
 988EXPORT_SYMBOL(security_path_mkdir);
 989
 990int security_path_rmdir(const struct path *dir, struct dentry *dentry)
 991{
 992        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 993                return 0;
 994        return call_int_hook(path_rmdir, 0, dir, dentry);
 995}
 996
 997int security_path_unlink(const struct path *dir, struct dentry *dentry)
 998{
 999        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1000                return 0;
1001        return call_int_hook(path_unlink, 0, dir, dentry);
1002}
1003EXPORT_SYMBOL(security_path_unlink);
1004
1005int security_path_symlink(const struct path *dir, struct dentry *dentry,
1006                          const char *old_name)
1007{
1008        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1009                return 0;
1010        return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1011}
1012
1013int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1014                       struct dentry *new_dentry)
1015{
1016        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1017                return 0;
1018        return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1019}
1020
1021int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1022                         const struct path *new_dir, struct dentry *new_dentry,
1023                         unsigned int flags)
1024{
1025        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1026                     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1027                return 0;
1028
1029        if (flags & RENAME_EXCHANGE) {
1030                int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1031                                        old_dir, old_dentry);
1032                if (err)
1033                        return err;
1034        }
1035
1036        return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1037                                new_dentry);
1038}
1039EXPORT_SYMBOL(security_path_rename);
1040
1041int security_path_truncate(const struct path *path)
1042{
1043        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1044                return 0;
1045        return call_int_hook(path_truncate, 0, path);
1046}
1047
1048int security_path_chmod(const struct path *path, umode_t mode)
1049{
1050        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1051                return 0;
1052        return call_int_hook(path_chmod, 0, path, mode);
1053}
1054
1055int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1056{
1057        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1058                return 0;
1059        return call_int_hook(path_chown, 0, path, uid, gid);
1060}
1061
1062int security_path_chroot(const struct path *path)
1063{
1064        return call_int_hook(path_chroot, 0, path);
1065}
1066#endif
1067
1068int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1069{
1070        if (unlikely(IS_PRIVATE(dir)))
1071                return 0;
1072        return call_int_hook(inode_create, 0, dir, dentry, mode);
1073}
1074EXPORT_SYMBOL_GPL(security_inode_create);
1075
1076int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1077                         struct dentry *new_dentry)
1078{
1079        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1080                return 0;
1081        return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1082}
1083
1084int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1085{
1086        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1087                return 0;
1088        return call_int_hook(inode_unlink, 0, dir, dentry);
1089}
1090
1091int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1092                            const char *old_name)
1093{
1094        if (unlikely(IS_PRIVATE(dir)))
1095                return 0;
1096        return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1097}
1098
1099int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1100{
1101        if (unlikely(IS_PRIVATE(dir)))
1102                return 0;
1103        return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1104}
1105EXPORT_SYMBOL_GPL(security_inode_mkdir);
1106
1107int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1108{
1109        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1110                return 0;
1111        return call_int_hook(inode_rmdir, 0, dir, dentry);
1112}
1113
1114int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1115{
1116        if (unlikely(IS_PRIVATE(dir)))
1117                return 0;
1118        return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1119}
1120
1121int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1122                           struct inode *new_dir, struct dentry *new_dentry,
1123                           unsigned int flags)
1124{
1125        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1126            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1127                return 0;
1128
1129        if (flags & RENAME_EXCHANGE) {
1130                int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1131                                                     old_dir, old_dentry);
1132                if (err)
1133                        return err;
1134        }
1135
1136        return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1137                                           new_dir, new_dentry);
1138}
1139
1140int security_inode_readlink(struct dentry *dentry)
1141{
1142        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1143                return 0;
1144        return call_int_hook(inode_readlink, 0, dentry);
1145}
1146
1147int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1148                               bool rcu)
1149{
1150        if (unlikely(IS_PRIVATE(inode)))
1151                return 0;
1152        return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1153}
1154
1155int security_inode_permission(struct inode *inode, int mask)
1156{
1157        if (unlikely(IS_PRIVATE(inode)))
1158                return 0;
1159        return call_int_hook(inode_permission, 0, inode, mask);
1160}
1161
1162int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1163{
1164        int ret;
1165
1166        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1167                return 0;
1168        ret = call_int_hook(inode_setattr, 0, dentry, attr);
1169        if (ret)
1170                return ret;
1171        return evm_inode_setattr(dentry, attr);
1172}
1173EXPORT_SYMBOL_GPL(security_inode_setattr);
1174
1175int security_inode_getattr(const struct path *path)
1176{
1177        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1178                return 0;
1179        return call_int_hook(inode_getattr, 0, path);
1180}
1181
1182int security_inode_setxattr(struct dentry *dentry, const char *name,
1183                            const void *value, size_t size, int flags)
1184{
1185        int ret;
1186
1187        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1188                return 0;
1189        /*
1190         * SELinux and Smack integrate the cap call,
1191         * so assume that all LSMs supplying this call do so.
1192         */
1193        ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1194                                flags);
1195
1196        if (ret == 1)
1197                ret = cap_inode_setxattr(dentry, name, value, size, flags);
1198        if (ret)
1199                return ret;
1200        ret = ima_inode_setxattr(dentry, name, value, size);
1201        if (ret)
1202                return ret;
1203        return evm_inode_setxattr(dentry, name, value, size);
1204}
1205
1206void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1207                                  const void *value, size_t size, int flags)
1208{
1209        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210                return;
1211        call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1212        evm_inode_post_setxattr(dentry, name, value, size);
1213}
1214
1215int security_inode_getxattr(struct dentry *dentry, const char *name)
1216{
1217        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1218                return 0;
1219        return call_int_hook(inode_getxattr, 0, dentry, name);
1220}
1221
1222int security_inode_listxattr(struct dentry *dentry)
1223{
1224        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1225                return 0;
1226        return call_int_hook(inode_listxattr, 0, dentry);
1227}
1228
1229int security_inode_removexattr(struct dentry *dentry, const char *name)
1230{
1231        int ret;
1232
1233        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1234                return 0;
1235        /*
1236         * SELinux and Smack integrate the cap call,
1237         * so assume that all LSMs supplying this call do so.
1238         */
1239        ret = call_int_hook(inode_removexattr, 1, dentry, name);
1240        if (ret == 1)
1241                ret = cap_inode_removexattr(dentry, name);
1242        if (ret)
1243                return ret;
1244        ret = ima_inode_removexattr(dentry, name);
1245        if (ret)
1246                return ret;
1247        return evm_inode_removexattr(dentry, name);
1248}
1249
1250int security_inode_need_killpriv(struct dentry *dentry)
1251{
1252        return call_int_hook(inode_need_killpriv, 0, dentry);
1253}
1254
1255int security_inode_killpriv(struct dentry *dentry)
1256{
1257        return call_int_hook(inode_killpriv, 0, dentry);
1258}
1259
1260int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1261{
1262        struct security_hook_list *hp;
1263        int rc;
1264
1265        if (unlikely(IS_PRIVATE(inode)))
1266                return -EOPNOTSUPP;
1267        /*
1268         * Only one module will provide an attribute with a given name.
1269         */
1270        hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1271                rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1272                if (rc != -EOPNOTSUPP)
1273                        return rc;
1274        }
1275        return -EOPNOTSUPP;
1276}
1277
1278int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1279{
1280        struct security_hook_list *hp;
1281        int rc;
1282
1283        if (unlikely(IS_PRIVATE(inode)))
1284                return -EOPNOTSUPP;
1285        /*
1286         * Only one module will provide an attribute with a given name.
1287         */
1288        hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1289                rc = hp->hook.inode_setsecurity(inode, name, value, size,
1290                                                                flags);
1291                if (rc != -EOPNOTSUPP)
1292                        return rc;
1293        }
1294        return -EOPNOTSUPP;
1295}
1296
1297int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1298{
1299        if (unlikely(IS_PRIVATE(inode)))
1300                return 0;
1301        return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1302}
1303EXPORT_SYMBOL(security_inode_listsecurity);
1304
1305void security_inode_getsecid(struct inode *inode, u32 *secid)
1306{
1307        call_void_hook(inode_getsecid, inode, secid);
1308}
1309
1310int security_inode_copy_up(struct dentry *src, struct cred **new)
1311{
1312        return call_int_hook(inode_copy_up, 0, src, new);
1313}
1314EXPORT_SYMBOL(security_inode_copy_up);
1315
1316int security_inode_copy_up_xattr(const char *name)
1317{
1318        return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1319}
1320EXPORT_SYMBOL(security_inode_copy_up_xattr);
1321
1322int security_kernfs_init_security(struct kernfs_node *kn_dir,
1323                                  struct kernfs_node *kn)
1324{
1325        return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1326}
1327
1328int security_file_permission(struct file *file, int mask)
1329{
1330        int ret;
1331
1332        ret = call_int_hook(file_permission, 0, file, mask);
1333        if (ret)
1334                return ret;
1335
1336        return fsnotify_perm(file, mask);
1337}
1338
1339int security_file_alloc(struct file *file)
1340{
1341        int rc = lsm_file_alloc(file);
1342
1343        if (rc)
1344                return rc;
1345        rc = call_int_hook(file_alloc_security, 0, file);
1346        if (unlikely(rc))
1347                security_file_free(file);
1348        return rc;
1349}
1350
1351void security_file_free(struct file *file)
1352{
1353        void *blob;
1354
1355        call_void_hook(file_free_security, file);
1356
1357        blob = file->f_security;
1358        if (blob) {
1359                file->f_security = NULL;
1360                kmem_cache_free(lsm_file_cache, blob);
1361        }
1362}
1363
1364int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1365{
1366        return call_int_hook(file_ioctl, 0, file, cmd, arg);
1367}
1368
1369static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1370{
1371        /*
1372         * Does we have PROT_READ and does the application expect
1373         * it to imply PROT_EXEC?  If not, nothing to talk about...
1374         */
1375        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1376                return prot;
1377        if (!(current->personality & READ_IMPLIES_EXEC))
1378                return prot;
1379        /*
1380         * if that's an anonymous mapping, let it.
1381         */
1382        if (!file)
1383                return prot | PROT_EXEC;
1384        /*
1385         * ditto if it's not on noexec mount, except that on !MMU we need
1386         * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1387         */
1388        if (!path_noexec(&file->f_path)) {
1389#ifndef CONFIG_MMU
1390                if (file->f_op->mmap_capabilities) {
1391                        unsigned caps = file->f_op->mmap_capabilities(file);
1392                        if (!(caps & NOMMU_MAP_EXEC))
1393                                return prot;
1394                }
1395#endif
1396                return prot | PROT_EXEC;
1397        }
1398        /* anything on noexec mount won't get PROT_EXEC */
1399        return prot;
1400}
1401
1402int security_mmap_file(struct file *file, unsigned long prot,
1403                        unsigned long flags)
1404{
1405        int ret;
1406        ret = call_int_hook(mmap_file, 0, file, prot,
1407                                        mmap_prot(file, prot), flags);
1408        if (ret)
1409                return ret;
1410        return ima_file_mmap(file, prot);
1411}
1412
1413int security_mmap_addr(unsigned long addr)
1414{
1415        return call_int_hook(mmap_addr, 0, addr);
1416}
1417
1418int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1419                            unsigned long prot)
1420{
1421        return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1422}
1423
1424int security_file_lock(struct file *file, unsigned int cmd)
1425{
1426        return call_int_hook(file_lock, 0, file, cmd);
1427}
1428
1429int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1430{
1431        return call_int_hook(file_fcntl, 0, file, cmd, arg);
1432}
1433
1434void security_file_set_fowner(struct file *file)
1435{
1436        call_void_hook(file_set_fowner, file);
1437}
1438
1439int security_file_send_sigiotask(struct task_struct *tsk,
1440                                  struct fown_struct *fown, int sig)
1441{
1442        return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1443}
1444
1445int security_file_receive(struct file *file)
1446{
1447        return call_int_hook(file_receive, 0, file);
1448}
1449
1450int security_file_open(struct file *file)
1451{
1452        int ret;
1453
1454        ret = call_int_hook(file_open, 0, file);
1455        if (ret)
1456                return ret;
1457
1458        return fsnotify_perm(file, MAY_OPEN);
1459}
1460
1461int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1462{
1463        int rc = lsm_task_alloc(task);
1464
1465        if (rc)
1466                return rc;
1467        rc = call_int_hook(task_alloc, 0, task, clone_flags);
1468        if (unlikely(rc))
1469                security_task_free(task);
1470        return rc;
1471}
1472
1473void security_task_free(struct task_struct *task)
1474{
1475        call_void_hook(task_free, task);
1476
1477        kfree(task->security);
1478        task->security = NULL;
1479}
1480
1481int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1482{
1483        int rc = lsm_cred_alloc(cred, gfp);
1484
1485        if (rc)
1486                return rc;
1487
1488        rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1489        if (unlikely(rc))
1490                security_cred_free(cred);
1491        return rc;
1492}
1493
1494void security_cred_free(struct cred *cred)
1495{
1496        /*
1497         * There is a failure case in prepare_creds() that
1498         * may result in a call here with ->security being NULL.
1499         */
1500        if (unlikely(cred->security == NULL))
1501                return;
1502
1503        call_void_hook(cred_free, cred);
1504
1505        kfree(cred->security);
1506        cred->security = NULL;
1507}
1508
1509int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1510{
1511        int rc = lsm_cred_alloc(new, gfp);
1512
1513        if (rc)
1514                return rc;
1515
1516        rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1517        if (unlikely(rc))
1518                security_cred_free(new);
1519        return rc;
1520}
1521
1522void security_transfer_creds(struct cred *new, const struct cred *old)
1523{
1524        call_void_hook(cred_transfer, new, old);
1525}
1526
1527void security_cred_getsecid(const struct cred *c, u32 *secid)
1528{
1529        *secid = 0;
1530        call_void_hook(cred_getsecid, c, secid);
1531}
1532EXPORT_SYMBOL(security_cred_getsecid);
1533
1534int security_kernel_act_as(struct cred *new, u32 secid)
1535{
1536        return call_int_hook(kernel_act_as, 0, new, secid);
1537}
1538
1539int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1540{
1541        return call_int_hook(kernel_create_files_as, 0, new, inode);
1542}
1543
1544int security_kernel_module_request(char *kmod_name)
1545{
1546        int ret;
1547
1548        ret = call_int_hook(kernel_module_request, 0, kmod_name);
1549        if (ret)
1550                return ret;
1551        return integrity_kernel_module_request(kmod_name);
1552}
1553
1554int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1555{
1556        int ret;
1557
1558        ret = call_int_hook(kernel_read_file, 0, file, id);
1559        if (ret)
1560                return ret;
1561        return ima_read_file(file, id);
1562}
1563EXPORT_SYMBOL_GPL(security_kernel_read_file);
1564
1565int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1566                                   enum kernel_read_file_id id)
1567{
1568        int ret;
1569
1570        ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1571        if (ret)
1572                return ret;
1573        return ima_post_read_file(file, buf, size, id);
1574}
1575EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1576
1577int security_kernel_load_data(enum kernel_load_data_id id)
1578{
1579        int ret;
1580
1581        ret = call_int_hook(kernel_load_data, 0, id);
1582        if (ret)
1583                return ret;
1584        return ima_load_data(id);
1585}
1586EXPORT_SYMBOL_GPL(security_kernel_load_data);
1587
1588int security_task_fix_setuid(struct cred *new, const struct cred *old,
1589                             int flags)
1590{
1591        return call_int_hook(task_fix_setuid, 0, new, old, flags);
1592}
1593
1594int security_task_setpgid(struct task_struct *p, pid_t pgid)
1595{
1596        return call_int_hook(task_setpgid, 0, p, pgid);
1597}
1598
1599int security_task_getpgid(struct task_struct *p)
1600{
1601        return call_int_hook(task_getpgid, 0, p);
1602}
1603
1604int security_task_getsid(struct task_struct *p)
1605{
1606        return call_int_hook(task_getsid, 0, p);
1607}
1608
1609void security_task_getsecid(struct task_struct *p, u32 *secid)
1610{
1611        *secid = 0;
1612        call_void_hook(task_getsecid, p, secid);
1613}
1614EXPORT_SYMBOL(security_task_getsecid);
1615
1616int security_task_setnice(struct task_struct *p, int nice)
1617{
1618        return call_int_hook(task_setnice, 0, p, nice);
1619}
1620
1621int security_task_setioprio(struct task_struct *p, int ioprio)
1622{
1623        return call_int_hook(task_setioprio, 0, p, ioprio);
1624}
1625
1626int security_task_getioprio(struct task_struct *p)
1627{
1628        return call_int_hook(task_getioprio, 0, p);
1629}
1630
1631int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1632                          unsigned int flags)
1633{
1634        return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1635}
1636
1637int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1638                struct rlimit *new_rlim)
1639{
1640        return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1641}
1642
1643int security_task_setscheduler(struct task_struct *p)
1644{
1645        return call_int_hook(task_setscheduler, 0, p);
1646}
1647
1648int security_task_getscheduler(struct task_struct *p)
1649{
1650        return call_int_hook(task_getscheduler, 0, p);
1651}
1652
1653int security_task_movememory(struct task_struct *p)
1654{
1655        return call_int_hook(task_movememory, 0, p);
1656}
1657
1658int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1659                        int sig, const struct cred *cred)
1660{
1661        return call_int_hook(task_kill, 0, p, info, sig, cred);
1662}
1663
1664int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1665                         unsigned long arg4, unsigned long arg5)
1666{
1667        int thisrc;
1668        int rc = -ENOSYS;
1669        struct security_hook_list *hp;
1670
1671        hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1672                thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1673                if (thisrc != -ENOSYS) {
1674                        rc = thisrc;
1675                        if (thisrc != 0)
1676                                break;
1677                }
1678        }
1679        return rc;
1680}
1681
1682void security_task_to_inode(struct task_struct *p, struct inode *inode)
1683{
1684        call_void_hook(task_to_inode, p, inode);
1685}
1686
1687int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1688{
1689        return call_int_hook(ipc_permission, 0, ipcp, flag);
1690}
1691
1692void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1693{
1694        *secid = 0;
1695        call_void_hook(ipc_getsecid, ipcp, secid);
1696}
1697
1698int security_msg_msg_alloc(struct msg_msg *msg)
1699{
1700        int rc = lsm_msg_msg_alloc(msg);
1701
1702        if (unlikely(rc))
1703                return rc;
1704        rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1705        if (unlikely(rc))
1706                security_msg_msg_free(msg);
1707        return rc;
1708}
1709
1710void security_msg_msg_free(struct msg_msg *msg)
1711{
1712        call_void_hook(msg_msg_free_security, msg);
1713        kfree(msg->security);
1714        msg->security = NULL;
1715}
1716
1717int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1718{
1719        int rc = lsm_ipc_alloc(msq);
1720
1721        if (unlikely(rc))
1722                return rc;
1723        rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1724        if (unlikely(rc))
1725                security_msg_queue_free(msq);
1726        return rc;
1727}
1728
1729void security_msg_queue_free(struct kern_ipc_perm *msq)
1730{
1731        call_void_hook(msg_queue_free_security, msq);
1732        kfree(msq->security);
1733        msq->security = NULL;
1734}
1735
1736int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1737{
1738        return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1739}
1740
1741int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1742{
1743        return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1744}
1745
1746int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1747                               struct msg_msg *msg, int msqflg)
1748{
1749        return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1750}
1751
1752int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1753                               struct task_struct *target, long type, int mode)
1754{
1755        return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1756}
1757
1758int security_shm_alloc(struct kern_ipc_perm *shp)
1759{
1760        int rc = lsm_ipc_alloc(shp);
1761
1762        if (unlikely(rc))
1763                return rc;
1764        rc = call_int_hook(shm_alloc_security, 0, shp);
1765        if (unlikely(rc))
1766                security_shm_free(shp);
1767        return rc;
1768}
1769
1770void security_shm_free(struct kern_ipc_perm *shp)
1771{
1772        call_void_hook(shm_free_security, shp);
1773        kfree(shp->security);
1774        shp->security = NULL;
1775}
1776
1777int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1778{
1779        return call_int_hook(shm_associate, 0, shp, shmflg);
1780}
1781
1782int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1783{
1784        return call_int_hook(shm_shmctl, 0, shp, cmd);
1785}
1786
1787int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1788{
1789        return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1790}
1791
1792int security_sem_alloc(struct kern_ipc_perm *sma)
1793{
1794        int rc = lsm_ipc_alloc(sma);
1795
1796        if (unlikely(rc))
1797                return rc;
1798        rc = call_int_hook(sem_alloc_security, 0, sma);
1799        if (unlikely(rc))
1800                security_sem_free(sma);
1801        return rc;
1802}
1803
1804void security_sem_free(struct kern_ipc_perm *sma)
1805{
1806        call_void_hook(sem_free_security, sma);
1807        kfree(sma->security);
1808        sma->security = NULL;
1809}
1810
1811int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1812{
1813        return call_int_hook(sem_associate, 0, sma, semflg);
1814}
1815
1816int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1817{
1818        return call_int_hook(sem_semctl, 0, sma, cmd);
1819}
1820
1821int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1822                        unsigned nsops, int alter)
1823{
1824        return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1825}
1826
1827void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1828{
1829        if (unlikely(inode && IS_PRIVATE(inode)))
1830                return;
1831        call_void_hook(d_instantiate, dentry, inode);
1832}
1833EXPORT_SYMBOL(security_d_instantiate);
1834
1835int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1836                                char **value)
1837{
1838        struct security_hook_list *hp;
1839
1840        hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1841                if (lsm != NULL && strcmp(lsm, hp->lsm))
1842                        continue;
1843                return hp->hook.getprocattr(p, name, value);
1844        }
1845        return -EINVAL;
1846}
1847
1848int security_setprocattr(const char *lsm, const char *name, void *value,
1849                         size_t size)
1850{
1851        struct security_hook_list *hp;
1852
1853        hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1854                if (lsm != NULL && strcmp(lsm, hp->lsm))
1855                        continue;
1856                return hp->hook.setprocattr(name, value, size);
1857        }
1858        return -EINVAL;
1859}
1860
1861int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1862{
1863        return call_int_hook(netlink_send, 0, sk, skb);
1864}
1865
1866int security_ismaclabel(const char *name)
1867{
1868        return call_int_hook(ismaclabel, 0, name);
1869}
1870EXPORT_SYMBOL(security_ismaclabel);
1871
1872int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1873{
1874        return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1875                                seclen);
1876}
1877EXPORT_SYMBOL(security_secid_to_secctx);
1878
1879int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1880{
1881        *secid = 0;
1882        return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1883}
1884EXPORT_SYMBOL(security_secctx_to_secid);
1885
1886void security_release_secctx(char *secdata, u32 seclen)
1887{
1888        call_void_hook(release_secctx, secdata, seclen);
1889}
1890EXPORT_SYMBOL(security_release_secctx);
1891
1892void security_inode_invalidate_secctx(struct inode *inode)
1893{
1894        call_void_hook(inode_invalidate_secctx, inode);
1895}
1896EXPORT_SYMBOL(security_inode_invalidate_secctx);
1897
1898int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1899{
1900        return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1901}
1902EXPORT_SYMBOL(security_inode_notifysecctx);
1903
1904int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1905{
1906        return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1907}
1908EXPORT_SYMBOL(security_inode_setsecctx);
1909
1910int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1911{
1912        return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1913}
1914EXPORT_SYMBOL(security_inode_getsecctx);
1915
1916#ifdef CONFIG_SECURITY_NETWORK
1917
1918int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1919{
1920        return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1921}
1922EXPORT_SYMBOL(security_unix_stream_connect);
1923
1924int security_unix_may_send(struct socket *sock,  struct socket *other)
1925{
1926        return call_int_hook(unix_may_send, 0, sock, other);
1927}
1928EXPORT_SYMBOL(security_unix_may_send);
1929
1930int security_socket_create(int family, int type, int protocol, int kern)
1931{
1932        return call_int_hook(socket_create, 0, family, type, protocol, kern);
1933}
1934
1935int security_socket_post_create(struct socket *sock, int family,
1936                                int type, int protocol, int kern)
1937{
1938        return call_int_hook(socket_post_create, 0, sock, family, type,
1939                                                protocol, kern);
1940}
1941
1942int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1943{
1944        return call_int_hook(socket_socketpair, 0, socka, sockb);
1945}
1946EXPORT_SYMBOL(security_socket_socketpair);
1947
1948int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1949{
1950        return call_int_hook(socket_bind, 0, sock, address, addrlen);
1951}
1952
1953int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1954{
1955        return call_int_hook(socket_connect, 0, sock, address, addrlen);
1956}
1957
1958int security_socket_listen(struct socket *sock, int backlog)
1959{
1960        return call_int_hook(socket_listen, 0, sock, backlog);
1961}
1962
1963int security_socket_accept(struct socket *sock, struct socket *newsock)
1964{
1965        return call_int_hook(socket_accept, 0, sock, newsock);
1966}
1967
1968int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1969{
1970        return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1971}
1972
1973int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1974                            int size, int flags)
1975{
1976        return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1977}
1978
1979int security_socket_getsockname(struct socket *sock)
1980{
1981        return call_int_hook(socket_getsockname, 0, sock);
1982}
1983
1984int security_socket_getpeername(struct socket *sock)
1985{
1986        return call_int_hook(socket_getpeername, 0, sock);
1987}
1988
1989int security_socket_getsockopt(struct socket *sock, int level, int optname)
1990{
1991        return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1992}
1993
1994int security_socket_setsockopt(struct socket *sock, int level, int optname)
1995{
1996        return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1997}
1998
1999int security_socket_shutdown(struct socket *sock, int how)
2000{
2001        return call_int_hook(socket_shutdown, 0, sock, how);
2002}
2003
2004int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2005{
2006        return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2007}
2008EXPORT_SYMBOL(security_sock_rcv_skb);
2009
2010int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2011                                      int __user *optlen, unsigned len)
2012{
2013        return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2014                                optval, optlen, len);
2015}
2016
2017int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2018{
2019        return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2020                             skb, secid);
2021}
2022EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2023
2024int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2025{
2026        return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2027}
2028
2029void security_sk_free(struct sock *sk)
2030{
2031        call_void_hook(sk_free_security, sk);
2032}
2033
2034void security_sk_clone(const struct sock *sk, struct sock *newsk)
2035{
2036        call_void_hook(sk_clone_security, sk, newsk);
2037}
2038EXPORT_SYMBOL(security_sk_clone);
2039
2040void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2041{
2042        call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2043}
2044EXPORT_SYMBOL(security_sk_classify_flow);
2045
2046void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2047{
2048        call_void_hook(req_classify_flow, req, fl);
2049}
2050EXPORT_SYMBOL(security_req_classify_flow);
2051
2052void security_sock_graft(struct sock *sk, struct socket *parent)
2053{
2054        call_void_hook(sock_graft, sk, parent);
2055}
2056EXPORT_SYMBOL(security_sock_graft);
2057
2058int security_inet_conn_request(struct sock *sk,
2059                        struct sk_buff *skb, struct request_sock *req)
2060{
2061        return call_int_hook(inet_conn_request, 0, sk, skb, req);
2062}
2063EXPORT_SYMBOL(security_inet_conn_request);
2064
2065void security_inet_csk_clone(struct sock *newsk,
2066                        const struct request_sock *req)
2067{
2068        call_void_hook(inet_csk_clone, newsk, req);
2069}
2070
2071void security_inet_conn_established(struct sock *sk,
2072                        struct sk_buff *skb)
2073{
2074        call_void_hook(inet_conn_established, sk, skb);
2075}
2076EXPORT_SYMBOL(security_inet_conn_established);
2077
2078int security_secmark_relabel_packet(u32 secid)
2079{
2080        return call_int_hook(secmark_relabel_packet, 0, secid);
2081}
2082EXPORT_SYMBOL(security_secmark_relabel_packet);
2083
2084void security_secmark_refcount_inc(void)
2085{
2086        call_void_hook(secmark_refcount_inc);
2087}
2088EXPORT_SYMBOL(security_secmark_refcount_inc);
2089
2090void security_secmark_refcount_dec(void)
2091{
2092        call_void_hook(secmark_refcount_dec);
2093}
2094EXPORT_SYMBOL(security_secmark_refcount_dec);
2095
2096int security_tun_dev_alloc_security(void **security)
2097{
2098        return call_int_hook(tun_dev_alloc_security, 0, security);
2099}
2100EXPORT_SYMBOL(security_tun_dev_alloc_security);
2101
2102void security_tun_dev_free_security(void *security)
2103{
2104        call_void_hook(tun_dev_free_security, security);
2105}
2106EXPORT_SYMBOL(security_tun_dev_free_security);
2107
2108int security_tun_dev_create(void)
2109{
2110        return call_int_hook(tun_dev_create, 0);
2111}
2112EXPORT_SYMBOL(security_tun_dev_create);
2113
2114int security_tun_dev_attach_queue(void *security)
2115{
2116        return call_int_hook(tun_dev_attach_queue, 0, security);
2117}
2118EXPORT_SYMBOL(security_tun_dev_attach_queue);
2119
2120int security_tun_dev_attach(struct sock *sk, void *security)
2121{
2122        return call_int_hook(tun_dev_attach, 0, sk, security);
2123}
2124EXPORT_SYMBOL(security_tun_dev_attach);
2125
2126int security_tun_dev_open(void *security)
2127{
2128        return call_int_hook(tun_dev_open, 0, security);
2129}
2130EXPORT_SYMBOL(security_tun_dev_open);
2131
2132int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2133{
2134        return call_int_hook(sctp_assoc_request, 0, ep, skb);
2135}
2136EXPORT_SYMBOL(security_sctp_assoc_request);
2137
2138int security_sctp_bind_connect(struct sock *sk, int optname,
2139                               struct sockaddr *address, int addrlen)
2140{
2141        return call_int_hook(sctp_bind_connect, 0, sk, optname,
2142                             address, addrlen);
2143}
2144EXPORT_SYMBOL(security_sctp_bind_connect);
2145
2146void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2147                            struct sock *newsk)
2148{
2149        call_void_hook(sctp_sk_clone, ep, sk, newsk);
2150}
2151EXPORT_SYMBOL(security_sctp_sk_clone);
2152
2153#endif  /* CONFIG_SECURITY_NETWORK */
2154
2155#ifdef CONFIG_SECURITY_INFINIBAND
2156
2157int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2158{
2159        return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2160}
2161EXPORT_SYMBOL(security_ib_pkey_access);
2162
2163int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2164{
2165        return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2166}
2167EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2168
2169int security_ib_alloc_security(void **sec)
2170{
2171        return call_int_hook(ib_alloc_security, 0, sec);
2172}
2173EXPORT_SYMBOL(security_ib_alloc_security);
2174
2175void security_ib_free_security(void *sec)
2176{
2177        call_void_hook(ib_free_security, sec);
2178}
2179EXPORT_SYMBOL(security_ib_free_security);
2180#endif  /* CONFIG_SECURITY_INFINIBAND */
2181
2182#ifdef CONFIG_SECURITY_NETWORK_XFRM
2183
2184int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2185                               struct xfrm_user_sec_ctx *sec_ctx,
2186                               gfp_t gfp)
2187{
2188        return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2189}
2190EXPORT_SYMBOL(security_xfrm_policy_alloc);
2191
2192int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2193                              struct xfrm_sec_ctx **new_ctxp)
2194{
2195        return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2196}
2197
2198void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2199{
2200        call_void_hook(xfrm_policy_free_security, ctx);
2201}
2202EXPORT_SYMBOL(security_xfrm_policy_free);
2203
2204int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2205{
2206        return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2207}
2208
2209int security_xfrm_state_alloc(struct xfrm_state *x,
2210                              struct xfrm_user_sec_ctx *sec_ctx)
2211{
2212        return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2213}
2214EXPORT_SYMBOL(security_xfrm_state_alloc);
2215
2216int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2217                                      struct xfrm_sec_ctx *polsec, u32 secid)
2218{
2219        return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2220}
2221
2222int security_xfrm_state_delete(struct xfrm_state *x)
2223{
2224        return call_int_hook(xfrm_state_delete_security, 0, x);
2225}
2226EXPORT_SYMBOL(security_xfrm_state_delete);
2227
2228void security_xfrm_state_free(struct xfrm_state *x)
2229{
2230        call_void_hook(xfrm_state_free_security, x);
2231}
2232
2233int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2234{
2235        return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2236}
2237
2238int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2239                                       struct xfrm_policy *xp,
2240                                       const struct flowi *fl)
2241{
2242        struct security_hook_list *hp;
2243        int rc = 1;
2244
2245        /*
2246         * Since this function is expected to return 0 or 1, the judgment
2247         * becomes difficult if multiple LSMs supply this call. Fortunately,
2248         * we can use the first LSM's judgment because currently only SELinux
2249         * supplies this call.
2250         *
2251         * For speed optimization, we explicitly break the loop rather than
2252         * using the macro
2253         */
2254        hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2255                                list) {
2256                rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2257                break;
2258        }
2259        return rc;
2260}
2261
2262int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2263{
2264        return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2265}
2266
2267void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2268{
2269        int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2270                                0);
2271
2272        BUG_ON(rc);
2273}
2274EXPORT_SYMBOL(security_skb_classify_flow);
2275
2276#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2277
2278#ifdef CONFIG_KEYS
2279
2280int security_key_alloc(struct key *key, const struct cred *cred,
2281                       unsigned long flags)
2282{
2283        return call_int_hook(key_alloc, 0, key, cred, flags);
2284}
2285
2286void security_key_free(struct key *key)
2287{
2288        call_void_hook(key_free, key);
2289}
2290
2291int security_key_permission(key_ref_t key_ref,
2292                            const struct cred *cred, unsigned perm)
2293{
2294        return call_int_hook(key_permission, 0, key_ref, cred, perm);
2295}
2296
2297int security_key_getsecurity(struct key *key, char **_buffer)
2298{
2299        *_buffer = NULL;
2300        return call_int_hook(key_getsecurity, 0, key, _buffer);
2301}
2302
2303#endif  /* CONFIG_KEYS */
2304
2305#ifdef CONFIG_AUDIT
2306
2307int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2308{
2309        return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2310}
2311
2312int security_audit_rule_known(struct audit_krule *krule)
2313{
2314        return call_int_hook(audit_rule_known, 0, krule);
2315}
2316
2317void security_audit_rule_free(void *lsmrule)
2318{
2319        call_void_hook(audit_rule_free, lsmrule);
2320}
2321
2322int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2323{
2324        return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2325}
2326#endif /* CONFIG_AUDIT */
2327
2328#ifdef CONFIG_BPF_SYSCALL
2329int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2330{
2331        return call_int_hook(bpf, 0, cmd, attr, size);
2332}
2333int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2334{
2335        return call_int_hook(bpf_map, 0, map, fmode);
2336}
2337int security_bpf_prog(struct bpf_prog *prog)
2338{
2339        return call_int_hook(bpf_prog, 0, prog);
2340}
2341int security_bpf_map_alloc(struct bpf_map *map)
2342{
2343        return call_int_hook(bpf_map_alloc_security, 0, map);
2344}
2345int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2346{
2347        return call_int_hook(bpf_prog_alloc_security, 0, aux);
2348}
2349void security_bpf_map_free(struct bpf_map *map)
2350{
2351        call_void_hook(bpf_map_free_security, map);
2352}
2353void security_bpf_prog_free(struct bpf_prog_aux *aux)
2354{
2355        call_void_hook(bpf_prog_free_security, aux);
2356}
2357#endif /* CONFIG_BPF_SYSCALL */
2358