linux/sound/pci/vx222/vx222_ops.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Digigram VX222 V2/Mic soundcards
   4 *
   5 * VX222-specific low-level routines
   6 *
   7 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
   8 */
   9
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/firmware.h>
  13#include <linux/mutex.h>
  14#include <linux/io.h>
  15
  16#include <sound/core.h>
  17#include <sound/control.h>
  18#include <sound/tlv.h>
  19#include "vx222.h"
  20
  21
  22static int vx2_reg_offset[VX_REG_MAX] = {
  23        [VX_ICR]    = 0x00,
  24        [VX_CVR]    = 0x04,
  25        [VX_ISR]    = 0x08,
  26        [VX_IVR]    = 0x0c,
  27        [VX_RXH]    = 0x14,
  28        [VX_RXM]    = 0x18,
  29        [VX_RXL]    = 0x1c,
  30        [VX_DMA]    = 0x10,
  31        [VX_CDSP]   = 0x20,
  32        [VX_CFG]    = 0x24,
  33        [VX_RUER]   = 0x28,
  34        [VX_DATA]   = 0x2c,
  35        [VX_STATUS] = 0x30,
  36        [VX_LOFREQ] = 0x34,
  37        [VX_HIFREQ] = 0x38,
  38        [VX_CSUER]  = 0x3c,
  39        [VX_SELMIC] = 0x40,
  40        [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
  41        [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
  42        [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
  43        [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
  44        [VX_CNTRL]  = 0x50,             // VX_CNTRL_REGISTER_OFFSET
  45        [VX_GPIOC]  = 0x54,             // VX_GPIOC (new with PLX9030)
  46};
  47
  48static int vx2_reg_index[VX_REG_MAX] = {
  49        [VX_ICR]        = 1,
  50        [VX_CVR]        = 1,
  51        [VX_ISR]        = 1,
  52        [VX_IVR]        = 1,
  53        [VX_RXH]        = 1,
  54        [VX_RXM]        = 1,
  55        [VX_RXL]        = 1,
  56        [VX_DMA]        = 1,
  57        [VX_CDSP]       = 1,
  58        [VX_CFG]        = 1,
  59        [VX_RUER]       = 1,
  60        [VX_DATA]       = 1,
  61        [VX_STATUS]     = 1,
  62        [VX_LOFREQ]     = 1,
  63        [VX_HIFREQ]     = 1,
  64        [VX_CSUER]      = 1,
  65        [VX_SELMIC]     = 1,
  66        [VX_COMPOT]     = 1,
  67        [VX_SCOMPR]     = 1,
  68        [VX_GLIMIT]     = 1,
  69        [VX_INTCSR]     = 0,    /* on the PLX */
  70        [VX_CNTRL]      = 0,    /* on the PLX */
  71        [VX_GPIOC]      = 0,    /* on the PLX */
  72};
  73
  74static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
  75{
  76        struct snd_vx222 *chip = to_vx222(_chip);
  77        return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
  78}
  79
  80/**
  81 * snd_vx_inb - read a byte from the register
  82 * @chip: VX core instance
  83 * @offset: register enum
  84 */
  85static unsigned char vx2_inb(struct vx_core *chip, int offset)
  86{
  87        return inb(vx2_reg_addr(chip, offset));
  88}
  89
  90/**
  91 * snd_vx_outb - write a byte on the register
  92 * @chip: VX core instance
  93 * @offset: the register offset
  94 * @val: the value to write
  95 */
  96static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
  97{
  98        outb(val, vx2_reg_addr(chip, offset));
  99        /*
 100        dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
 101        */
 102}
 103
 104/**
 105 * snd_vx_inl - read a 32bit word from the register
 106 * @chip: VX core instance
 107 * @offset: register enum
 108 */
 109static unsigned int vx2_inl(struct vx_core *chip, int offset)
 110{
 111        return inl(vx2_reg_addr(chip, offset));
 112}
 113
 114/**
 115 * snd_vx_outl - write a 32bit word on the register
 116 * @chip: VX core instance
 117 * @offset: the register enum
 118 * @val: the value to write
 119 */
 120static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
 121{
 122        /*
 123        dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
 124        */
 125        outl(val, vx2_reg_addr(chip, offset));
 126}
 127
 128/*
 129 * redefine macros to call directly
 130 */
 131#undef vx_inb
 132#define vx_inb(chip,reg)        vx2_inb((struct vx_core*)(chip), VX_##reg)
 133#undef vx_outb
 134#define vx_outb(chip,reg,val)   vx2_outb((struct vx_core*)(chip), VX_##reg, val)
 135#undef vx_inl
 136#define vx_inl(chip,reg)        vx2_inl((struct vx_core*)(chip), VX_##reg)
 137#undef vx_outl
 138#define vx_outl(chip,reg,val)   vx2_outl((struct vx_core*)(chip), VX_##reg, val)
 139
 140
 141/*
 142 * vx_reset_dsp - reset the DSP
 143 */
 144
 145#define XX_DSP_RESET_WAIT_TIME          2       /* ms */
 146
 147static void vx2_reset_dsp(struct vx_core *_chip)
 148{
 149        struct snd_vx222 *chip = to_vx222(_chip);
 150
 151        /* set the reset dsp bit to 0 */
 152        vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
 153
 154        mdelay(XX_DSP_RESET_WAIT_TIME);
 155
 156        chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
 157        /* set the reset dsp bit to 1 */
 158        vx_outl(chip, CDSP, chip->regCDSP);
 159}
 160
 161
 162static int vx2_test_xilinx(struct vx_core *_chip)
 163{
 164        struct snd_vx222 *chip = to_vx222(_chip);
 165        unsigned int data;
 166
 167        dev_dbg(_chip->card->dev, "testing xilinx...\n");
 168        /* This test uses several write/read sequences on TEST0 and TEST1 bits
 169         * to figure out whever or not the xilinx was correctly loaded
 170         */
 171
 172        /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
 173        vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
 174        vx_inl(chip, ISR);
 175        data = vx_inl(chip, STATUS);
 176        if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
 177                dev_dbg(_chip->card->dev, "bad!\n");
 178                return -ENODEV;
 179        }
 180
 181        /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
 182        vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
 183        vx_inl(chip, ISR);
 184        data = vx_inl(chip, STATUS);
 185        if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
 186                dev_dbg(_chip->card->dev, "bad! #2\n");
 187                return -ENODEV;
 188        }
 189
 190        if (_chip->type == VX_TYPE_BOARD) {
 191                /* not implemented on VX_2_BOARDS */
 192                /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
 193                vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
 194                vx_inl(chip, ISR);
 195                data = vx_inl(chip, STATUS);
 196                if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
 197                        dev_dbg(_chip->card->dev, "bad! #3\n");
 198                        return -ENODEV;
 199                }
 200
 201                /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
 202                vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
 203                vx_inl(chip, ISR);
 204                data = vx_inl(chip, STATUS);
 205                if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
 206                        dev_dbg(_chip->card->dev, "bad! #4\n");
 207                        return -ENODEV;
 208                }
 209        }
 210        dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
 211        return 0;
 212}
 213
 214
 215/**
 216 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
 217 * @chip: VX core instance
 218 * @do_write: 0 = read, 1 = set up for DMA write
 219 */
 220static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
 221{
 222        /* Interrupt mode and HREQ pin enabled for host transmit data transfers
 223         * (in case of the use of the pseudo-dma facility).
 224         */
 225        vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
 226
 227        /* Reset the pseudo-dma register (in case of the use of the
 228         * pseudo-dma facility).
 229         */
 230        vx_outl(chip, RESET_DMA, 0);
 231}
 232
 233/*
 234 * vx_release_pseudo_dma - disable the pseudo-DMA mode
 235 */
 236static inline void vx2_release_pseudo_dma(struct vx_core *chip)
 237{
 238        /* HREQ pin disabled. */
 239        vx_outl(chip, ICR, 0);
 240}
 241
 242
 243
 244/* pseudo-dma write */
 245static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
 246                          struct vx_pipe *pipe, int count)
 247{
 248        unsigned long port = vx2_reg_addr(chip, VX_DMA);
 249        int offset = pipe->hw_ptr;
 250        u32 *addr = (u32 *)(runtime->dma_area + offset);
 251
 252        if (snd_BUG_ON(count % 4))
 253                return;
 254
 255        vx2_setup_pseudo_dma(chip, 1);
 256
 257        /* Transfer using pseudo-dma.
 258         */
 259        if (offset + count >= pipe->buffer_bytes) {
 260                int length = pipe->buffer_bytes - offset;
 261                count -= length;
 262                length >>= 2; /* in 32bit words */
 263                /* Transfer using pseudo-dma. */
 264                for (; length > 0; length--) {
 265                        outl(*addr, port);
 266                        addr++;
 267                }
 268                addr = (u32 *)runtime->dma_area;
 269                pipe->hw_ptr = 0;
 270        }
 271        pipe->hw_ptr += count;
 272        count >>= 2; /* in 32bit words */
 273        /* Transfer using pseudo-dma. */
 274        for (; count > 0; count--) {
 275                outl(*addr, port);
 276                addr++;
 277        }
 278
 279        vx2_release_pseudo_dma(chip);
 280}
 281
 282
 283/* pseudo dma read */
 284static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
 285                         struct vx_pipe *pipe, int count)
 286{
 287        int offset = pipe->hw_ptr;
 288        u32 *addr = (u32 *)(runtime->dma_area + offset);
 289        unsigned long port = vx2_reg_addr(chip, VX_DMA);
 290
 291        if (snd_BUG_ON(count % 4))
 292                return;
 293
 294        vx2_setup_pseudo_dma(chip, 0);
 295        /* Transfer using pseudo-dma.
 296         */
 297        if (offset + count >= pipe->buffer_bytes) {
 298                int length = pipe->buffer_bytes - offset;
 299                count -= length;
 300                length >>= 2; /* in 32bit words */
 301                /* Transfer using pseudo-dma. */
 302                for (; length > 0; length--)
 303                        *addr++ = inl(port);
 304                addr = (u32 *)runtime->dma_area;
 305                pipe->hw_ptr = 0;
 306        }
 307        pipe->hw_ptr += count;
 308        count >>= 2; /* in 32bit words */
 309        /* Transfer using pseudo-dma. */
 310        for (; count > 0; count--)
 311                *addr++ = inl(port);
 312
 313        vx2_release_pseudo_dma(chip);
 314}
 315
 316#define VX_XILINX_RESET_MASK        0x40000000
 317#define VX_USERBIT0_MASK            0x00000004
 318#define VX_USERBIT1_MASK            0x00000020
 319#define VX_CNTRL_REGISTER_VALUE     0x00172012
 320
 321/*
 322 * transfer counts bits to PLX
 323 */
 324static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
 325{
 326        unsigned int i;
 327
 328        for (i = 0; i < counts; i++) {
 329                unsigned int val;
 330
 331                /* set the clock bit to 0. */
 332                val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
 333                vx2_outl(chip, port, val);
 334                vx2_inl(chip, port);
 335                udelay(1);
 336
 337                if (data & (1 << i))
 338                        val |= VX_USERBIT1_MASK;
 339                else
 340                        val &= ~VX_USERBIT1_MASK;
 341                vx2_outl(chip, port, val);
 342                vx2_inl(chip, port);
 343
 344                /* set the clock bit to 1. */
 345                val |= VX_USERBIT0_MASK;
 346                vx2_outl(chip, port, val);
 347                vx2_inl(chip, port);
 348                udelay(1);
 349        }
 350        return 0;
 351}
 352
 353/*
 354 * load the xilinx image
 355 */
 356static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
 357{
 358        unsigned int i;
 359        unsigned int port;
 360        const unsigned char *image;
 361
 362        /* XILINX reset (wait at least 1 millisecond between reset on and off). */
 363        vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
 364        vx_inl(chip, CNTRL);
 365        msleep(10);
 366        vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
 367        vx_inl(chip, CNTRL);
 368        msleep(10);
 369
 370        if (chip->type == VX_TYPE_BOARD)
 371                port = VX_CNTRL;
 372        else
 373                port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
 374
 375        image = xilinx->data;
 376        for (i = 0; i < xilinx->size; i++, image++) {
 377                if (put_xilinx_data(chip, port, 8, *image) < 0)
 378                        return -EINVAL;
 379                /* don't take too much time in this loop... */
 380                cond_resched();
 381        }
 382        put_xilinx_data(chip, port, 4, 0xff); /* end signature */
 383
 384        msleep(200);
 385
 386        /* test after loading (is buggy with VX222) */
 387        if (chip->type != VX_TYPE_BOARD) {
 388                /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
 389                i = vx_inl(chip, GPIOC);
 390                if (i & 0x0100)
 391                        return 0;
 392                dev_err(chip->card->dev,
 393                        "xilinx test failed after load, GPIOC=0x%x\n", i);
 394                return -EINVAL;
 395        }
 396
 397        return 0;
 398}
 399
 400        
 401/*
 402 * load the boot/dsp images
 403 */
 404static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
 405{
 406        int err;
 407
 408        switch (index) {
 409        case 1:
 410                /* xilinx image */
 411                if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
 412                        return err;
 413                if ((err = vx2_test_xilinx(vx)) < 0)
 414                        return err;
 415                return 0;
 416        case 2:
 417                /* DSP boot */
 418                return snd_vx_dsp_boot(vx, dsp);
 419        case 3:
 420                /* DSP image */
 421                return snd_vx_dsp_load(vx, dsp);
 422        default:
 423                snd_BUG();
 424                return -EINVAL;
 425        }
 426}
 427
 428
 429/*
 430 * vx_test_and_ack - test and acknowledge interrupt
 431 *
 432 * called from irq hander, too
 433 *
 434 * spinlock held!
 435 */
 436static int vx2_test_and_ack(struct vx_core *chip)
 437{
 438        /* not booted yet? */
 439        if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
 440                return -ENXIO;
 441
 442        if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
 443                return -EIO;
 444        
 445        /* ok, interrupts generated, now ack it */
 446        /* set ACQUIT bit up and down */
 447        vx_outl(chip, STATUS, 0);
 448        /* useless read just to spend some time and maintain
 449         * the ACQUIT signal up for a while ( a bus cycle )
 450         */
 451        vx_inl(chip, STATUS);
 452        /* ack */
 453        vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
 454        /* useless read just to spend some time and maintain
 455         * the ACQUIT signal up for a while ( a bus cycle ) */
 456        vx_inl(chip, STATUS);
 457        /* clear */
 458        vx_outl(chip, STATUS, 0);
 459
 460        return 0;
 461}
 462
 463
 464/*
 465 * vx_validate_irq - enable/disable IRQ
 466 */
 467static void vx2_validate_irq(struct vx_core *_chip, int enable)
 468{
 469        struct snd_vx222 *chip = to_vx222(_chip);
 470
 471        /* Set the interrupt enable bit to 1 in CDSP register */
 472        if (enable) {
 473                /* Set the PCI interrupt enable bit to 1.*/
 474                vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
 475                chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
 476        } else {
 477                /* Set the PCI interrupt enable bit to 0. */
 478                vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
 479                chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
 480        }
 481        vx_outl(chip, CDSP, chip->regCDSP);
 482}
 483
 484
 485/*
 486 * write an AKM codec data (24bit)
 487 */
 488static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
 489{
 490        unsigned int i;
 491
 492        vx_inl(chip, HIFREQ);
 493
 494        /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
 495        for (i = 0; i < 24; i++, data <<= 1)
 496                vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
 497        /* Terminate access to codec registers */
 498        vx_inl(chip, RUER);
 499}
 500
 501
 502#define AKM_CODEC_POWER_CONTROL_CMD 0xA007
 503#define AKM_CODEC_RESET_ON_CMD      0xA100
 504#define AKM_CODEC_RESET_OFF_CMD     0xA103
 505#define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
 506#define AKM_CODEC_MUTE_CMD          0xA38D
 507#define AKM_CODEC_UNMUTE_CMD        0xA30D
 508#define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
 509#define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
 510
 511static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
 512    0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
 513    0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
 514    0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
 515    0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
 516    0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
 517    0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
 518    0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
 519    0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
 520    0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
 521    0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
 522    0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
 523    0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
 524    0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
 525    0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
 526    0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
 527    0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
 528    0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
 529    0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
 530    0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
 531    0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
 532    0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
 533    0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
 534    0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
 535    0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
 536    0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
 537    0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
 538    0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
 539    0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
 540    0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
 541    0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
 542    0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
 543    0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
 544    0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
 545    0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
 546    0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
 547    0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
 548    0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
 549    0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
 550    0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
 551    0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
 552    0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
 553    0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
 554    0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
 555    0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
 556    0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
 557    0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
 558    0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
 559    0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
 560    0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
 561    0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
 562    0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
 563    0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
 564    0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
 565    0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
 566    0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
 567    0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
 568    0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
 569    0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
 570    0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
 571    0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
 572    0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
 573    0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
 574    0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
 575    0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
 576    0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
 577    0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
 578    0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
 579    0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
 580    0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
 581    0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
 582    0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
 583    0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
 584    0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
 585    0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
 586    0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
 587    0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
 588    0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
 589    0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
 590    0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
 591    0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
 592    0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
 593    0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
 594    0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
 595    0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
 596    0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
 597    0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
 598    0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
 599    0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
 600    0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
 601    0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
 602    0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
 603    0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
 604    0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
 605    0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
 606    0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
 607    0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
 608    0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
 609    0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
 610    0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
 611    0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
 612    0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
 613    0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
 614    0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
 615    0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
 616    0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
 617    0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
 618    0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
 619    0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
 620    0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
 621    0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
 622    0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
 623    0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
 624    0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
 625    0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
 626    0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
 627    0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
 628    0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
 629    0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
 630    0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
 631    0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
 632    0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
 633    0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
 634    0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
 635    0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
 636    0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
 637    0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
 638    0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
 639    0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
 640    0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
 641    0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
 642    0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
 643    0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
 644    0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
 645    0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
 646    0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
 647    0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
 648    0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
 649    0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
 650    0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
 651    0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
 652    0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
 653    0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
 654    0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
 655    0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
 656    0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
 657    0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
 658    0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
 659    0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
 660
 661/*
 662 * pseudo-codec write entry
 663 */
 664static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
 665{
 666        unsigned int val;
 667
 668        if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
 669                vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
 670                return;
 671        }
 672
 673        /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
 674           a look up table, as there is no linear matching between the driver codec values
 675           and the real dBu value
 676        */
 677        if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
 678                return;
 679
 680        switch (reg) {
 681        case XX_CODEC_LEVEL_LEFT_REGISTER:
 682                val = AKM_CODEC_LEFT_LEVEL_CMD;
 683                break;
 684        case XX_CODEC_LEVEL_RIGHT_REGISTER:
 685                val = AKM_CODEC_RIGHT_LEVEL_CMD;
 686                break;
 687        default:
 688                snd_BUG();
 689                return;
 690        }
 691        val |= vx2_akm_gains_lut[data];
 692
 693        vx2_write_codec_reg(chip, val);
 694}
 695
 696
 697/*
 698 * write codec bit for old VX222 board
 699 */
 700static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
 701{
 702        int i;
 703
 704        /* activate access to codec registers */
 705        vx_inl(chip, HIFREQ);
 706
 707        for (i = 0; i < 24; i++, data <<= 1)
 708                vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
 709
 710        /* Terminate access to codec registers */
 711        vx_inl(chip, RUER);
 712}
 713
 714
 715/*
 716 * reset codec bit
 717 */
 718static void vx2_reset_codec(struct vx_core *_chip)
 719{
 720        struct snd_vx222 *chip = to_vx222(_chip);
 721
 722        /* Set the reset CODEC bit to 0. */
 723        vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
 724        vx_inl(chip, CDSP);
 725        msleep(10);
 726        /* Set the reset CODEC bit to 1. */
 727        chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
 728        vx_outl(chip, CDSP, chip->regCDSP);
 729        vx_inl(chip, CDSP);
 730        if (_chip->type == VX_TYPE_BOARD) {
 731                msleep(1);
 732                return;
 733        }
 734
 735        msleep(5);  /* additionnel wait time for AKM's */
 736
 737        vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
 738        
 739        vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
 740        vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
 741        vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
 742
 743        if (_chip->type == VX_TYPE_MIC) {
 744                /* set up the micro input selector */
 745                chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
 746                        MICRO_SELECT_PREAMPLI_G_0 |
 747                        MICRO_SELECT_NOISE_T_52DB;
 748
 749                /* reset phantom power supply */
 750                chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
 751
 752                vx_outl(_chip, SELMIC, chip->regSELMIC);
 753        }
 754}
 755
 756
 757/*
 758 * change the audio source
 759 */
 760static void vx2_change_audio_source(struct vx_core *_chip, int src)
 761{
 762        struct snd_vx222 *chip = to_vx222(_chip);
 763
 764        switch (src) {
 765        case VX_AUDIO_SRC_DIGITAL:
 766                chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
 767                break;
 768        default:
 769                chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
 770                break;
 771        }
 772        vx_outl(chip, CFG, chip->regCFG);
 773}
 774
 775
 776/*
 777 * set the clock source
 778 */
 779static void vx2_set_clock_source(struct vx_core *_chip, int source)
 780{
 781        struct snd_vx222 *chip = to_vx222(_chip);
 782
 783        if (source == INTERNAL_QUARTZ)
 784                chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
 785        else
 786                chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
 787        vx_outl(chip, CFG, chip->regCFG);
 788}
 789
 790/*
 791 * reset the board
 792 */
 793static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
 794{
 795        struct snd_vx222 *chip = to_vx222(_chip);
 796
 797        /* initialize the register values */
 798        chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
 799        chip->regCFG = 0;
 800}
 801
 802
 803
 804/*
 805 * input level controls for VX222 Mic
 806 */
 807
 808/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
 809 * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
 810 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
 811 */
 812#define V2_MICRO_LEVEL_RANGE        (318 - 255)
 813
 814static void vx2_set_input_level(struct snd_vx222 *chip)
 815{
 816        int i, miclevel, preamp;
 817        unsigned int data;
 818
 819        miclevel = chip->mic_level;
 820        miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
 821        preamp = 0;
 822        while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
 823                preamp++;       /* raise pre ampli + 18dB */
 824                miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
 825        }
 826        if (snd_BUG_ON(preamp >= 4))
 827                return;
 828
 829        /* set pre-amp level */
 830        chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
 831        chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
 832        vx_outl(chip, SELMIC, chip->regSELMIC);
 833
 834        data = (unsigned int)miclevel << 16 |
 835                (unsigned int)chip->input_level[1] << 8 |
 836                (unsigned int)chip->input_level[0];
 837        vx_inl(chip, DATA); /* Activate input level programming */
 838
 839        /* We have to send 32 bits (4 x 8 bits) */
 840        for (i = 0; i < 32; i++, data <<= 1)
 841                vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
 842
 843        vx_inl(chip, RUER); /* Terminate input level programming */
 844}
 845
 846
 847#define MIC_LEVEL_MAX   0xff
 848
 849static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
 850
 851/*
 852 * controls API for input levels
 853 */
 854
 855/* input levels */
 856static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 857{
 858        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 859        uinfo->count = 2;
 860        uinfo->value.integer.min = 0;
 861        uinfo->value.integer.max = MIC_LEVEL_MAX;
 862        return 0;
 863}
 864
 865static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 866{
 867        struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 868        struct snd_vx222 *chip = to_vx222(_chip);
 869        mutex_lock(&_chip->mixer_mutex);
 870        ucontrol->value.integer.value[0] = chip->input_level[0];
 871        ucontrol->value.integer.value[1] = chip->input_level[1];
 872        mutex_unlock(&_chip->mixer_mutex);
 873        return 0;
 874}
 875
 876static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 877{
 878        struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 879        struct snd_vx222 *chip = to_vx222(_chip);
 880        if (ucontrol->value.integer.value[0] < 0 ||
 881            ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
 882                return -EINVAL;
 883        if (ucontrol->value.integer.value[1] < 0 ||
 884            ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
 885                return -EINVAL;
 886        mutex_lock(&_chip->mixer_mutex);
 887        if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
 888            chip->input_level[1] != ucontrol->value.integer.value[1]) {
 889                chip->input_level[0] = ucontrol->value.integer.value[0];
 890                chip->input_level[1] = ucontrol->value.integer.value[1];
 891                vx2_set_input_level(chip);
 892                mutex_unlock(&_chip->mixer_mutex);
 893                return 1;
 894        }
 895        mutex_unlock(&_chip->mixer_mutex);
 896        return 0;
 897}
 898
 899/* mic level */
 900static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 901{
 902        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 903        uinfo->count = 1;
 904        uinfo->value.integer.min = 0;
 905        uinfo->value.integer.max = MIC_LEVEL_MAX;
 906        return 0;
 907}
 908
 909static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 910{
 911        struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 912        struct snd_vx222 *chip = to_vx222(_chip);
 913        ucontrol->value.integer.value[0] = chip->mic_level;
 914        return 0;
 915}
 916
 917static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 918{
 919        struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 920        struct snd_vx222 *chip = to_vx222(_chip);
 921        if (ucontrol->value.integer.value[0] < 0 ||
 922            ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
 923                return -EINVAL;
 924        mutex_lock(&_chip->mixer_mutex);
 925        if (chip->mic_level != ucontrol->value.integer.value[0]) {
 926                chip->mic_level = ucontrol->value.integer.value[0];
 927                vx2_set_input_level(chip);
 928                mutex_unlock(&_chip->mixer_mutex);
 929                return 1;
 930        }
 931        mutex_unlock(&_chip->mixer_mutex);
 932        return 0;
 933}
 934
 935static const struct snd_kcontrol_new vx_control_input_level = {
 936        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
 937        .access =       (SNDRV_CTL_ELEM_ACCESS_READWRITE |
 938                         SNDRV_CTL_ELEM_ACCESS_TLV_READ),
 939        .name =         "Capture Volume",
 940        .info =         vx_input_level_info,
 941        .get =          vx_input_level_get,
 942        .put =          vx_input_level_put,
 943        .tlv = { .p = db_scale_mic },
 944};
 945
 946static const struct snd_kcontrol_new vx_control_mic_level = {
 947        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
 948        .access =       (SNDRV_CTL_ELEM_ACCESS_READWRITE |
 949                         SNDRV_CTL_ELEM_ACCESS_TLV_READ),
 950        .name =         "Mic Capture Volume",
 951        .info =         vx_mic_level_info,
 952        .get =          vx_mic_level_get,
 953        .put =          vx_mic_level_put,
 954        .tlv = { .p = db_scale_mic },
 955};
 956
 957/*
 958 * FIXME: compressor/limiter implementation is missing yet...
 959 */
 960
 961static int vx2_add_mic_controls(struct vx_core *_chip)
 962{
 963        struct snd_vx222 *chip = to_vx222(_chip);
 964        int err;
 965
 966        if (_chip->type != VX_TYPE_MIC)
 967                return 0;
 968
 969        /* mute input levels */
 970        chip->input_level[0] = chip->input_level[1] = 0;
 971        chip->mic_level = 0;
 972        vx2_set_input_level(chip);
 973
 974        /* controls */
 975        if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
 976                return err;
 977        if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
 978                return err;
 979
 980        return 0;
 981}
 982
 983
 984/*
 985 * callbacks
 986 */
 987struct snd_vx_ops vx222_ops = {
 988        .in8 = vx2_inb,
 989        .in32 = vx2_inl,
 990        .out8 = vx2_outb,
 991        .out32 = vx2_outl,
 992        .test_and_ack = vx2_test_and_ack,
 993        .validate_irq = vx2_validate_irq,
 994        .akm_write = vx2_write_akm,
 995        .reset_codec = vx2_reset_codec,
 996        .change_audio_source = vx2_change_audio_source,
 997        .set_clock_source = vx2_set_clock_source,
 998        .load_dsp = vx2_load_dsp,
 999        .reset_dsp = vx2_reset_dsp,
1000        .reset_board = vx2_reset_board,
1001        .dma_write = vx2_dma_write,
1002        .dma_read = vx2_dma_read,
1003        .add_controls = vx2_add_mic_controls,
1004};
1005
1006/* for old VX222 board */
1007struct snd_vx_ops vx222_old_ops = {
1008        .in8 = vx2_inb,
1009        .in32 = vx2_inl,
1010        .out8 = vx2_outb,
1011        .out32 = vx2_outl,
1012        .test_and_ack = vx2_test_and_ack,
1013        .validate_irq = vx2_validate_irq,
1014        .write_codec = vx2_old_write_codec_bit,
1015        .reset_codec = vx2_reset_codec,
1016        .change_audio_source = vx2_change_audio_source,
1017        .set_clock_source = vx2_set_clock_source,
1018        .load_dsp = vx2_load_dsp,
1019        .reset_dsp = vx2_reset_dsp,
1020        .reset_board = vx2_reset_board,
1021        .dma_write = vx2_dma_write,
1022        .dma_read = vx2_dma_read,
1023};
1024
1025