linux/tools/lib/bpf/btf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <stdio.h>
   5#include <stdlib.h>
   6#include <string.h>
   7#include <unistd.h>
   8#include <errno.h>
   9#include <linux/err.h>
  10#include <linux/btf.h>
  11#include "btf.h"
  12#include "bpf.h"
  13#include "libbpf.h"
  14#include "libbpf_internal.h"
  15
  16#define max(a, b) ((a) > (b) ? (a) : (b))
  17#define min(a, b) ((a) < (b) ? (a) : (b))
  18
  19#define BTF_MAX_NR_TYPES 0x7fffffff
  20#define BTF_MAX_STR_OFFSET 0x7fffffff
  21
  22#define IS_MODIFIER(k) (((k) == BTF_KIND_TYPEDEF) || \
  23                ((k) == BTF_KIND_VOLATILE) || \
  24                ((k) == BTF_KIND_CONST) || \
  25                ((k) == BTF_KIND_RESTRICT))
  26
  27#define IS_VAR(k) ((k) == BTF_KIND_VAR)
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32        union {
  33                struct btf_header *hdr;
  34                void *data;
  35        };
  36        struct btf_type **types;
  37        const char *strings;
  38        void *nohdr_data;
  39        __u32 nr_types;
  40        __u32 types_size;
  41        __u32 data_size;
  42        int fd;
  43};
  44
  45struct btf_ext_info {
  46        /*
  47         * info points to the individual info section (e.g. func_info and
  48         * line_info) from the .BTF.ext. It does not include the __u32 rec_size.
  49         */
  50        void *info;
  51        __u32 rec_size;
  52        __u32 len;
  53};
  54
  55struct btf_ext {
  56        union {
  57                struct btf_ext_header *hdr;
  58                void *data;
  59        };
  60        struct btf_ext_info func_info;
  61        struct btf_ext_info line_info;
  62        __u32 data_size;
  63};
  64
  65struct btf_ext_info_sec {
  66        __u32   sec_name_off;
  67        __u32   num_info;
  68        /* Followed by num_info * record_size number of bytes */
  69        __u8    data[0];
  70};
  71
  72/* The minimum bpf_func_info checked by the loader */
  73struct bpf_func_info_min {
  74        __u32   insn_off;
  75        __u32   type_id;
  76};
  77
  78/* The minimum bpf_line_info checked by the loader */
  79struct bpf_line_info_min {
  80        __u32   insn_off;
  81        __u32   file_name_off;
  82        __u32   line_off;
  83        __u32   line_col;
  84};
  85
  86static inline __u64 ptr_to_u64(const void *ptr)
  87{
  88        return (__u64) (unsigned long) ptr;
  89}
  90
  91static int btf_add_type(struct btf *btf, struct btf_type *t)
  92{
  93        if (btf->types_size - btf->nr_types < 2) {
  94                struct btf_type **new_types;
  95                __u32 expand_by, new_size;
  96
  97                if (btf->types_size == BTF_MAX_NR_TYPES)
  98                        return -E2BIG;
  99
 100                expand_by = max(btf->types_size >> 2, 16);
 101                new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
 102
 103                new_types = realloc(btf->types, sizeof(*new_types) * new_size);
 104                if (!new_types)
 105                        return -ENOMEM;
 106
 107                if (btf->nr_types == 0)
 108                        new_types[0] = &btf_void;
 109
 110                btf->types = new_types;
 111                btf->types_size = new_size;
 112        }
 113
 114        btf->types[++(btf->nr_types)] = t;
 115
 116        return 0;
 117}
 118
 119static int btf_parse_hdr(struct btf *btf)
 120{
 121        const struct btf_header *hdr = btf->hdr;
 122        __u32 meta_left;
 123
 124        if (btf->data_size < sizeof(struct btf_header)) {
 125                pr_debug("BTF header not found\n");
 126                return -EINVAL;
 127        }
 128
 129        if (hdr->magic != BTF_MAGIC) {
 130                pr_debug("Invalid BTF magic:%x\n", hdr->magic);
 131                return -EINVAL;
 132        }
 133
 134        if (hdr->version != BTF_VERSION) {
 135                pr_debug("Unsupported BTF version:%u\n", hdr->version);
 136                return -ENOTSUP;
 137        }
 138
 139        if (hdr->flags) {
 140                pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
 141                return -ENOTSUP;
 142        }
 143
 144        meta_left = btf->data_size - sizeof(*hdr);
 145        if (!meta_left) {
 146                pr_debug("BTF has no data\n");
 147                return -EINVAL;
 148        }
 149
 150        if (meta_left < hdr->type_off) {
 151                pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
 152                return -EINVAL;
 153        }
 154
 155        if (meta_left < hdr->str_off) {
 156                pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
 157                return -EINVAL;
 158        }
 159
 160        if (hdr->type_off >= hdr->str_off) {
 161                pr_debug("BTF type section offset >= string section offset. No type?\n");
 162                return -EINVAL;
 163        }
 164
 165        if (hdr->type_off & 0x02) {
 166                pr_debug("BTF type section is not aligned to 4 bytes\n");
 167                return -EINVAL;
 168        }
 169
 170        btf->nohdr_data = btf->hdr + 1;
 171
 172        return 0;
 173}
 174
 175static int btf_parse_str_sec(struct btf *btf)
 176{
 177        const struct btf_header *hdr = btf->hdr;
 178        const char *start = btf->nohdr_data + hdr->str_off;
 179        const char *end = start + btf->hdr->str_len;
 180
 181        if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
 182            start[0] || end[-1]) {
 183                pr_debug("Invalid BTF string section\n");
 184                return -EINVAL;
 185        }
 186
 187        btf->strings = start;
 188
 189        return 0;
 190}
 191
 192static int btf_type_size(struct btf_type *t)
 193{
 194        int base_size = sizeof(struct btf_type);
 195        __u16 vlen = BTF_INFO_VLEN(t->info);
 196
 197        switch (BTF_INFO_KIND(t->info)) {
 198        case BTF_KIND_FWD:
 199        case BTF_KIND_CONST:
 200        case BTF_KIND_VOLATILE:
 201        case BTF_KIND_RESTRICT:
 202        case BTF_KIND_PTR:
 203        case BTF_KIND_TYPEDEF:
 204        case BTF_KIND_FUNC:
 205                return base_size;
 206        case BTF_KIND_INT:
 207                return base_size + sizeof(__u32);
 208        case BTF_KIND_ENUM:
 209                return base_size + vlen * sizeof(struct btf_enum);
 210        case BTF_KIND_ARRAY:
 211                return base_size + sizeof(struct btf_array);
 212        case BTF_KIND_STRUCT:
 213        case BTF_KIND_UNION:
 214                return base_size + vlen * sizeof(struct btf_member);
 215        case BTF_KIND_FUNC_PROTO:
 216                return base_size + vlen * sizeof(struct btf_param);
 217        case BTF_KIND_VAR:
 218                return base_size + sizeof(struct btf_var);
 219        case BTF_KIND_DATASEC:
 220                return base_size + vlen * sizeof(struct btf_var_secinfo);
 221        default:
 222                pr_debug("Unsupported BTF_KIND:%u\n", BTF_INFO_KIND(t->info));
 223                return -EINVAL;
 224        }
 225}
 226
 227static int btf_parse_type_sec(struct btf *btf)
 228{
 229        struct btf_header *hdr = btf->hdr;
 230        void *nohdr_data = btf->nohdr_data;
 231        void *next_type = nohdr_data + hdr->type_off;
 232        void *end_type = nohdr_data + hdr->str_off;
 233
 234        while (next_type < end_type) {
 235                struct btf_type *t = next_type;
 236                int type_size;
 237                int err;
 238
 239                type_size = btf_type_size(t);
 240                if (type_size < 0)
 241                        return type_size;
 242                next_type += type_size;
 243                err = btf_add_type(btf, t);
 244                if (err)
 245                        return err;
 246        }
 247
 248        return 0;
 249}
 250
 251__u32 btf__get_nr_types(const struct btf *btf)
 252{
 253        return btf->nr_types;
 254}
 255
 256const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 257{
 258        if (type_id > btf->nr_types)
 259                return NULL;
 260
 261        return btf->types[type_id];
 262}
 263
 264static bool btf_type_is_void(const struct btf_type *t)
 265{
 266        return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
 267}
 268
 269static bool btf_type_is_void_or_null(const struct btf_type *t)
 270{
 271        return !t || btf_type_is_void(t);
 272}
 273
 274#define MAX_RESOLVE_DEPTH 32
 275
 276__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 277{
 278        const struct btf_array *array;
 279        const struct btf_type *t;
 280        __u32 nelems = 1;
 281        __s64 size = -1;
 282        int i;
 283
 284        t = btf__type_by_id(btf, type_id);
 285        for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
 286             i++) {
 287                switch (BTF_INFO_KIND(t->info)) {
 288                case BTF_KIND_INT:
 289                case BTF_KIND_STRUCT:
 290                case BTF_KIND_UNION:
 291                case BTF_KIND_ENUM:
 292                case BTF_KIND_DATASEC:
 293                        size = t->size;
 294                        goto done;
 295                case BTF_KIND_PTR:
 296                        size = sizeof(void *);
 297                        goto done;
 298                case BTF_KIND_TYPEDEF:
 299                case BTF_KIND_VOLATILE:
 300                case BTF_KIND_CONST:
 301                case BTF_KIND_RESTRICT:
 302                case BTF_KIND_VAR:
 303                        type_id = t->type;
 304                        break;
 305                case BTF_KIND_ARRAY:
 306                        array = (const struct btf_array *)(t + 1);
 307                        if (nelems && array->nelems > UINT32_MAX / nelems)
 308                                return -E2BIG;
 309                        nelems *= array->nelems;
 310                        type_id = array->type;
 311                        break;
 312                default:
 313                        return -EINVAL;
 314                }
 315
 316                t = btf__type_by_id(btf, type_id);
 317        }
 318
 319        if (size < 0)
 320                return -EINVAL;
 321
 322done:
 323        if (nelems && size > UINT32_MAX / nelems)
 324                return -E2BIG;
 325
 326        return nelems * size;
 327}
 328
 329int btf__resolve_type(const struct btf *btf, __u32 type_id)
 330{
 331        const struct btf_type *t;
 332        int depth = 0;
 333
 334        t = btf__type_by_id(btf, type_id);
 335        while (depth < MAX_RESOLVE_DEPTH &&
 336               !btf_type_is_void_or_null(t) &&
 337               (IS_MODIFIER(BTF_INFO_KIND(t->info)) ||
 338                IS_VAR(BTF_INFO_KIND(t->info)))) {
 339                type_id = t->type;
 340                t = btf__type_by_id(btf, type_id);
 341                depth++;
 342        }
 343
 344        if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 345                return -EINVAL;
 346
 347        return type_id;
 348}
 349
 350__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 351{
 352        __u32 i;
 353
 354        if (!strcmp(type_name, "void"))
 355                return 0;
 356
 357        for (i = 1; i <= btf->nr_types; i++) {
 358                const struct btf_type *t = btf->types[i];
 359                const char *name = btf__name_by_offset(btf, t->name_off);
 360
 361                if (name && !strcmp(type_name, name))
 362                        return i;
 363        }
 364
 365        return -ENOENT;
 366}
 367
 368void btf__free(struct btf *btf)
 369{
 370        if (!btf)
 371                return;
 372
 373        if (btf->fd != -1)
 374                close(btf->fd);
 375
 376        free(btf->data);
 377        free(btf->types);
 378        free(btf);
 379}
 380
 381struct btf *btf__new(__u8 *data, __u32 size)
 382{
 383        struct btf *btf;
 384        int err;
 385
 386        btf = calloc(1, sizeof(struct btf));
 387        if (!btf)
 388                return ERR_PTR(-ENOMEM);
 389
 390        btf->fd = -1;
 391
 392        btf->data = malloc(size);
 393        if (!btf->data) {
 394                err = -ENOMEM;
 395                goto done;
 396        }
 397
 398        memcpy(btf->data, data, size);
 399        btf->data_size = size;
 400
 401        err = btf_parse_hdr(btf);
 402        if (err)
 403                goto done;
 404
 405        err = btf_parse_str_sec(btf);
 406        if (err)
 407                goto done;
 408
 409        err = btf_parse_type_sec(btf);
 410
 411done:
 412        if (err) {
 413                btf__free(btf);
 414                return ERR_PTR(err);
 415        }
 416
 417        return btf;
 418}
 419
 420static int compare_vsi_off(const void *_a, const void *_b)
 421{
 422        const struct btf_var_secinfo *a = _a;
 423        const struct btf_var_secinfo *b = _b;
 424
 425        return a->offset - b->offset;
 426}
 427
 428static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
 429                             struct btf_type *t)
 430{
 431        __u32 size = 0, off = 0, i, vars = BTF_INFO_VLEN(t->info);
 432        const char *name = btf__name_by_offset(btf, t->name_off);
 433        const struct btf_type *t_var;
 434        struct btf_var_secinfo *vsi;
 435        struct btf_var *var;
 436        int ret;
 437
 438        if (!name) {
 439                pr_debug("No name found in string section for DATASEC kind.\n");
 440                return -ENOENT;
 441        }
 442
 443        ret = bpf_object__section_size(obj, name, &size);
 444        if (ret || !size || (t->size && t->size != size)) {
 445                pr_debug("Invalid size for section %s: %u bytes\n", name, size);
 446                return -ENOENT;
 447        }
 448
 449        t->size = size;
 450
 451        for (i = 0, vsi = (struct btf_var_secinfo *)(t + 1);
 452             i < vars; i++, vsi++) {
 453                t_var = btf__type_by_id(btf, vsi->type);
 454                var = (struct btf_var *)(t_var + 1);
 455
 456                if (BTF_INFO_KIND(t_var->info) != BTF_KIND_VAR) {
 457                        pr_debug("Non-VAR type seen in section %s\n", name);
 458                        return -EINVAL;
 459                }
 460
 461                if (var->linkage == BTF_VAR_STATIC)
 462                        continue;
 463
 464                name = btf__name_by_offset(btf, t_var->name_off);
 465                if (!name) {
 466                        pr_debug("No name found in string section for VAR kind\n");
 467                        return -ENOENT;
 468                }
 469
 470                ret = bpf_object__variable_offset(obj, name, &off);
 471                if (ret) {
 472                        pr_debug("No offset found in symbol table for VAR %s\n", name);
 473                        return -ENOENT;
 474                }
 475
 476                vsi->offset = off;
 477        }
 478
 479        qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off);
 480        return 0;
 481}
 482
 483int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
 484{
 485        int err = 0;
 486        __u32 i;
 487
 488        for (i = 1; i <= btf->nr_types; i++) {
 489                struct btf_type *t = btf->types[i];
 490
 491                /* Loader needs to fix up some of the things compiler
 492                 * couldn't get its hands on while emitting BTF. This
 493                 * is section size and global variable offset. We use
 494                 * the info from the ELF itself for this purpose.
 495                 */
 496                if (BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC) {
 497                        err = btf_fixup_datasec(obj, btf, t);
 498                        if (err)
 499                                break;
 500                }
 501        }
 502
 503        return err;
 504}
 505
 506int btf__load(struct btf *btf)
 507{
 508        __u32 log_buf_size = BPF_LOG_BUF_SIZE;
 509        char *log_buf = NULL;
 510        int err = 0;
 511
 512        if (btf->fd >= 0)
 513                return -EEXIST;
 514
 515        log_buf = malloc(log_buf_size);
 516        if (!log_buf)
 517                return -ENOMEM;
 518
 519        *log_buf = 0;
 520
 521        btf->fd = bpf_load_btf(btf->data, btf->data_size,
 522                               log_buf, log_buf_size, false);
 523        if (btf->fd < 0) {
 524                err = -errno;
 525                pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno);
 526                if (*log_buf)
 527                        pr_warning("%s\n", log_buf);
 528                goto done;
 529        }
 530
 531done:
 532        free(log_buf);
 533        return err;
 534}
 535
 536int btf__fd(const struct btf *btf)
 537{
 538        return btf->fd;
 539}
 540
 541const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
 542{
 543        *size = btf->data_size;
 544        return btf->data;
 545}
 546
 547const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
 548{
 549        if (offset < btf->hdr->str_len)
 550                return &btf->strings[offset];
 551        else
 552                return NULL;
 553}
 554
 555int btf__get_from_id(__u32 id, struct btf **btf)
 556{
 557        struct bpf_btf_info btf_info = { 0 };
 558        __u32 len = sizeof(btf_info);
 559        __u32 last_size;
 560        int btf_fd;
 561        void *ptr;
 562        int err;
 563
 564        err = 0;
 565        *btf = NULL;
 566        btf_fd = bpf_btf_get_fd_by_id(id);
 567        if (btf_fd < 0)
 568                return 0;
 569
 570        /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
 571         * let's start with a sane default - 4KiB here - and resize it only if
 572         * bpf_obj_get_info_by_fd() needs a bigger buffer.
 573         */
 574        btf_info.btf_size = 4096;
 575        last_size = btf_info.btf_size;
 576        ptr = malloc(last_size);
 577        if (!ptr) {
 578                err = -ENOMEM;
 579                goto exit_free;
 580        }
 581
 582        memset(ptr, 0, last_size);
 583        btf_info.btf = ptr_to_u64(ptr);
 584        err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
 585
 586        if (!err && btf_info.btf_size > last_size) {
 587                void *temp_ptr;
 588
 589                last_size = btf_info.btf_size;
 590                temp_ptr = realloc(ptr, last_size);
 591                if (!temp_ptr) {
 592                        err = -ENOMEM;
 593                        goto exit_free;
 594                }
 595                ptr = temp_ptr;
 596                memset(ptr, 0, last_size);
 597                btf_info.btf = ptr_to_u64(ptr);
 598                err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
 599        }
 600
 601        if (err || btf_info.btf_size > last_size) {
 602                err = errno;
 603                goto exit_free;
 604        }
 605
 606        *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
 607        if (IS_ERR(*btf)) {
 608                err = PTR_ERR(*btf);
 609                *btf = NULL;
 610        }
 611
 612exit_free:
 613        close(btf_fd);
 614        free(ptr);
 615
 616        return err;
 617}
 618
 619int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
 620                         __u32 expected_key_size, __u32 expected_value_size,
 621                         __u32 *key_type_id, __u32 *value_type_id)
 622{
 623        const struct btf_type *container_type;
 624        const struct btf_member *key, *value;
 625        const size_t max_name = 256;
 626        char container_name[max_name];
 627        __s64 key_size, value_size;
 628        __s32 container_id;
 629
 630        if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
 631            max_name) {
 632                pr_warning("map:%s length of '____btf_map_%s' is too long\n",
 633                           map_name, map_name);
 634                return -EINVAL;
 635        }
 636
 637        container_id = btf__find_by_name(btf, container_name);
 638        if (container_id < 0) {
 639                pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
 640                         map_name, container_name);
 641                return container_id;
 642        }
 643
 644        container_type = btf__type_by_id(btf, container_id);
 645        if (!container_type) {
 646                pr_warning("map:%s cannot find BTF type for container_id:%u\n",
 647                           map_name, container_id);
 648                return -EINVAL;
 649        }
 650
 651        if (BTF_INFO_KIND(container_type->info) != BTF_KIND_STRUCT ||
 652            BTF_INFO_VLEN(container_type->info) < 2) {
 653                pr_warning("map:%s container_name:%s is an invalid container struct\n",
 654                           map_name, container_name);
 655                return -EINVAL;
 656        }
 657
 658        key = (struct btf_member *)(container_type + 1);
 659        value = key + 1;
 660
 661        key_size = btf__resolve_size(btf, key->type);
 662        if (key_size < 0) {
 663                pr_warning("map:%s invalid BTF key_type_size\n", map_name);
 664                return key_size;
 665        }
 666
 667        if (expected_key_size != key_size) {
 668                pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
 669                           map_name, (__u32)key_size, expected_key_size);
 670                return -EINVAL;
 671        }
 672
 673        value_size = btf__resolve_size(btf, value->type);
 674        if (value_size < 0) {
 675                pr_warning("map:%s invalid BTF value_type_size\n", map_name);
 676                return value_size;
 677        }
 678
 679        if (expected_value_size != value_size) {
 680                pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
 681                           map_name, (__u32)value_size, expected_value_size);
 682                return -EINVAL;
 683        }
 684
 685        *key_type_id = key->type;
 686        *value_type_id = value->type;
 687
 688        return 0;
 689}
 690
 691struct btf_ext_sec_setup_param {
 692        __u32 off;
 693        __u32 len;
 694        __u32 min_rec_size;
 695        struct btf_ext_info *ext_info;
 696        const char *desc;
 697};
 698
 699static int btf_ext_setup_info(struct btf_ext *btf_ext,
 700                              struct btf_ext_sec_setup_param *ext_sec)
 701{
 702        const struct btf_ext_info_sec *sinfo;
 703        struct btf_ext_info *ext_info;
 704        __u32 info_left, record_size;
 705        /* The start of the info sec (including the __u32 record_size). */
 706        void *info;
 707
 708        if (ext_sec->off & 0x03) {
 709                pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
 710                     ext_sec->desc);
 711                return -EINVAL;
 712        }
 713
 714        info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
 715        info_left = ext_sec->len;
 716
 717        if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
 718                pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
 719                         ext_sec->desc, ext_sec->off, ext_sec->len);
 720                return -EINVAL;
 721        }
 722
 723        /* At least a record size */
 724        if (info_left < sizeof(__u32)) {
 725                pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
 726                return -EINVAL;
 727        }
 728
 729        /* The record size needs to meet the minimum standard */
 730        record_size = *(__u32 *)info;
 731        if (record_size < ext_sec->min_rec_size ||
 732            record_size & 0x03) {
 733                pr_debug("%s section in .BTF.ext has invalid record size %u\n",
 734                         ext_sec->desc, record_size);
 735                return -EINVAL;
 736        }
 737
 738        sinfo = info + sizeof(__u32);
 739        info_left -= sizeof(__u32);
 740
 741        /* If no records, return failure now so .BTF.ext won't be used. */
 742        if (!info_left) {
 743                pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
 744                return -EINVAL;
 745        }
 746
 747        while (info_left) {
 748                unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
 749                __u64 total_record_size;
 750                __u32 num_records;
 751
 752                if (info_left < sec_hdrlen) {
 753                        pr_debug("%s section header is not found in .BTF.ext\n",
 754                             ext_sec->desc);
 755                        return -EINVAL;
 756                }
 757
 758                num_records = sinfo->num_info;
 759                if (num_records == 0) {
 760                        pr_debug("%s section has incorrect num_records in .BTF.ext\n",
 761                             ext_sec->desc);
 762                        return -EINVAL;
 763                }
 764
 765                total_record_size = sec_hdrlen +
 766                                    (__u64)num_records * record_size;
 767                if (info_left < total_record_size) {
 768                        pr_debug("%s section has incorrect num_records in .BTF.ext\n",
 769                             ext_sec->desc);
 770                        return -EINVAL;
 771                }
 772
 773                info_left -= total_record_size;
 774                sinfo = (void *)sinfo + total_record_size;
 775        }
 776
 777        ext_info = ext_sec->ext_info;
 778        ext_info->len = ext_sec->len - sizeof(__u32);
 779        ext_info->rec_size = record_size;
 780        ext_info->info = info + sizeof(__u32);
 781
 782        return 0;
 783}
 784
 785static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
 786{
 787        struct btf_ext_sec_setup_param param = {
 788                .off = btf_ext->hdr->func_info_off,
 789                .len = btf_ext->hdr->func_info_len,
 790                .min_rec_size = sizeof(struct bpf_func_info_min),
 791                .ext_info = &btf_ext->func_info,
 792                .desc = "func_info"
 793        };
 794
 795        return btf_ext_setup_info(btf_ext, &param);
 796}
 797
 798static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
 799{
 800        struct btf_ext_sec_setup_param param = {
 801                .off = btf_ext->hdr->line_info_off,
 802                .len = btf_ext->hdr->line_info_len,
 803                .min_rec_size = sizeof(struct bpf_line_info_min),
 804                .ext_info = &btf_ext->line_info,
 805                .desc = "line_info",
 806        };
 807
 808        return btf_ext_setup_info(btf_ext, &param);
 809}
 810
 811static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
 812{
 813        const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
 814
 815        if (data_size < offsetof(struct btf_ext_header, func_info_off) ||
 816            data_size < hdr->hdr_len) {
 817                pr_debug("BTF.ext header not found");
 818                return -EINVAL;
 819        }
 820
 821        if (hdr->magic != BTF_MAGIC) {
 822                pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
 823                return -EINVAL;
 824        }
 825
 826        if (hdr->version != BTF_VERSION) {
 827                pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
 828                return -ENOTSUP;
 829        }
 830
 831        if (hdr->flags) {
 832                pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
 833                return -ENOTSUP;
 834        }
 835
 836        if (data_size == hdr->hdr_len) {
 837                pr_debug("BTF.ext has no data\n");
 838                return -EINVAL;
 839        }
 840
 841        return 0;
 842}
 843
 844void btf_ext__free(struct btf_ext *btf_ext)
 845{
 846        if (!btf_ext)
 847                return;
 848        free(btf_ext->data);
 849        free(btf_ext);
 850}
 851
 852struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
 853{
 854        struct btf_ext *btf_ext;
 855        int err;
 856
 857        err = btf_ext_parse_hdr(data, size);
 858        if (err)
 859                return ERR_PTR(err);
 860
 861        btf_ext = calloc(1, sizeof(struct btf_ext));
 862        if (!btf_ext)
 863                return ERR_PTR(-ENOMEM);
 864
 865        btf_ext->data_size = size;
 866        btf_ext->data = malloc(size);
 867        if (!btf_ext->data) {
 868                err = -ENOMEM;
 869                goto done;
 870        }
 871        memcpy(btf_ext->data, data, size);
 872
 873        err = btf_ext_setup_func_info(btf_ext);
 874        if (err)
 875                goto done;
 876
 877        err = btf_ext_setup_line_info(btf_ext);
 878        if (err)
 879                goto done;
 880
 881done:
 882        if (err) {
 883                btf_ext__free(btf_ext);
 884                return ERR_PTR(err);
 885        }
 886
 887        return btf_ext;
 888}
 889
 890const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
 891{
 892        *size = btf_ext->data_size;
 893        return btf_ext->data;
 894}
 895
 896static int btf_ext_reloc_info(const struct btf *btf,
 897                              const struct btf_ext_info *ext_info,
 898                              const char *sec_name, __u32 insns_cnt,
 899                              void **info, __u32 *cnt)
 900{
 901        __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
 902        __u32 i, record_size, existing_len, records_len;
 903        struct btf_ext_info_sec *sinfo;
 904        const char *info_sec_name;
 905        __u64 remain_len;
 906        void *data;
 907
 908        record_size = ext_info->rec_size;
 909        sinfo = ext_info->info;
 910        remain_len = ext_info->len;
 911        while (remain_len > 0) {
 912                records_len = sinfo->num_info * record_size;
 913                info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
 914                if (strcmp(info_sec_name, sec_name)) {
 915                        remain_len -= sec_hdrlen + records_len;
 916                        sinfo = (void *)sinfo + sec_hdrlen + records_len;
 917                        continue;
 918                }
 919
 920                existing_len = (*cnt) * record_size;
 921                data = realloc(*info, existing_len + records_len);
 922                if (!data)
 923                        return -ENOMEM;
 924
 925                memcpy(data + existing_len, sinfo->data, records_len);
 926                /* adjust insn_off only, the rest data will be passed
 927                 * to the kernel.
 928                 */
 929                for (i = 0; i < sinfo->num_info; i++) {
 930                        __u32 *insn_off;
 931
 932                        insn_off = data + existing_len + (i * record_size);
 933                        *insn_off = *insn_off / sizeof(struct bpf_insn) +
 934                                insns_cnt;
 935                }
 936                *info = data;
 937                *cnt += sinfo->num_info;
 938                return 0;
 939        }
 940
 941        return -ENOENT;
 942}
 943
 944int btf_ext__reloc_func_info(const struct btf *btf,
 945                             const struct btf_ext *btf_ext,
 946                             const char *sec_name, __u32 insns_cnt,
 947                             void **func_info, __u32 *cnt)
 948{
 949        return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
 950                                  insns_cnt, func_info, cnt);
 951}
 952
 953int btf_ext__reloc_line_info(const struct btf *btf,
 954                             const struct btf_ext *btf_ext,
 955                             const char *sec_name, __u32 insns_cnt,
 956                             void **line_info, __u32 *cnt)
 957{
 958        return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
 959                                  insns_cnt, line_info, cnt);
 960}
 961
 962__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
 963{
 964        return btf_ext->func_info.rec_size;
 965}
 966
 967__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
 968{
 969        return btf_ext->line_info.rec_size;
 970}
 971
 972struct btf_dedup;
 973
 974static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
 975                                       const struct btf_dedup_opts *opts);
 976static void btf_dedup_free(struct btf_dedup *d);
 977static int btf_dedup_strings(struct btf_dedup *d);
 978static int btf_dedup_prim_types(struct btf_dedup *d);
 979static int btf_dedup_struct_types(struct btf_dedup *d);
 980static int btf_dedup_ref_types(struct btf_dedup *d);
 981static int btf_dedup_compact_types(struct btf_dedup *d);
 982static int btf_dedup_remap_types(struct btf_dedup *d);
 983
 984/*
 985 * Deduplicate BTF types and strings.
 986 *
 987 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
 988 * section with all BTF type descriptors and string data. It overwrites that
 989 * memory in-place with deduplicated types and strings without any loss of
 990 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
 991 * is provided, all the strings referenced from .BTF.ext section are honored
 992 * and updated to point to the right offsets after deduplication.
 993 *
 994 * If function returns with error, type/string data might be garbled and should
 995 * be discarded.
 996 *
 997 * More verbose and detailed description of both problem btf_dedup is solving,
 998 * as well as solution could be found at:
 999 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1000 *
1001 * Problem description and justification
1002 * =====================================
1003 *
1004 * BTF type information is typically emitted either as a result of conversion
1005 * from DWARF to BTF or directly by compiler. In both cases, each compilation
1006 * unit contains information about a subset of all the types that are used
1007 * in an application. These subsets are frequently overlapping and contain a lot
1008 * of duplicated information when later concatenated together into a single
1009 * binary. This algorithm ensures that each unique type is represented by single
1010 * BTF type descriptor, greatly reducing resulting size of BTF data.
1011 *
1012 * Compilation unit isolation and subsequent duplication of data is not the only
1013 * problem. The same type hierarchy (e.g., struct and all the type that struct
1014 * references) in different compilation units can be represented in BTF to
1015 * various degrees of completeness (or, rather, incompleteness) due to
1016 * struct/union forward declarations.
1017 *
1018 * Let's take a look at an example, that we'll use to better understand the
1019 * problem (and solution). Suppose we have two compilation units, each using
1020 * same `struct S`, but each of them having incomplete type information about
1021 * struct's fields:
1022 *
1023 * // CU #1:
1024 * struct S;
1025 * struct A {
1026 *      int a;
1027 *      struct A* self;
1028 *      struct S* parent;
1029 * };
1030 * struct B;
1031 * struct S {
1032 *      struct A* a_ptr;
1033 *      struct B* b_ptr;
1034 * };
1035 *
1036 * // CU #2:
1037 * struct S;
1038 * struct A;
1039 * struct B {
1040 *      int b;
1041 *      struct B* self;
1042 *      struct S* parent;
1043 * };
1044 * struct S {
1045 *      struct A* a_ptr;
1046 *      struct B* b_ptr;
1047 * };
1048 *
1049 * In case of CU #1, BTF data will know only that `struct B` exist (but no
1050 * more), but will know the complete type information about `struct A`. While
1051 * for CU #2, it will know full type information about `struct B`, but will
1052 * only know about forward declaration of `struct A` (in BTF terms, it will
1053 * have `BTF_KIND_FWD` type descriptor with name `B`).
1054 *
1055 * This compilation unit isolation means that it's possible that there is no
1056 * single CU with complete type information describing structs `S`, `A`, and
1057 * `B`. Also, we might get tons of duplicated and redundant type information.
1058 *
1059 * Additional complication we need to keep in mind comes from the fact that
1060 * types, in general, can form graphs containing cycles, not just DAGs.
1061 *
1062 * While algorithm does deduplication, it also merges and resolves type
1063 * information (unless disabled throught `struct btf_opts`), whenever possible.
1064 * E.g., in the example above with two compilation units having partial type
1065 * information for structs `A` and `B`, the output of algorithm will emit
1066 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1067 * (as well as type information for `int` and pointers), as if they were defined
1068 * in a single compilation unit as:
1069 *
1070 * struct A {
1071 *      int a;
1072 *      struct A* self;
1073 *      struct S* parent;
1074 * };
1075 * struct B {
1076 *      int b;
1077 *      struct B* self;
1078 *      struct S* parent;
1079 * };
1080 * struct S {
1081 *      struct A* a_ptr;
1082 *      struct B* b_ptr;
1083 * };
1084 *
1085 * Algorithm summary
1086 * =================
1087 *
1088 * Algorithm completes its work in 6 separate passes:
1089 *
1090 * 1. Strings deduplication.
1091 * 2. Primitive types deduplication (int, enum, fwd).
1092 * 3. Struct/union types deduplication.
1093 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1094 *    protos, and const/volatile/restrict modifiers).
1095 * 5. Types compaction.
1096 * 6. Types remapping.
1097 *
1098 * Algorithm determines canonical type descriptor, which is a single
1099 * representative type for each truly unique type. This canonical type is the
1100 * one that will go into final deduplicated BTF type information. For
1101 * struct/unions, it is also the type that algorithm will merge additional type
1102 * information into (while resolving FWDs), as it discovers it from data in
1103 * other CUs. Each input BTF type eventually gets either mapped to itself, if
1104 * that type is canonical, or to some other type, if that type is equivalent
1105 * and was chosen as canonical representative. This mapping is stored in
1106 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1107 * FWD type got resolved to.
1108 *
1109 * To facilitate fast discovery of canonical types, we also maintain canonical
1110 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1111 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1112 * that match that signature. With sufficiently good choice of type signature
1113 * hashing function, we can limit number of canonical types for each unique type
1114 * signature to a very small number, allowing to find canonical type for any
1115 * duplicated type very quickly.
1116 *
1117 * Struct/union deduplication is the most critical part and algorithm for
1118 * deduplicating structs/unions is described in greater details in comments for
1119 * `btf_dedup_is_equiv` function.
1120 */
1121int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1122               const struct btf_dedup_opts *opts)
1123{
1124        struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1125        int err;
1126
1127        if (IS_ERR(d)) {
1128                pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1129                return -EINVAL;
1130        }
1131
1132        err = btf_dedup_strings(d);
1133        if (err < 0) {
1134                pr_debug("btf_dedup_strings failed:%d\n", err);
1135                goto done;
1136        }
1137        err = btf_dedup_prim_types(d);
1138        if (err < 0) {
1139                pr_debug("btf_dedup_prim_types failed:%d\n", err);
1140                goto done;
1141        }
1142        err = btf_dedup_struct_types(d);
1143        if (err < 0) {
1144                pr_debug("btf_dedup_struct_types failed:%d\n", err);
1145                goto done;
1146        }
1147        err = btf_dedup_ref_types(d);
1148        if (err < 0) {
1149                pr_debug("btf_dedup_ref_types failed:%d\n", err);
1150                goto done;
1151        }
1152        err = btf_dedup_compact_types(d);
1153        if (err < 0) {
1154                pr_debug("btf_dedup_compact_types failed:%d\n", err);
1155                goto done;
1156        }
1157        err = btf_dedup_remap_types(d);
1158        if (err < 0) {
1159                pr_debug("btf_dedup_remap_types failed:%d\n", err);
1160                goto done;
1161        }
1162
1163done:
1164        btf_dedup_free(d);
1165        return err;
1166}
1167
1168#define BTF_DEDUP_TABLE_DEFAULT_SIZE (1 << 14)
1169#define BTF_DEDUP_TABLE_MAX_SIZE_LOG 31
1170#define BTF_UNPROCESSED_ID ((__u32)-1)
1171#define BTF_IN_PROGRESS_ID ((__u32)-2)
1172
1173struct btf_dedup_node {
1174        struct btf_dedup_node *next;
1175        __u32 type_id;
1176};
1177
1178struct btf_dedup {
1179        /* .BTF section to be deduped in-place */
1180        struct btf *btf;
1181        /*
1182         * Optional .BTF.ext section. When provided, any strings referenced
1183         * from it will be taken into account when deduping strings
1184         */
1185        struct btf_ext *btf_ext;
1186        /*
1187         * This is a map from any type's signature hash to a list of possible
1188         * canonical representative type candidates. Hash collisions are
1189         * ignored, so even types of various kinds can share same list of
1190         * candidates, which is fine because we rely on subsequent
1191         * btf_xxx_equal() checks to authoritatively verify type equality.
1192         */
1193        struct btf_dedup_node **dedup_table;
1194        /* Canonical types map */
1195        __u32 *map;
1196        /* Hypothetical mapping, used during type graph equivalence checks */
1197        __u32 *hypot_map;
1198        __u32 *hypot_list;
1199        size_t hypot_cnt;
1200        size_t hypot_cap;
1201        /* Various option modifying behavior of algorithm */
1202        struct btf_dedup_opts opts;
1203};
1204
1205struct btf_str_ptr {
1206        const char *str;
1207        __u32 new_off;
1208        bool used;
1209};
1210
1211struct btf_str_ptrs {
1212        struct btf_str_ptr *ptrs;
1213        const char *data;
1214        __u32 cnt;
1215        __u32 cap;
1216};
1217
1218static inline __u32 hash_combine(__u32 h, __u32 value)
1219{
1220/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
1221#define GOLDEN_RATIO_PRIME 0x9e370001UL
1222        return h * 37 + value * GOLDEN_RATIO_PRIME;
1223#undef GOLDEN_RATIO_PRIME
1224}
1225
1226#define for_each_dedup_cand(d, hash, node) \
1227        for (node = d->dedup_table[hash & (d->opts.dedup_table_size - 1)]; \
1228             node;                                                         \
1229             node = node->next)
1230
1231static int btf_dedup_table_add(struct btf_dedup *d, __u32 hash, __u32 type_id)
1232{
1233        struct btf_dedup_node *node = malloc(sizeof(struct btf_dedup_node));
1234        int bucket = hash & (d->opts.dedup_table_size - 1);
1235
1236        if (!node)
1237                return -ENOMEM;
1238        node->type_id = type_id;
1239        node->next = d->dedup_table[bucket];
1240        d->dedup_table[bucket] = node;
1241        return 0;
1242}
1243
1244static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1245                                   __u32 from_id, __u32 to_id)
1246{
1247        if (d->hypot_cnt == d->hypot_cap) {
1248                __u32 *new_list;
1249
1250                d->hypot_cap += max(16, d->hypot_cap / 2);
1251                new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1252                if (!new_list)
1253                        return -ENOMEM;
1254                d->hypot_list = new_list;
1255        }
1256        d->hypot_list[d->hypot_cnt++] = from_id;
1257        d->hypot_map[from_id] = to_id;
1258        return 0;
1259}
1260
1261static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1262{
1263        int i;
1264
1265        for (i = 0; i < d->hypot_cnt; i++)
1266                d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1267        d->hypot_cnt = 0;
1268}
1269
1270static void btf_dedup_table_free(struct btf_dedup *d)
1271{
1272        struct btf_dedup_node *head, *tmp;
1273        int i;
1274
1275        if (!d->dedup_table)
1276                return;
1277
1278        for (i = 0; i < d->opts.dedup_table_size; i++) {
1279                while (d->dedup_table[i]) {
1280                        tmp = d->dedup_table[i];
1281                        d->dedup_table[i] = tmp->next;
1282                        free(tmp);
1283                }
1284
1285                head = d->dedup_table[i];
1286                while (head) {
1287                        tmp = head;
1288                        head = head->next;
1289                        free(tmp);
1290                }
1291        }
1292
1293        free(d->dedup_table);
1294        d->dedup_table = NULL;
1295}
1296
1297static void btf_dedup_free(struct btf_dedup *d)
1298{
1299        btf_dedup_table_free(d);
1300
1301        free(d->map);
1302        d->map = NULL;
1303
1304        free(d->hypot_map);
1305        d->hypot_map = NULL;
1306
1307        free(d->hypot_list);
1308        d->hypot_list = NULL;
1309
1310        free(d);
1311}
1312
1313/* Find closest power of two >= to size, capped at 2^max_size_log */
1314static __u32 roundup_pow2_max(__u32 size, int max_size_log)
1315{
1316        int i;
1317
1318        for (i = 0; i < max_size_log  && (1U << i) < size;  i++)
1319                ;
1320        return 1U << i;
1321}
1322
1323
1324static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1325                                       const struct btf_dedup_opts *opts)
1326{
1327        struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1328        int i, err = 0;
1329        __u32 sz;
1330
1331        if (!d)
1332                return ERR_PTR(-ENOMEM);
1333
1334        d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1335        sz = opts && opts->dedup_table_size ? opts->dedup_table_size
1336                                            : BTF_DEDUP_TABLE_DEFAULT_SIZE;
1337        sz = roundup_pow2_max(sz, BTF_DEDUP_TABLE_MAX_SIZE_LOG);
1338        d->opts.dedup_table_size = sz;
1339
1340        d->btf = btf;
1341        d->btf_ext = btf_ext;
1342
1343        d->dedup_table = calloc(d->opts.dedup_table_size,
1344                                sizeof(struct btf_dedup_node *));
1345        if (!d->dedup_table) {
1346                err = -ENOMEM;
1347                goto done;
1348        }
1349
1350        d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1351        if (!d->map) {
1352                err = -ENOMEM;
1353                goto done;
1354        }
1355        /* special BTF "void" type is made canonical immediately */
1356        d->map[0] = 0;
1357        for (i = 1; i <= btf->nr_types; i++) {
1358                struct btf_type *t = d->btf->types[i];
1359                __u16 kind = BTF_INFO_KIND(t->info);
1360
1361                /* VAR and DATASEC are never deduped and are self-canonical */
1362                if (kind == BTF_KIND_VAR || kind == BTF_KIND_DATASEC)
1363                        d->map[i] = i;
1364                else
1365                        d->map[i] = BTF_UNPROCESSED_ID;
1366        }
1367
1368        d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1369        if (!d->hypot_map) {
1370                err = -ENOMEM;
1371                goto done;
1372        }
1373        for (i = 0; i <= btf->nr_types; i++)
1374                d->hypot_map[i] = BTF_UNPROCESSED_ID;
1375
1376done:
1377        if (err) {
1378                btf_dedup_free(d);
1379                return ERR_PTR(err);
1380        }
1381
1382        return d;
1383}
1384
1385typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1386
1387/*
1388 * Iterate over all possible places in .BTF and .BTF.ext that can reference
1389 * string and pass pointer to it to a provided callback `fn`.
1390 */
1391static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1392{
1393        void *line_data_cur, *line_data_end;
1394        int i, j, r, rec_size;
1395        struct btf_type *t;
1396
1397        for (i = 1; i <= d->btf->nr_types; i++) {
1398                t = d->btf->types[i];
1399                r = fn(&t->name_off, ctx);
1400                if (r)
1401                        return r;
1402
1403                switch (BTF_INFO_KIND(t->info)) {
1404                case BTF_KIND_STRUCT:
1405                case BTF_KIND_UNION: {
1406                        struct btf_member *m = (struct btf_member *)(t + 1);
1407                        __u16 vlen = BTF_INFO_VLEN(t->info);
1408
1409                        for (j = 0; j < vlen; j++) {
1410                                r = fn(&m->name_off, ctx);
1411                                if (r)
1412                                        return r;
1413                                m++;
1414                        }
1415                        break;
1416                }
1417                case BTF_KIND_ENUM: {
1418                        struct btf_enum *m = (struct btf_enum *)(t + 1);
1419                        __u16 vlen = BTF_INFO_VLEN(t->info);
1420
1421                        for (j = 0; j < vlen; j++) {
1422                                r = fn(&m->name_off, ctx);
1423                                if (r)
1424                                        return r;
1425                                m++;
1426                        }
1427                        break;
1428                }
1429                case BTF_KIND_FUNC_PROTO: {
1430                        struct btf_param *m = (struct btf_param *)(t + 1);
1431                        __u16 vlen = BTF_INFO_VLEN(t->info);
1432
1433                        for (j = 0; j < vlen; j++) {
1434                                r = fn(&m->name_off, ctx);
1435                                if (r)
1436                                        return r;
1437                                m++;
1438                        }
1439                        break;
1440                }
1441                default:
1442                        break;
1443                }
1444        }
1445
1446        if (!d->btf_ext)
1447                return 0;
1448
1449        line_data_cur = d->btf_ext->line_info.info;
1450        line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1451        rec_size = d->btf_ext->line_info.rec_size;
1452
1453        while (line_data_cur < line_data_end) {
1454                struct btf_ext_info_sec *sec = line_data_cur;
1455                struct bpf_line_info_min *line_info;
1456                __u32 num_info = sec->num_info;
1457
1458                r = fn(&sec->sec_name_off, ctx);
1459                if (r)
1460                        return r;
1461
1462                line_data_cur += sizeof(struct btf_ext_info_sec);
1463                for (i = 0; i < num_info; i++) {
1464                        line_info = line_data_cur;
1465                        r = fn(&line_info->file_name_off, ctx);
1466                        if (r)
1467                                return r;
1468                        r = fn(&line_info->line_off, ctx);
1469                        if (r)
1470                                return r;
1471                        line_data_cur += rec_size;
1472                }
1473        }
1474
1475        return 0;
1476}
1477
1478static int str_sort_by_content(const void *a1, const void *a2)
1479{
1480        const struct btf_str_ptr *p1 = a1;
1481        const struct btf_str_ptr *p2 = a2;
1482
1483        return strcmp(p1->str, p2->str);
1484}
1485
1486static int str_sort_by_offset(const void *a1, const void *a2)
1487{
1488        const struct btf_str_ptr *p1 = a1;
1489        const struct btf_str_ptr *p2 = a2;
1490
1491        if (p1->str != p2->str)
1492                return p1->str < p2->str ? -1 : 1;
1493        return 0;
1494}
1495
1496static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1497{
1498        const struct btf_str_ptr *p = pelem;
1499
1500        if (str_ptr != p->str)
1501                return (const char *)str_ptr < p->str ? -1 : 1;
1502        return 0;
1503}
1504
1505static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1506{
1507        struct btf_str_ptrs *strs;
1508        struct btf_str_ptr *s;
1509
1510        if (*str_off_ptr == 0)
1511                return 0;
1512
1513        strs = ctx;
1514        s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1515                    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1516        if (!s)
1517                return -EINVAL;
1518        s->used = true;
1519        return 0;
1520}
1521
1522static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1523{
1524        struct btf_str_ptrs *strs;
1525        struct btf_str_ptr *s;
1526
1527        if (*str_off_ptr == 0)
1528                return 0;
1529
1530        strs = ctx;
1531        s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1532                    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1533        if (!s)
1534                return -EINVAL;
1535        *str_off_ptr = s->new_off;
1536        return 0;
1537}
1538
1539/*
1540 * Dedup string and filter out those that are not referenced from either .BTF
1541 * or .BTF.ext (if provided) sections.
1542 *
1543 * This is done by building index of all strings in BTF's string section,
1544 * then iterating over all entities that can reference strings (e.g., type
1545 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1546 * strings as used. After that all used strings are deduped and compacted into
1547 * sequential blob of memory and new offsets are calculated. Then all the string
1548 * references are iterated again and rewritten using new offsets.
1549 */
1550static int btf_dedup_strings(struct btf_dedup *d)
1551{
1552        const struct btf_header *hdr = d->btf->hdr;
1553        char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1554        char *end = start + d->btf->hdr->str_len;
1555        char *p = start, *tmp_strs = NULL;
1556        struct btf_str_ptrs strs = {
1557                .cnt = 0,
1558                .cap = 0,
1559                .ptrs = NULL,
1560                .data = start,
1561        };
1562        int i, j, err = 0, grp_idx;
1563        bool grp_used;
1564
1565        /* build index of all strings */
1566        while (p < end) {
1567                if (strs.cnt + 1 > strs.cap) {
1568                        struct btf_str_ptr *new_ptrs;
1569
1570                        strs.cap += max(strs.cnt / 2, 16);
1571                        new_ptrs = realloc(strs.ptrs,
1572                                           sizeof(strs.ptrs[0]) * strs.cap);
1573                        if (!new_ptrs) {
1574                                err = -ENOMEM;
1575                                goto done;
1576                        }
1577                        strs.ptrs = new_ptrs;
1578                }
1579
1580                strs.ptrs[strs.cnt].str = p;
1581                strs.ptrs[strs.cnt].used = false;
1582
1583                p += strlen(p) + 1;
1584                strs.cnt++;
1585        }
1586
1587        /* temporary storage for deduplicated strings */
1588        tmp_strs = malloc(d->btf->hdr->str_len);
1589        if (!tmp_strs) {
1590                err = -ENOMEM;
1591                goto done;
1592        }
1593
1594        /* mark all used strings */
1595        strs.ptrs[0].used = true;
1596        err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1597        if (err)
1598                goto done;
1599
1600        /* sort strings by context, so that we can identify duplicates */
1601        qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1602
1603        /*
1604         * iterate groups of equal strings and if any instance in a group was
1605         * referenced, emit single instance and remember new offset
1606         */
1607        p = tmp_strs;
1608        grp_idx = 0;
1609        grp_used = strs.ptrs[0].used;
1610        /* iterate past end to avoid code duplication after loop */
1611        for (i = 1; i <= strs.cnt; i++) {
1612                /*
1613                 * when i == strs.cnt, we want to skip string comparison and go
1614                 * straight to handling last group of strings (otherwise we'd
1615                 * need to handle last group after the loop w/ duplicated code)
1616                 */
1617                if (i < strs.cnt &&
1618                    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1619                        grp_used = grp_used || strs.ptrs[i].used;
1620                        continue;
1621                }
1622
1623                /*
1624                 * this check would have been required after the loop to handle
1625                 * last group of strings, but due to <= condition in a loop
1626                 * we avoid that duplication
1627                 */
1628                if (grp_used) {
1629                        int new_off = p - tmp_strs;
1630                        __u32 len = strlen(strs.ptrs[grp_idx].str);
1631
1632                        memmove(p, strs.ptrs[grp_idx].str, len + 1);
1633                        for (j = grp_idx; j < i; j++)
1634                                strs.ptrs[j].new_off = new_off;
1635                        p += len + 1;
1636                }
1637
1638                if (i < strs.cnt) {
1639                        grp_idx = i;
1640                        grp_used = strs.ptrs[i].used;
1641                }
1642        }
1643
1644        /* replace original strings with deduped ones */
1645        d->btf->hdr->str_len = p - tmp_strs;
1646        memmove(start, tmp_strs, d->btf->hdr->str_len);
1647        end = start + d->btf->hdr->str_len;
1648
1649        /* restore original order for further binary search lookups */
1650        qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1651
1652        /* remap string offsets */
1653        err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1654        if (err)
1655                goto done;
1656
1657        d->btf->hdr->str_len = end - start;
1658
1659done:
1660        free(tmp_strs);
1661        free(strs.ptrs);
1662        return err;
1663}
1664
1665static __u32 btf_hash_common(struct btf_type *t)
1666{
1667        __u32 h;
1668
1669        h = hash_combine(0, t->name_off);
1670        h = hash_combine(h, t->info);
1671        h = hash_combine(h, t->size);
1672        return h;
1673}
1674
1675static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1676{
1677        return t1->name_off == t2->name_off &&
1678               t1->info == t2->info &&
1679               t1->size == t2->size;
1680}
1681
1682/* Calculate type signature hash of INT. */
1683static __u32 btf_hash_int(struct btf_type *t)
1684{
1685        __u32 info = *(__u32 *)(t + 1);
1686        __u32 h;
1687
1688        h = btf_hash_common(t);
1689        h = hash_combine(h, info);
1690        return h;
1691}
1692
1693/* Check structural equality of two INTs. */
1694static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1695{
1696        __u32 info1, info2;
1697
1698        if (!btf_equal_common(t1, t2))
1699                return false;
1700        info1 = *(__u32 *)(t1 + 1);
1701        info2 = *(__u32 *)(t2 + 1);
1702        return info1 == info2;
1703}
1704
1705/* Calculate type signature hash of ENUM. */
1706static __u32 btf_hash_enum(struct btf_type *t)
1707{
1708        __u32 h;
1709
1710        /* don't hash vlen and enum members to support enum fwd resolving */
1711        h = hash_combine(0, t->name_off);
1712        h = hash_combine(h, t->info & ~0xffff);
1713        h = hash_combine(h, t->size);
1714        return h;
1715}
1716
1717/* Check structural equality of two ENUMs. */
1718static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1719{
1720        struct btf_enum *m1, *m2;
1721        __u16 vlen;
1722        int i;
1723
1724        if (!btf_equal_common(t1, t2))
1725                return false;
1726
1727        vlen = BTF_INFO_VLEN(t1->info);
1728        m1 = (struct btf_enum *)(t1 + 1);
1729        m2 = (struct btf_enum *)(t2 + 1);
1730        for (i = 0; i < vlen; i++) {
1731                if (m1->name_off != m2->name_off || m1->val != m2->val)
1732                        return false;
1733                m1++;
1734                m2++;
1735        }
1736        return true;
1737}
1738
1739static inline bool btf_is_enum_fwd(struct btf_type *t)
1740{
1741        return BTF_INFO_KIND(t->info) == BTF_KIND_ENUM &&
1742               BTF_INFO_VLEN(t->info) == 0;
1743}
1744
1745static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1746{
1747        if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1748                return btf_equal_enum(t1, t2);
1749        /* ignore vlen when comparing */
1750        return t1->name_off == t2->name_off &&
1751               (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1752               t1->size == t2->size;
1753}
1754
1755/*
1756 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1757 * as referenced type IDs equivalence is established separately during type
1758 * graph equivalence check algorithm.
1759 */
1760static __u32 btf_hash_struct(struct btf_type *t)
1761{
1762        struct btf_member *member = (struct btf_member *)(t + 1);
1763        __u32 vlen = BTF_INFO_VLEN(t->info);
1764        __u32 h = btf_hash_common(t);
1765        int i;
1766
1767        for (i = 0; i < vlen; i++) {
1768                h = hash_combine(h, member->name_off);
1769                h = hash_combine(h, member->offset);
1770                /* no hashing of referenced type ID, it can be unresolved yet */
1771                member++;
1772        }
1773        return h;
1774}
1775
1776/*
1777 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1778 * IDs. This check is performed during type graph equivalence check and
1779 * referenced types equivalence is checked separately.
1780 */
1781static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
1782{
1783        struct btf_member *m1, *m2;
1784        __u16 vlen;
1785        int i;
1786
1787        if (!btf_equal_common(t1, t2))
1788                return false;
1789
1790        vlen = BTF_INFO_VLEN(t1->info);
1791        m1 = (struct btf_member *)(t1 + 1);
1792        m2 = (struct btf_member *)(t2 + 1);
1793        for (i = 0; i < vlen; i++) {
1794                if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1795                        return false;
1796                m1++;
1797                m2++;
1798        }
1799        return true;
1800}
1801
1802/*
1803 * Calculate type signature hash of ARRAY, including referenced type IDs,
1804 * under assumption that they were already resolved to canonical type IDs and
1805 * are not going to change.
1806 */
1807static __u32 btf_hash_array(struct btf_type *t)
1808{
1809        struct btf_array *info = (struct btf_array *)(t + 1);
1810        __u32 h = btf_hash_common(t);
1811
1812        h = hash_combine(h, info->type);
1813        h = hash_combine(h, info->index_type);
1814        h = hash_combine(h, info->nelems);
1815        return h;
1816}
1817
1818/*
1819 * Check exact equality of two ARRAYs, taking into account referenced
1820 * type IDs, under assumption that they were already resolved to canonical
1821 * type IDs and are not going to change.
1822 * This function is called during reference types deduplication to compare
1823 * ARRAY to potential canonical representative.
1824 */
1825static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1826{
1827        struct btf_array *info1, *info2;
1828
1829        if (!btf_equal_common(t1, t2))
1830                return false;
1831
1832        info1 = (struct btf_array *)(t1 + 1);
1833        info2 = (struct btf_array *)(t2 + 1);
1834        return info1->type == info2->type &&
1835               info1->index_type == info2->index_type &&
1836               info1->nelems == info2->nelems;
1837}
1838
1839/*
1840 * Check structural compatibility of two ARRAYs, ignoring referenced type
1841 * IDs. This check is performed during type graph equivalence check and
1842 * referenced types equivalence is checked separately.
1843 */
1844static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1845{
1846        struct btf_array *info1, *info2;
1847
1848        if (!btf_equal_common(t1, t2))
1849                return false;
1850
1851        info1 = (struct btf_array *)(t1 + 1);
1852        info2 = (struct btf_array *)(t2 + 1);
1853        return info1->nelems == info2->nelems;
1854}
1855
1856/*
1857 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1858 * under assumption that they were already resolved to canonical type IDs and
1859 * are not going to change.
1860 */
1861static inline __u32 btf_hash_fnproto(struct btf_type *t)
1862{
1863        struct btf_param *member = (struct btf_param *)(t + 1);
1864        __u16 vlen = BTF_INFO_VLEN(t->info);
1865        __u32 h = btf_hash_common(t);
1866        int i;
1867
1868        for (i = 0; i < vlen; i++) {
1869                h = hash_combine(h, member->name_off);
1870                h = hash_combine(h, member->type);
1871                member++;
1872        }
1873        return h;
1874}
1875
1876/*
1877 * Check exact equality of two FUNC_PROTOs, taking into account referenced
1878 * type IDs, under assumption that they were already resolved to canonical
1879 * type IDs and are not going to change.
1880 * This function is called during reference types deduplication to compare
1881 * FUNC_PROTO to potential canonical representative.
1882 */
1883static inline bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
1884{
1885        struct btf_param *m1, *m2;
1886        __u16 vlen;
1887        int i;
1888
1889        if (!btf_equal_common(t1, t2))
1890                return false;
1891
1892        vlen = BTF_INFO_VLEN(t1->info);
1893        m1 = (struct btf_param *)(t1 + 1);
1894        m2 = (struct btf_param *)(t2 + 1);
1895        for (i = 0; i < vlen; i++) {
1896                if (m1->name_off != m2->name_off || m1->type != m2->type)
1897                        return false;
1898                m1++;
1899                m2++;
1900        }
1901        return true;
1902}
1903
1904/*
1905 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1906 * IDs. This check is performed during type graph equivalence check and
1907 * referenced types equivalence is checked separately.
1908 */
1909static inline bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
1910{
1911        struct btf_param *m1, *m2;
1912        __u16 vlen;
1913        int i;
1914
1915        /* skip return type ID */
1916        if (t1->name_off != t2->name_off || t1->info != t2->info)
1917                return false;
1918
1919        vlen = BTF_INFO_VLEN(t1->info);
1920        m1 = (struct btf_param *)(t1 + 1);
1921        m2 = (struct btf_param *)(t2 + 1);
1922        for (i = 0; i < vlen; i++) {
1923                if (m1->name_off != m2->name_off)
1924                        return false;
1925                m1++;
1926                m2++;
1927        }
1928        return true;
1929}
1930
1931/*
1932 * Deduplicate primitive types, that can't reference other types, by calculating
1933 * their type signature hash and comparing them with any possible canonical
1934 * candidate. If no canonical candidate matches, type itself is marked as
1935 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
1936 */
1937static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
1938{
1939        struct btf_type *t = d->btf->types[type_id];
1940        struct btf_type *cand;
1941        struct btf_dedup_node *cand_node;
1942        /* if we don't find equivalent type, then we are canonical */
1943        __u32 new_id = type_id;
1944        __u32 h;
1945
1946        switch (BTF_INFO_KIND(t->info)) {
1947        case BTF_KIND_CONST:
1948        case BTF_KIND_VOLATILE:
1949        case BTF_KIND_RESTRICT:
1950        case BTF_KIND_PTR:
1951        case BTF_KIND_TYPEDEF:
1952        case BTF_KIND_ARRAY:
1953        case BTF_KIND_STRUCT:
1954        case BTF_KIND_UNION:
1955        case BTF_KIND_FUNC:
1956        case BTF_KIND_FUNC_PROTO:
1957        case BTF_KIND_VAR:
1958        case BTF_KIND_DATASEC:
1959                return 0;
1960
1961        case BTF_KIND_INT:
1962                h = btf_hash_int(t);
1963                for_each_dedup_cand(d, h, cand_node) {
1964                        cand = d->btf->types[cand_node->type_id];
1965                        if (btf_equal_int(t, cand)) {
1966                                new_id = cand_node->type_id;
1967                                break;
1968                        }
1969                }
1970                break;
1971
1972        case BTF_KIND_ENUM:
1973                h = btf_hash_enum(t);
1974                for_each_dedup_cand(d, h, cand_node) {
1975                        cand = d->btf->types[cand_node->type_id];
1976                        if (btf_equal_enum(t, cand)) {
1977                                new_id = cand_node->type_id;
1978                                break;
1979                        }
1980                        if (d->opts.dont_resolve_fwds)
1981                                continue;
1982                        if (btf_compat_enum(t, cand)) {
1983                                if (btf_is_enum_fwd(t)) {
1984                                        /* resolve fwd to full enum */
1985                                        new_id = cand_node->type_id;
1986                                        break;
1987                                }
1988                                /* resolve canonical enum fwd to full enum */
1989                                d->map[cand_node->type_id] = type_id;
1990                        }
1991                }
1992                break;
1993
1994        case BTF_KIND_FWD:
1995                h = btf_hash_common(t);
1996                for_each_dedup_cand(d, h, cand_node) {
1997                        cand = d->btf->types[cand_node->type_id];
1998                        if (btf_equal_common(t, cand)) {
1999                                new_id = cand_node->type_id;
2000                                break;
2001                        }
2002                }
2003                break;
2004
2005        default:
2006                return -EINVAL;
2007        }
2008
2009        d->map[type_id] = new_id;
2010        if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2011                return -ENOMEM;
2012
2013        return 0;
2014}
2015
2016static int btf_dedup_prim_types(struct btf_dedup *d)
2017{
2018        int i, err;
2019
2020        for (i = 1; i <= d->btf->nr_types; i++) {
2021                err = btf_dedup_prim_type(d, i);
2022                if (err)
2023                        return err;
2024        }
2025        return 0;
2026}
2027
2028/*
2029 * Check whether type is already mapped into canonical one (could be to itself).
2030 */
2031static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2032{
2033        return d->map[type_id] <= BTF_MAX_NR_TYPES;
2034}
2035
2036/*
2037 * Resolve type ID into its canonical type ID, if any; otherwise return original
2038 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2039 * STRUCT/UNION link and resolve it into canonical type ID as well.
2040 */
2041static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2042{
2043        while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2044                type_id = d->map[type_id];
2045        return type_id;
2046}
2047
2048/*
2049 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2050 * type ID.
2051 */
2052static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2053{
2054        __u32 orig_type_id = type_id;
2055
2056        if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD)
2057                return type_id;
2058
2059        while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2060                type_id = d->map[type_id];
2061
2062        if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD)
2063                return type_id;
2064
2065        return orig_type_id;
2066}
2067
2068
2069static inline __u16 btf_fwd_kind(struct btf_type *t)
2070{
2071        return BTF_INFO_KFLAG(t->info) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2072}
2073
2074/*
2075 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2076 * call it "candidate graph" in this description for brevity) to a type graph
2077 * formed by (potential) canonical struct/union ("canonical graph" for brevity
2078 * here, though keep in mind that not all types in canonical graph are
2079 * necessarily canonical representatives themselves, some of them might be
2080 * duplicates or its uniqueness might not have been established yet).
2081 * Returns:
2082 *  - >0, if type graphs are equivalent;
2083 *  -  0, if not equivalent;
2084 *  - <0, on error.
2085 *
2086 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2087 * equivalence of BTF types at each step. If at any point BTF types in candidate
2088 * and canonical graphs are not compatible structurally, whole graphs are
2089 * incompatible. If types are structurally equivalent (i.e., all information
2090 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2091 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2092 * If a type references other types, then those referenced types are checked
2093 * for equivalence recursively.
2094 *
2095 * During DFS traversal, if we find that for current `canon_id` type we
2096 * already have some mapping in hypothetical map, we check for two possible
2097 * situations:
2098 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2099 *     happen when type graphs have cycles. In this case we assume those two
2100 *     types are equivalent.
2101 *   - `canon_id` is mapped to different type. This is contradiction in our
2102 *     hypothetical mapping, because same graph in canonical graph corresponds
2103 *     to two different types in candidate graph, which for equivalent type
2104 *     graphs shouldn't happen. This condition terminates equivalence check
2105 *     with negative result.
2106 *
2107 * If type graphs traversal exhausts types to check and find no contradiction,
2108 * then type graphs are equivalent.
2109 *
2110 * When checking types for equivalence, there is one special case: FWD types.
2111 * If FWD type resolution is allowed and one of the types (either from canonical
2112 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2113 * flag) and their names match, hypothetical mapping is updated to point from
2114 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2115 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2116 *
2117 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2118 * if there are two exactly named (or anonymous) structs/unions that are
2119 * compatible structurally, one of which has FWD field, while other is concrete
2120 * STRUCT/UNION, but according to C sources they are different structs/unions
2121 * that are referencing different types with the same name. This is extremely
2122 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2123 * this logic is causing problems.
2124 *
2125 * Doing FWD resolution means that both candidate and/or canonical graphs can
2126 * consists of portions of the graph that come from multiple compilation units.
2127 * This is due to the fact that types within single compilation unit are always
2128 * deduplicated and FWDs are already resolved, if referenced struct/union
2129 * definiton is available. So, if we had unresolved FWD and found corresponding
2130 * STRUCT/UNION, they will be from different compilation units. This
2131 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2132 * type graph will likely have at least two different BTF types that describe
2133 * same type (e.g., most probably there will be two different BTF types for the
2134 * same 'int' primitive type) and could even have "overlapping" parts of type
2135 * graph that describe same subset of types.
2136 *
2137 * This in turn means that our assumption that each type in canonical graph
2138 * must correspond to exactly one type in candidate graph might not hold
2139 * anymore and will make it harder to detect contradictions using hypothetical
2140 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2141 * resolution only in canonical graph. FWDs in candidate graphs are never
2142 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2143 * that can occur:
2144 *   - Both types in canonical and candidate graphs are FWDs. If they are
2145 *     structurally equivalent, then they can either be both resolved to the
2146 *     same STRUCT/UNION or not resolved at all. In both cases they are
2147 *     equivalent and there is no need to resolve FWD on candidate side.
2148 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2149 *     so nothing to resolve as well, algorithm will check equivalence anyway.
2150 *   - Type in canonical graph is FWD, while type in candidate is concrete
2151 *     STRUCT/UNION. In this case candidate graph comes from single compilation
2152 *     unit, so there is exactly one BTF type for each unique C type. After
2153 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2154 *     in canonical graph mapping to single BTF type in candidate graph, but
2155 *     because hypothetical mapping maps from canonical to candidate types, it's
2156 *     alright, and we still maintain the property of having single `canon_id`
2157 *     mapping to single `cand_id` (there could be two different `canon_id`
2158 *     mapped to the same `cand_id`, but it's not contradictory).
2159 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2160 *     graph is FWD. In this case we are just going to check compatibility of
2161 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2162 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2163 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2164 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2165 *     canonical graph.
2166 */
2167static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2168                              __u32 canon_id)
2169{
2170        struct btf_type *cand_type;
2171        struct btf_type *canon_type;
2172        __u32 hypot_type_id;
2173        __u16 cand_kind;
2174        __u16 canon_kind;
2175        int i, eq;
2176
2177        /* if both resolve to the same canonical, they must be equivalent */
2178        if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2179                return 1;
2180
2181        canon_id = resolve_fwd_id(d, canon_id);
2182
2183        hypot_type_id = d->hypot_map[canon_id];
2184        if (hypot_type_id <= BTF_MAX_NR_TYPES)
2185                return hypot_type_id == cand_id;
2186
2187        if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2188                return -ENOMEM;
2189
2190        cand_type = d->btf->types[cand_id];
2191        canon_type = d->btf->types[canon_id];
2192        cand_kind = BTF_INFO_KIND(cand_type->info);
2193        canon_kind = BTF_INFO_KIND(canon_type->info);
2194
2195        if (cand_type->name_off != canon_type->name_off)
2196                return 0;
2197
2198        /* FWD <--> STRUCT/UNION equivalence check, if enabled */
2199        if (!d->opts.dont_resolve_fwds
2200            && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2201            && cand_kind != canon_kind) {
2202                __u16 real_kind;
2203                __u16 fwd_kind;
2204
2205                if (cand_kind == BTF_KIND_FWD) {
2206                        real_kind = canon_kind;
2207                        fwd_kind = btf_fwd_kind(cand_type);
2208                } else {
2209                        real_kind = cand_kind;
2210                        fwd_kind = btf_fwd_kind(canon_type);
2211                }
2212                return fwd_kind == real_kind;
2213        }
2214
2215        if (cand_kind != canon_kind)
2216                return 0;
2217
2218        switch (cand_kind) {
2219        case BTF_KIND_INT:
2220                return btf_equal_int(cand_type, canon_type);
2221
2222        case BTF_KIND_ENUM:
2223                if (d->opts.dont_resolve_fwds)
2224                        return btf_equal_enum(cand_type, canon_type);
2225                else
2226                        return btf_compat_enum(cand_type, canon_type);
2227
2228        case BTF_KIND_FWD:
2229                return btf_equal_common(cand_type, canon_type);
2230
2231        case BTF_KIND_CONST:
2232        case BTF_KIND_VOLATILE:
2233        case BTF_KIND_RESTRICT:
2234        case BTF_KIND_PTR:
2235        case BTF_KIND_TYPEDEF:
2236        case BTF_KIND_FUNC:
2237                if (cand_type->info != canon_type->info)
2238                        return 0;
2239                return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2240
2241        case BTF_KIND_ARRAY: {
2242                struct btf_array *cand_arr, *canon_arr;
2243
2244                if (!btf_compat_array(cand_type, canon_type))
2245                        return 0;
2246                cand_arr = (struct btf_array *)(cand_type + 1);
2247                canon_arr = (struct btf_array *)(canon_type + 1);
2248                eq = btf_dedup_is_equiv(d,
2249                        cand_arr->index_type, canon_arr->index_type);
2250                if (eq <= 0)
2251                        return eq;
2252                return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2253        }
2254
2255        case BTF_KIND_STRUCT:
2256        case BTF_KIND_UNION: {
2257                struct btf_member *cand_m, *canon_m;
2258                __u16 vlen;
2259
2260                if (!btf_shallow_equal_struct(cand_type, canon_type))
2261                        return 0;
2262                vlen = BTF_INFO_VLEN(cand_type->info);
2263                cand_m = (struct btf_member *)(cand_type + 1);
2264                canon_m = (struct btf_member *)(canon_type + 1);
2265                for (i = 0; i < vlen; i++) {
2266                        eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2267                        if (eq <= 0)
2268                                return eq;
2269                        cand_m++;
2270                        canon_m++;
2271                }
2272
2273                return 1;
2274        }
2275
2276        case BTF_KIND_FUNC_PROTO: {
2277                struct btf_param *cand_p, *canon_p;
2278                __u16 vlen;
2279
2280                if (!btf_compat_fnproto(cand_type, canon_type))
2281                        return 0;
2282                eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2283                if (eq <= 0)
2284                        return eq;
2285                vlen = BTF_INFO_VLEN(cand_type->info);
2286                cand_p = (struct btf_param *)(cand_type + 1);
2287                canon_p = (struct btf_param *)(canon_type + 1);
2288                for (i = 0; i < vlen; i++) {
2289                        eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2290                        if (eq <= 0)
2291                                return eq;
2292                        cand_p++;
2293                        canon_p++;
2294                }
2295                return 1;
2296        }
2297
2298        default:
2299                return -EINVAL;
2300        }
2301        return 0;
2302}
2303
2304/*
2305 * Use hypothetical mapping, produced by successful type graph equivalence
2306 * check, to augment existing struct/union canonical mapping, where possible.
2307 *
2308 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2309 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2310 * it doesn't matter if FWD type was part of canonical graph or candidate one,
2311 * we are recording the mapping anyway. As opposed to carefulness required
2312 * for struct/union correspondence mapping (described below), for FWD resolution
2313 * it's not important, as by the time that FWD type (reference type) will be
2314 * deduplicated all structs/unions will be deduped already anyway.
2315 *
2316 * Recording STRUCT/UNION mapping is purely a performance optimization and is
2317 * not required for correctness. It needs to be done carefully to ensure that
2318 * struct/union from candidate's type graph is not mapped into corresponding
2319 * struct/union from canonical type graph that itself hasn't been resolved into
2320 * canonical representative. The only guarantee we have is that canonical
2321 * struct/union was determined as canonical and that won't change. But any
2322 * types referenced through that struct/union fields could have been not yet
2323 * resolved, so in case like that it's too early to establish any kind of
2324 * correspondence between structs/unions.
2325 *
2326 * No canonical correspondence is derived for primitive types (they are already
2327 * deduplicated completely already anyway) or reference types (they rely on
2328 * stability of struct/union canonical relationship for equivalence checks).
2329 */
2330static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2331{
2332        __u32 cand_type_id, targ_type_id;
2333        __u16 t_kind, c_kind;
2334        __u32 t_id, c_id;
2335        int i;
2336
2337        for (i = 0; i < d->hypot_cnt; i++) {
2338                cand_type_id = d->hypot_list[i];
2339                targ_type_id = d->hypot_map[cand_type_id];
2340                t_id = resolve_type_id(d, targ_type_id);
2341                c_id = resolve_type_id(d, cand_type_id);
2342                t_kind = BTF_INFO_KIND(d->btf->types[t_id]->info);
2343                c_kind = BTF_INFO_KIND(d->btf->types[c_id]->info);
2344                /*
2345                 * Resolve FWD into STRUCT/UNION.
2346                 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2347                 * mapped to canonical representative (as opposed to
2348                 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2349                 * eventually that struct is going to be mapped and all resolved
2350                 * FWDs will automatically resolve to correct canonical
2351                 * representative. This will happen before ref type deduping,
2352                 * which critically depends on stability of these mapping. This
2353                 * stability is not a requirement for STRUCT/UNION equivalence
2354                 * checks, though.
2355                 */
2356                if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2357                        d->map[c_id] = t_id;
2358                else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2359                        d->map[t_id] = c_id;
2360
2361                if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2362                    c_kind != BTF_KIND_FWD &&
2363                    is_type_mapped(d, c_id) &&
2364                    !is_type_mapped(d, t_id)) {
2365                        /*
2366                         * as a perf optimization, we can map struct/union
2367                         * that's part of type graph we just verified for
2368                         * equivalence. We can do that for struct/union that has
2369                         * canonical representative only, though.
2370                         */
2371                        d->map[t_id] = c_id;
2372                }
2373        }
2374}
2375
2376/*
2377 * Deduplicate struct/union types.
2378 *
2379 * For each struct/union type its type signature hash is calculated, taking
2380 * into account type's name, size, number, order and names of fields, but
2381 * ignoring type ID's referenced from fields, because they might not be deduped
2382 * completely until after reference types deduplication phase. This type hash
2383 * is used to iterate over all potential canonical types, sharing same hash.
2384 * For each canonical candidate we check whether type graphs that they form
2385 * (through referenced types in fields and so on) are equivalent using algorithm
2386 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2387 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2388 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2389 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2390 * potentially map other structs/unions to their canonical representatives,
2391 * if such relationship hasn't yet been established. This speeds up algorithm
2392 * by eliminating some of the duplicate work.
2393 *
2394 * If no matching canonical representative was found, struct/union is marked
2395 * as canonical for itself and is added into btf_dedup->dedup_table hash map
2396 * for further look ups.
2397 */
2398static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2399{
2400        struct btf_dedup_node *cand_node;
2401        struct btf_type *cand_type, *t;
2402        /* if we don't find equivalent type, then we are canonical */
2403        __u32 new_id = type_id;
2404        __u16 kind;
2405        __u32 h;
2406
2407        /* already deduped or is in process of deduping (loop detected) */
2408        if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2409                return 0;
2410
2411        t = d->btf->types[type_id];
2412        kind = BTF_INFO_KIND(t->info);
2413
2414        if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2415                return 0;
2416
2417        h = btf_hash_struct(t);
2418        for_each_dedup_cand(d, h, cand_node) {
2419                int eq;
2420
2421                /*
2422                 * Even though btf_dedup_is_equiv() checks for
2423                 * btf_shallow_equal_struct() internally when checking two
2424                 * structs (unions) for equivalence, we need to guard here
2425                 * from picking matching FWD type as a dedup candidate.
2426                 * This can happen due to hash collision. In such case just
2427                 * relying on btf_dedup_is_equiv() would lead to potentially
2428                 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2429                 * FWD and compatible STRUCT/UNION are considered equivalent.
2430                 */
2431                cand_type = d->btf->types[cand_node->type_id];
2432                if (!btf_shallow_equal_struct(t, cand_type))
2433                        continue;
2434
2435                btf_dedup_clear_hypot_map(d);
2436                eq = btf_dedup_is_equiv(d, type_id, cand_node->type_id);
2437                if (eq < 0)
2438                        return eq;
2439                if (!eq)
2440                        continue;
2441                new_id = cand_node->type_id;
2442                btf_dedup_merge_hypot_map(d);
2443                break;
2444        }
2445
2446        d->map[type_id] = new_id;
2447        if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2448                return -ENOMEM;
2449
2450        return 0;
2451}
2452
2453static int btf_dedup_struct_types(struct btf_dedup *d)
2454{
2455        int i, err;
2456
2457        for (i = 1; i <= d->btf->nr_types; i++) {
2458                err = btf_dedup_struct_type(d, i);
2459                if (err)
2460                        return err;
2461        }
2462        return 0;
2463}
2464
2465/*
2466 * Deduplicate reference type.
2467 *
2468 * Once all primitive and struct/union types got deduplicated, we can easily
2469 * deduplicate all other (reference) BTF types. This is done in two steps:
2470 *
2471 * 1. Resolve all referenced type IDs into their canonical type IDs. This
2472 * resolution can be done either immediately for primitive or struct/union types
2473 * (because they were deduped in previous two phases) or recursively for
2474 * reference types. Recursion will always terminate at either primitive or
2475 * struct/union type, at which point we can "unwind" chain of reference types
2476 * one by one. There is no danger of encountering cycles because in C type
2477 * system the only way to form type cycle is through struct/union, so any chain
2478 * of reference types, even those taking part in a type cycle, will inevitably
2479 * reach struct/union at some point.
2480 *
2481 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2482 * becomes "stable", in the sense that no further deduplication will cause
2483 * any changes to it. With that, it's now possible to calculate type's signature
2484 * hash (this time taking into account referenced type IDs) and loop over all
2485 * potential canonical representatives. If no match was found, current type
2486 * will become canonical representative of itself and will be added into
2487 * btf_dedup->dedup_table as another possible canonical representative.
2488 */
2489static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2490{
2491        struct btf_dedup_node *cand_node;
2492        struct btf_type *t, *cand;
2493        /* if we don't find equivalent type, then we are representative type */
2494        __u32 new_id = type_id;
2495        int ref_type_id;
2496        __u32 h;
2497
2498        if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2499                return -ELOOP;
2500        if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2501                return resolve_type_id(d, type_id);
2502
2503        t = d->btf->types[type_id];
2504        d->map[type_id] = BTF_IN_PROGRESS_ID;
2505
2506        switch (BTF_INFO_KIND(t->info)) {
2507        case BTF_KIND_CONST:
2508        case BTF_KIND_VOLATILE:
2509        case BTF_KIND_RESTRICT:
2510        case BTF_KIND_PTR:
2511        case BTF_KIND_TYPEDEF:
2512        case BTF_KIND_FUNC:
2513                ref_type_id = btf_dedup_ref_type(d, t->type);
2514                if (ref_type_id < 0)
2515                        return ref_type_id;
2516                t->type = ref_type_id;
2517
2518                h = btf_hash_common(t);
2519                for_each_dedup_cand(d, h, cand_node) {
2520                        cand = d->btf->types[cand_node->type_id];
2521                        if (btf_equal_common(t, cand)) {
2522                                new_id = cand_node->type_id;
2523                                break;
2524                        }
2525                }
2526                break;
2527
2528        case BTF_KIND_ARRAY: {
2529                struct btf_array *info = (struct btf_array *)(t + 1);
2530
2531                ref_type_id = btf_dedup_ref_type(d, info->type);
2532                if (ref_type_id < 0)
2533                        return ref_type_id;
2534                info->type = ref_type_id;
2535
2536                ref_type_id = btf_dedup_ref_type(d, info->index_type);
2537                if (ref_type_id < 0)
2538                        return ref_type_id;
2539                info->index_type = ref_type_id;
2540
2541                h = btf_hash_array(t);
2542                for_each_dedup_cand(d, h, cand_node) {
2543                        cand = d->btf->types[cand_node->type_id];
2544                        if (btf_equal_array(t, cand)) {
2545                                new_id = cand_node->type_id;
2546                                break;
2547                        }
2548                }
2549                break;
2550        }
2551
2552        case BTF_KIND_FUNC_PROTO: {
2553                struct btf_param *param;
2554                __u16 vlen;
2555                int i;
2556
2557                ref_type_id = btf_dedup_ref_type(d, t->type);
2558                if (ref_type_id < 0)
2559                        return ref_type_id;
2560                t->type = ref_type_id;
2561
2562                vlen = BTF_INFO_VLEN(t->info);
2563                param = (struct btf_param *)(t + 1);
2564                for (i = 0; i < vlen; i++) {
2565                        ref_type_id = btf_dedup_ref_type(d, param->type);
2566                        if (ref_type_id < 0)
2567                                return ref_type_id;
2568                        param->type = ref_type_id;
2569                        param++;
2570                }
2571
2572                h = btf_hash_fnproto(t);
2573                for_each_dedup_cand(d, h, cand_node) {
2574                        cand = d->btf->types[cand_node->type_id];
2575                        if (btf_equal_fnproto(t, cand)) {
2576                                new_id = cand_node->type_id;
2577                                break;
2578                        }
2579                }
2580                break;
2581        }
2582
2583        default:
2584                return -EINVAL;
2585        }
2586
2587        d->map[type_id] = new_id;
2588        if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2589                return -ENOMEM;
2590
2591        return new_id;
2592}
2593
2594static int btf_dedup_ref_types(struct btf_dedup *d)
2595{
2596        int i, err;
2597
2598        for (i = 1; i <= d->btf->nr_types; i++) {
2599                err = btf_dedup_ref_type(d, i);
2600                if (err < 0)
2601                        return err;
2602        }
2603        btf_dedup_table_free(d);
2604        return 0;
2605}
2606
2607/*
2608 * Compact types.
2609 *
2610 * After we established for each type its corresponding canonical representative
2611 * type, we now can eliminate types that are not canonical and leave only
2612 * canonical ones layed out sequentially in memory by copying them over
2613 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2614 * a map from original type ID to a new compacted type ID, which will be used
2615 * during next phase to "fix up" type IDs, referenced from struct/union and
2616 * reference types.
2617 */
2618static int btf_dedup_compact_types(struct btf_dedup *d)
2619{
2620        struct btf_type **new_types;
2621        __u32 next_type_id = 1;
2622        char *types_start, *p;
2623        int i, len;
2624
2625        /* we are going to reuse hypot_map to store compaction remapping */
2626        d->hypot_map[0] = 0;
2627        for (i = 1; i <= d->btf->nr_types; i++)
2628                d->hypot_map[i] = BTF_UNPROCESSED_ID;
2629
2630        types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2631        p = types_start;
2632
2633        for (i = 1; i <= d->btf->nr_types; i++) {
2634                if (d->map[i] != i)
2635                        continue;
2636
2637                len = btf_type_size(d->btf->types[i]);
2638                if (len < 0)
2639                        return len;
2640
2641                memmove(p, d->btf->types[i], len);
2642                d->hypot_map[i] = next_type_id;
2643                d->btf->types[next_type_id] = (struct btf_type *)p;
2644                p += len;
2645                next_type_id++;
2646        }
2647
2648        /* shrink struct btf's internal types index and update btf_header */
2649        d->btf->nr_types = next_type_id - 1;
2650        d->btf->types_size = d->btf->nr_types;
2651        d->btf->hdr->type_len = p - types_start;
2652        new_types = realloc(d->btf->types,
2653                            (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2654        if (!new_types)
2655                return -ENOMEM;
2656        d->btf->types = new_types;
2657
2658        /* make sure string section follows type information without gaps */
2659        d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2660        memmove(p, d->btf->strings, d->btf->hdr->str_len);
2661        d->btf->strings = p;
2662        p += d->btf->hdr->str_len;
2663
2664        d->btf->data_size = p - (char *)d->btf->data;
2665        return 0;
2666}
2667
2668/*
2669 * Figure out final (deduplicated and compacted) type ID for provided original
2670 * `type_id` by first resolving it into corresponding canonical type ID and
2671 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2672 * which is populated during compaction phase.
2673 */
2674static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2675{
2676        __u32 resolved_type_id, new_type_id;
2677
2678        resolved_type_id = resolve_type_id(d, type_id);
2679        new_type_id = d->hypot_map[resolved_type_id];
2680        if (new_type_id > BTF_MAX_NR_TYPES)
2681                return -EINVAL;
2682        return new_type_id;
2683}
2684
2685/*
2686 * Remap referenced type IDs into deduped type IDs.
2687 *
2688 * After BTF types are deduplicated and compacted, their final type IDs may
2689 * differ from original ones. The map from original to a corresponding
2690 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2691 * compaction phase. During remapping phase we are rewriting all type IDs
2692 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2693 * their final deduped type IDs.
2694 */
2695static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2696{
2697        struct btf_type *t = d->btf->types[type_id];
2698        int i, r;
2699
2700        switch (BTF_INFO_KIND(t->info)) {
2701        case BTF_KIND_INT:
2702        case BTF_KIND_ENUM:
2703                break;
2704
2705        case BTF_KIND_FWD:
2706        case BTF_KIND_CONST:
2707        case BTF_KIND_VOLATILE:
2708        case BTF_KIND_RESTRICT:
2709        case BTF_KIND_PTR:
2710        case BTF_KIND_TYPEDEF:
2711        case BTF_KIND_FUNC:
2712        case BTF_KIND_VAR:
2713                r = btf_dedup_remap_type_id(d, t->type);
2714                if (r < 0)
2715                        return r;
2716                t->type = r;
2717                break;
2718
2719        case BTF_KIND_ARRAY: {
2720                struct btf_array *arr_info = (struct btf_array *)(t + 1);
2721
2722                r = btf_dedup_remap_type_id(d, arr_info->type);
2723                if (r < 0)
2724                        return r;
2725                arr_info->type = r;
2726                r = btf_dedup_remap_type_id(d, arr_info->index_type);
2727                if (r < 0)
2728                        return r;
2729                arr_info->index_type = r;
2730                break;
2731        }
2732
2733        case BTF_KIND_STRUCT:
2734        case BTF_KIND_UNION: {
2735                struct btf_member *member = (struct btf_member *)(t + 1);
2736                __u16 vlen = BTF_INFO_VLEN(t->info);
2737
2738                for (i = 0; i < vlen; i++) {
2739                        r = btf_dedup_remap_type_id(d, member->type);
2740                        if (r < 0)
2741                                return r;
2742                        member->type = r;
2743                        member++;
2744                }
2745                break;
2746        }
2747
2748        case BTF_KIND_FUNC_PROTO: {
2749                struct btf_param *param = (struct btf_param *)(t + 1);
2750                __u16 vlen = BTF_INFO_VLEN(t->info);
2751
2752                r = btf_dedup_remap_type_id(d, t->type);
2753                if (r < 0)
2754                        return r;
2755                t->type = r;
2756
2757                for (i = 0; i < vlen; i++) {
2758                        r = btf_dedup_remap_type_id(d, param->type);
2759                        if (r < 0)
2760                                return r;
2761                        param->type = r;
2762                        param++;
2763                }
2764                break;
2765        }
2766
2767        case BTF_KIND_DATASEC: {
2768                struct btf_var_secinfo *var = (struct btf_var_secinfo *)(t + 1);
2769                __u16 vlen = BTF_INFO_VLEN(t->info);
2770
2771                for (i = 0; i < vlen; i++) {
2772                        r = btf_dedup_remap_type_id(d, var->type);
2773                        if (r < 0)
2774                                return r;
2775                        var->type = r;
2776                        var++;
2777                }
2778                break;
2779        }
2780
2781        default:
2782                return -EINVAL;
2783        }
2784
2785        return 0;
2786}
2787
2788static int btf_dedup_remap_types(struct btf_dedup *d)
2789{
2790        int i, r;
2791
2792        for (i = 1; i <= d->btf->nr_types; i++) {
2793                r = btf_dedup_remap_type(d, i);
2794                if (r < 0)
2795                        return r;
2796        }
2797        return 0;
2798}
2799