linux/tools/perf/builtin-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4
   5#include "util/util.h"
   6#include "util/evlist.h"
   7#include "util/cache.h"
   8#include "util/evsel.h"
   9#include "util/symbol.h"
  10#include "util/thread.h"
  11#include "util/header.h"
  12#include "util/session.h"
  13#include "util/tool.h"
  14#include "util/cloexec.h"
  15#include "util/thread_map.h"
  16#include "util/color.h"
  17#include "util/stat.h"
  18#include "util/callchain.h"
  19#include "util/time-utils.h"
  20
  21#include <subcmd/parse-options.h>
  22#include "util/trace-event.h"
  23
  24#include "util/debug.h"
  25
  26#include <linux/kernel.h>
  27#include <linux/log2.h>
  28#include <sys/prctl.h>
  29#include <sys/resource.h>
  30#include <inttypes.h>
  31
  32#include <errno.h>
  33#include <semaphore.h>
  34#include <pthread.h>
  35#include <math.h>
  36#include <api/fs/fs.h>
  37#include <linux/time64.h>
  38
  39#include "sane_ctype.h"
  40
  41#define PR_SET_NAME             15               /* Set process name */
  42#define MAX_CPUS                4096
  43#define COMM_LEN                20
  44#define SYM_LEN                 129
  45#define MAX_PID                 1024000
  46
  47struct sched_atom;
  48
  49struct task_desc {
  50        unsigned long           nr;
  51        unsigned long           pid;
  52        char                    comm[COMM_LEN];
  53
  54        unsigned long           nr_events;
  55        unsigned long           curr_event;
  56        struct sched_atom       **atoms;
  57
  58        pthread_t               thread;
  59        sem_t                   sleep_sem;
  60
  61        sem_t                   ready_for_work;
  62        sem_t                   work_done_sem;
  63
  64        u64                     cpu_usage;
  65};
  66
  67enum sched_event_type {
  68        SCHED_EVENT_RUN,
  69        SCHED_EVENT_SLEEP,
  70        SCHED_EVENT_WAKEUP,
  71        SCHED_EVENT_MIGRATION,
  72};
  73
  74struct sched_atom {
  75        enum sched_event_type   type;
  76        int                     specific_wait;
  77        u64                     timestamp;
  78        u64                     duration;
  79        unsigned long           nr;
  80        sem_t                   *wait_sem;
  81        struct task_desc        *wakee;
  82};
  83
  84#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  85
  86/* task state bitmask, copied from include/linux/sched.h */
  87#define TASK_RUNNING            0
  88#define TASK_INTERRUPTIBLE      1
  89#define TASK_UNINTERRUPTIBLE    2
  90#define __TASK_STOPPED          4
  91#define __TASK_TRACED           8
  92/* in tsk->exit_state */
  93#define EXIT_DEAD               16
  94#define EXIT_ZOMBIE             32
  95#define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
  96/* in tsk->state again */
  97#define TASK_DEAD               64
  98#define TASK_WAKEKILL           128
  99#define TASK_WAKING             256
 100#define TASK_PARKED             512
 101
 102enum thread_state {
 103        THREAD_SLEEPING = 0,
 104        THREAD_WAIT_CPU,
 105        THREAD_SCHED_IN,
 106        THREAD_IGNORE
 107};
 108
 109struct work_atom {
 110        struct list_head        list;
 111        enum thread_state       state;
 112        u64                     sched_out_time;
 113        u64                     wake_up_time;
 114        u64                     sched_in_time;
 115        u64                     runtime;
 116};
 117
 118struct work_atoms {
 119        struct list_head        work_list;
 120        struct thread           *thread;
 121        struct rb_node          node;
 122        u64                     max_lat;
 123        u64                     max_lat_at;
 124        u64                     total_lat;
 125        u64                     nb_atoms;
 126        u64                     total_runtime;
 127        int                     num_merged;
 128};
 129
 130typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 131
 132struct perf_sched;
 133
 134struct trace_sched_handler {
 135        int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 136                            struct perf_sample *sample, struct machine *machine);
 137
 138        int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 139                             struct perf_sample *sample, struct machine *machine);
 140
 141        int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 142                            struct perf_sample *sample, struct machine *machine);
 143
 144        /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 145        int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 146                          struct machine *machine);
 147
 148        int (*migrate_task_event)(struct perf_sched *sched,
 149                                  struct perf_evsel *evsel,
 150                                  struct perf_sample *sample,
 151                                  struct machine *machine);
 152};
 153
 154#define COLOR_PIDS PERF_COLOR_BLUE
 155#define COLOR_CPUS PERF_COLOR_BG_RED
 156
 157struct perf_sched_map {
 158        DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 159        int                     *comp_cpus;
 160        bool                     comp;
 161        struct thread_map       *color_pids;
 162        const char              *color_pids_str;
 163        struct cpu_map          *color_cpus;
 164        const char              *color_cpus_str;
 165        struct cpu_map          *cpus;
 166        const char              *cpus_str;
 167};
 168
 169struct perf_sched {
 170        struct perf_tool tool;
 171        const char       *sort_order;
 172        unsigned long    nr_tasks;
 173        struct task_desc **pid_to_task;
 174        struct task_desc **tasks;
 175        const struct trace_sched_handler *tp_handler;
 176        pthread_mutex_t  start_work_mutex;
 177        pthread_mutex_t  work_done_wait_mutex;
 178        int              profile_cpu;
 179/*
 180 * Track the current task - that way we can know whether there's any
 181 * weird events, such as a task being switched away that is not current.
 182 */
 183        int              max_cpu;
 184        u32              curr_pid[MAX_CPUS];
 185        struct thread    *curr_thread[MAX_CPUS];
 186        char             next_shortname1;
 187        char             next_shortname2;
 188        unsigned int     replay_repeat;
 189        unsigned long    nr_run_events;
 190        unsigned long    nr_sleep_events;
 191        unsigned long    nr_wakeup_events;
 192        unsigned long    nr_sleep_corrections;
 193        unsigned long    nr_run_events_optimized;
 194        unsigned long    targetless_wakeups;
 195        unsigned long    multitarget_wakeups;
 196        unsigned long    nr_runs;
 197        unsigned long    nr_timestamps;
 198        unsigned long    nr_unordered_timestamps;
 199        unsigned long    nr_context_switch_bugs;
 200        unsigned long    nr_events;
 201        unsigned long    nr_lost_chunks;
 202        unsigned long    nr_lost_events;
 203        u64              run_measurement_overhead;
 204        u64              sleep_measurement_overhead;
 205        u64              start_time;
 206        u64              cpu_usage;
 207        u64              runavg_cpu_usage;
 208        u64              parent_cpu_usage;
 209        u64              runavg_parent_cpu_usage;
 210        u64              sum_runtime;
 211        u64              sum_fluct;
 212        u64              run_avg;
 213        u64              all_runtime;
 214        u64              all_count;
 215        u64              cpu_last_switched[MAX_CPUS];
 216        struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 217        struct list_head sort_list, cmp_pid;
 218        bool force;
 219        bool skip_merge;
 220        struct perf_sched_map map;
 221
 222        /* options for timehist command */
 223        bool            summary;
 224        bool            summary_only;
 225        bool            idle_hist;
 226        bool            show_callchain;
 227        unsigned int    max_stack;
 228        bool            show_cpu_visual;
 229        bool            show_wakeups;
 230        bool            show_next;
 231        bool            show_migrations;
 232        bool            show_state;
 233        u64             skipped_samples;
 234        const char      *time_str;
 235        struct perf_time_interval ptime;
 236        struct perf_time_interval hist_time;
 237};
 238
 239/* per thread run time data */
 240struct thread_runtime {
 241        u64 last_time;      /* time of previous sched in/out event */
 242        u64 dt_run;         /* run time */
 243        u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 244        u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 245        u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 246        u64 dt_delay;       /* time between wakeup and sched-in */
 247        u64 ready_to_run;   /* time of wakeup */
 248
 249        struct stats run_stats;
 250        u64 total_run_time;
 251        u64 total_sleep_time;
 252        u64 total_iowait_time;
 253        u64 total_preempt_time;
 254        u64 total_delay_time;
 255
 256        int last_state;
 257
 258        char shortname[3];
 259        bool comm_changed;
 260
 261        u64 migrations;
 262};
 263
 264/* per event run time data */
 265struct evsel_runtime {
 266        u64 *last_time; /* time this event was last seen per cpu */
 267        u32 ncpu;       /* highest cpu slot allocated */
 268};
 269
 270/* per cpu idle time data */
 271struct idle_thread_runtime {
 272        struct thread_runtime   tr;
 273        struct thread           *last_thread;
 274        struct rb_root_cached   sorted_root;
 275        struct callchain_root   callchain;
 276        struct callchain_cursor cursor;
 277};
 278
 279/* track idle times per cpu */
 280static struct thread **idle_threads;
 281static int idle_max_cpu;
 282static char idle_comm[] = "<idle>";
 283
 284static u64 get_nsecs(void)
 285{
 286        struct timespec ts;
 287
 288        clock_gettime(CLOCK_MONOTONIC, &ts);
 289
 290        return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 291}
 292
 293static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 294{
 295        u64 T0 = get_nsecs(), T1;
 296
 297        do {
 298                T1 = get_nsecs();
 299        } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 300}
 301
 302static void sleep_nsecs(u64 nsecs)
 303{
 304        struct timespec ts;
 305
 306        ts.tv_nsec = nsecs % 999999999;
 307        ts.tv_sec = nsecs / 999999999;
 308
 309        nanosleep(&ts, NULL);
 310}
 311
 312static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 313{
 314        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 315        int i;
 316
 317        for (i = 0; i < 10; i++) {
 318                T0 = get_nsecs();
 319                burn_nsecs(sched, 0);
 320                T1 = get_nsecs();
 321                delta = T1-T0;
 322                min_delta = min(min_delta, delta);
 323        }
 324        sched->run_measurement_overhead = min_delta;
 325
 326        printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 327}
 328
 329static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 330{
 331        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 332        int i;
 333
 334        for (i = 0; i < 10; i++) {
 335                T0 = get_nsecs();
 336                sleep_nsecs(10000);
 337                T1 = get_nsecs();
 338                delta = T1-T0;
 339                min_delta = min(min_delta, delta);
 340        }
 341        min_delta -= 10000;
 342        sched->sleep_measurement_overhead = min_delta;
 343
 344        printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 345}
 346
 347static struct sched_atom *
 348get_new_event(struct task_desc *task, u64 timestamp)
 349{
 350        struct sched_atom *event = zalloc(sizeof(*event));
 351        unsigned long idx = task->nr_events;
 352        size_t size;
 353
 354        event->timestamp = timestamp;
 355        event->nr = idx;
 356
 357        task->nr_events++;
 358        size = sizeof(struct sched_atom *) * task->nr_events;
 359        task->atoms = realloc(task->atoms, size);
 360        BUG_ON(!task->atoms);
 361
 362        task->atoms[idx] = event;
 363
 364        return event;
 365}
 366
 367static struct sched_atom *last_event(struct task_desc *task)
 368{
 369        if (!task->nr_events)
 370                return NULL;
 371
 372        return task->atoms[task->nr_events - 1];
 373}
 374
 375static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 376                                u64 timestamp, u64 duration)
 377{
 378        struct sched_atom *event, *curr_event = last_event(task);
 379
 380        /*
 381         * optimize an existing RUN event by merging this one
 382         * to it:
 383         */
 384        if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 385                sched->nr_run_events_optimized++;
 386                curr_event->duration += duration;
 387                return;
 388        }
 389
 390        event = get_new_event(task, timestamp);
 391
 392        event->type = SCHED_EVENT_RUN;
 393        event->duration = duration;
 394
 395        sched->nr_run_events++;
 396}
 397
 398static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 399                                   u64 timestamp, struct task_desc *wakee)
 400{
 401        struct sched_atom *event, *wakee_event;
 402
 403        event = get_new_event(task, timestamp);
 404        event->type = SCHED_EVENT_WAKEUP;
 405        event->wakee = wakee;
 406
 407        wakee_event = last_event(wakee);
 408        if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 409                sched->targetless_wakeups++;
 410                return;
 411        }
 412        if (wakee_event->wait_sem) {
 413                sched->multitarget_wakeups++;
 414                return;
 415        }
 416
 417        wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 418        sem_init(wakee_event->wait_sem, 0, 0);
 419        wakee_event->specific_wait = 1;
 420        event->wait_sem = wakee_event->wait_sem;
 421
 422        sched->nr_wakeup_events++;
 423}
 424
 425static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 426                                  u64 timestamp, u64 task_state __maybe_unused)
 427{
 428        struct sched_atom *event = get_new_event(task, timestamp);
 429
 430        event->type = SCHED_EVENT_SLEEP;
 431
 432        sched->nr_sleep_events++;
 433}
 434
 435static struct task_desc *register_pid(struct perf_sched *sched,
 436                                      unsigned long pid, const char *comm)
 437{
 438        struct task_desc *task;
 439        static int pid_max;
 440
 441        if (sched->pid_to_task == NULL) {
 442                if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 443                        pid_max = MAX_PID;
 444                BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 445        }
 446        if (pid >= (unsigned long)pid_max) {
 447                BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 448                        sizeof(struct task_desc *))) == NULL);
 449                while (pid >= (unsigned long)pid_max)
 450                        sched->pid_to_task[pid_max++] = NULL;
 451        }
 452
 453        task = sched->pid_to_task[pid];
 454
 455        if (task)
 456                return task;
 457
 458        task = zalloc(sizeof(*task));
 459        task->pid = pid;
 460        task->nr = sched->nr_tasks;
 461        strcpy(task->comm, comm);
 462        /*
 463         * every task starts in sleeping state - this gets ignored
 464         * if there's no wakeup pointing to this sleep state:
 465         */
 466        add_sched_event_sleep(sched, task, 0, 0);
 467
 468        sched->pid_to_task[pid] = task;
 469        sched->nr_tasks++;
 470        sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 471        BUG_ON(!sched->tasks);
 472        sched->tasks[task->nr] = task;
 473
 474        if (verbose > 0)
 475                printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 476
 477        return task;
 478}
 479
 480
 481static void print_task_traces(struct perf_sched *sched)
 482{
 483        struct task_desc *task;
 484        unsigned long i;
 485
 486        for (i = 0; i < sched->nr_tasks; i++) {
 487                task = sched->tasks[i];
 488                printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 489                        task->nr, task->comm, task->pid, task->nr_events);
 490        }
 491}
 492
 493static void add_cross_task_wakeups(struct perf_sched *sched)
 494{
 495        struct task_desc *task1, *task2;
 496        unsigned long i, j;
 497
 498        for (i = 0; i < sched->nr_tasks; i++) {
 499                task1 = sched->tasks[i];
 500                j = i + 1;
 501                if (j == sched->nr_tasks)
 502                        j = 0;
 503                task2 = sched->tasks[j];
 504                add_sched_event_wakeup(sched, task1, 0, task2);
 505        }
 506}
 507
 508static void perf_sched__process_event(struct perf_sched *sched,
 509                                      struct sched_atom *atom)
 510{
 511        int ret = 0;
 512
 513        switch (atom->type) {
 514                case SCHED_EVENT_RUN:
 515                        burn_nsecs(sched, atom->duration);
 516                        break;
 517                case SCHED_EVENT_SLEEP:
 518                        if (atom->wait_sem)
 519                                ret = sem_wait(atom->wait_sem);
 520                        BUG_ON(ret);
 521                        break;
 522                case SCHED_EVENT_WAKEUP:
 523                        if (atom->wait_sem)
 524                                ret = sem_post(atom->wait_sem);
 525                        BUG_ON(ret);
 526                        break;
 527                case SCHED_EVENT_MIGRATION:
 528                        break;
 529                default:
 530                        BUG_ON(1);
 531        }
 532}
 533
 534static u64 get_cpu_usage_nsec_parent(void)
 535{
 536        struct rusage ru;
 537        u64 sum;
 538        int err;
 539
 540        err = getrusage(RUSAGE_SELF, &ru);
 541        BUG_ON(err);
 542
 543        sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 544        sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 545
 546        return sum;
 547}
 548
 549static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 550{
 551        struct perf_event_attr attr;
 552        char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 553        int fd;
 554        struct rlimit limit;
 555        bool need_privilege = false;
 556
 557        memset(&attr, 0, sizeof(attr));
 558
 559        attr.type = PERF_TYPE_SOFTWARE;
 560        attr.config = PERF_COUNT_SW_TASK_CLOCK;
 561
 562force_again:
 563        fd = sys_perf_event_open(&attr, 0, -1, -1,
 564                                 perf_event_open_cloexec_flag());
 565
 566        if (fd < 0) {
 567                if (errno == EMFILE) {
 568                        if (sched->force) {
 569                                BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 570                                limit.rlim_cur += sched->nr_tasks - cur_task;
 571                                if (limit.rlim_cur > limit.rlim_max) {
 572                                        limit.rlim_max = limit.rlim_cur;
 573                                        need_privilege = true;
 574                                }
 575                                if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 576                                        if (need_privilege && errno == EPERM)
 577                                                strcpy(info, "Need privilege\n");
 578                                } else
 579                                        goto force_again;
 580                        } else
 581                                strcpy(info, "Have a try with -f option\n");
 582                }
 583                pr_err("Error: sys_perf_event_open() syscall returned "
 584                       "with %d (%s)\n%s", fd,
 585                       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 586                exit(EXIT_FAILURE);
 587        }
 588        return fd;
 589}
 590
 591static u64 get_cpu_usage_nsec_self(int fd)
 592{
 593        u64 runtime;
 594        int ret;
 595
 596        ret = read(fd, &runtime, sizeof(runtime));
 597        BUG_ON(ret != sizeof(runtime));
 598
 599        return runtime;
 600}
 601
 602struct sched_thread_parms {
 603        struct task_desc  *task;
 604        struct perf_sched *sched;
 605        int fd;
 606};
 607
 608static void *thread_func(void *ctx)
 609{
 610        struct sched_thread_parms *parms = ctx;
 611        struct task_desc *this_task = parms->task;
 612        struct perf_sched *sched = parms->sched;
 613        u64 cpu_usage_0, cpu_usage_1;
 614        unsigned long i, ret;
 615        char comm2[22];
 616        int fd = parms->fd;
 617
 618        zfree(&parms);
 619
 620        sprintf(comm2, ":%s", this_task->comm);
 621        prctl(PR_SET_NAME, comm2);
 622        if (fd < 0)
 623                return NULL;
 624again:
 625        ret = sem_post(&this_task->ready_for_work);
 626        BUG_ON(ret);
 627        ret = pthread_mutex_lock(&sched->start_work_mutex);
 628        BUG_ON(ret);
 629        ret = pthread_mutex_unlock(&sched->start_work_mutex);
 630        BUG_ON(ret);
 631
 632        cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 633
 634        for (i = 0; i < this_task->nr_events; i++) {
 635                this_task->curr_event = i;
 636                perf_sched__process_event(sched, this_task->atoms[i]);
 637        }
 638
 639        cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 640        this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 641        ret = sem_post(&this_task->work_done_sem);
 642        BUG_ON(ret);
 643
 644        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 645        BUG_ON(ret);
 646        ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 647        BUG_ON(ret);
 648
 649        goto again;
 650}
 651
 652static void create_tasks(struct perf_sched *sched)
 653{
 654        struct task_desc *task;
 655        pthread_attr_t attr;
 656        unsigned long i;
 657        int err;
 658
 659        err = pthread_attr_init(&attr);
 660        BUG_ON(err);
 661        err = pthread_attr_setstacksize(&attr,
 662                        (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 663        BUG_ON(err);
 664        err = pthread_mutex_lock(&sched->start_work_mutex);
 665        BUG_ON(err);
 666        err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 667        BUG_ON(err);
 668        for (i = 0; i < sched->nr_tasks; i++) {
 669                struct sched_thread_parms *parms = malloc(sizeof(*parms));
 670                BUG_ON(parms == NULL);
 671                parms->task = task = sched->tasks[i];
 672                parms->sched = sched;
 673                parms->fd = self_open_counters(sched, i);
 674                sem_init(&task->sleep_sem, 0, 0);
 675                sem_init(&task->ready_for_work, 0, 0);
 676                sem_init(&task->work_done_sem, 0, 0);
 677                task->curr_event = 0;
 678                err = pthread_create(&task->thread, &attr, thread_func, parms);
 679                BUG_ON(err);
 680        }
 681}
 682
 683static void wait_for_tasks(struct perf_sched *sched)
 684{
 685        u64 cpu_usage_0, cpu_usage_1;
 686        struct task_desc *task;
 687        unsigned long i, ret;
 688
 689        sched->start_time = get_nsecs();
 690        sched->cpu_usage = 0;
 691        pthread_mutex_unlock(&sched->work_done_wait_mutex);
 692
 693        for (i = 0; i < sched->nr_tasks; i++) {
 694                task = sched->tasks[i];
 695                ret = sem_wait(&task->ready_for_work);
 696                BUG_ON(ret);
 697                sem_init(&task->ready_for_work, 0, 0);
 698        }
 699        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 700        BUG_ON(ret);
 701
 702        cpu_usage_0 = get_cpu_usage_nsec_parent();
 703
 704        pthread_mutex_unlock(&sched->start_work_mutex);
 705
 706        for (i = 0; i < sched->nr_tasks; i++) {
 707                task = sched->tasks[i];
 708                ret = sem_wait(&task->work_done_sem);
 709                BUG_ON(ret);
 710                sem_init(&task->work_done_sem, 0, 0);
 711                sched->cpu_usage += task->cpu_usage;
 712                task->cpu_usage = 0;
 713        }
 714
 715        cpu_usage_1 = get_cpu_usage_nsec_parent();
 716        if (!sched->runavg_cpu_usage)
 717                sched->runavg_cpu_usage = sched->cpu_usage;
 718        sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 719
 720        sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 721        if (!sched->runavg_parent_cpu_usage)
 722                sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 723        sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 724                                         sched->parent_cpu_usage)/sched->replay_repeat;
 725
 726        ret = pthread_mutex_lock(&sched->start_work_mutex);
 727        BUG_ON(ret);
 728
 729        for (i = 0; i < sched->nr_tasks; i++) {
 730                task = sched->tasks[i];
 731                sem_init(&task->sleep_sem, 0, 0);
 732                task->curr_event = 0;
 733        }
 734}
 735
 736static void run_one_test(struct perf_sched *sched)
 737{
 738        u64 T0, T1, delta, avg_delta, fluct;
 739
 740        T0 = get_nsecs();
 741        wait_for_tasks(sched);
 742        T1 = get_nsecs();
 743
 744        delta = T1 - T0;
 745        sched->sum_runtime += delta;
 746        sched->nr_runs++;
 747
 748        avg_delta = sched->sum_runtime / sched->nr_runs;
 749        if (delta < avg_delta)
 750                fluct = avg_delta - delta;
 751        else
 752                fluct = delta - avg_delta;
 753        sched->sum_fluct += fluct;
 754        if (!sched->run_avg)
 755                sched->run_avg = delta;
 756        sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 757
 758        printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 759
 760        printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 761
 762        printf("cpu: %0.2f / %0.2f",
 763                (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 764
 765#if 0
 766        /*
 767         * rusage statistics done by the parent, these are less
 768         * accurate than the sched->sum_exec_runtime based statistics:
 769         */
 770        printf(" [%0.2f / %0.2f]",
 771                (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 772                (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 773#endif
 774
 775        printf("\n");
 776
 777        if (sched->nr_sleep_corrections)
 778                printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 779        sched->nr_sleep_corrections = 0;
 780}
 781
 782static void test_calibrations(struct perf_sched *sched)
 783{
 784        u64 T0, T1;
 785
 786        T0 = get_nsecs();
 787        burn_nsecs(sched, NSEC_PER_MSEC);
 788        T1 = get_nsecs();
 789
 790        printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 791
 792        T0 = get_nsecs();
 793        sleep_nsecs(NSEC_PER_MSEC);
 794        T1 = get_nsecs();
 795
 796        printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 797}
 798
 799static int
 800replay_wakeup_event(struct perf_sched *sched,
 801                    struct perf_evsel *evsel, struct perf_sample *sample,
 802                    struct machine *machine __maybe_unused)
 803{
 804        const char *comm = perf_evsel__strval(evsel, sample, "comm");
 805        const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
 806        struct task_desc *waker, *wakee;
 807
 808        if (verbose > 0) {
 809                printf("sched_wakeup event %p\n", evsel);
 810
 811                printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 812        }
 813
 814        waker = register_pid(sched, sample->tid, "<unknown>");
 815        wakee = register_pid(sched, pid, comm);
 816
 817        add_sched_event_wakeup(sched, waker, sample->time, wakee);
 818        return 0;
 819}
 820
 821static int replay_switch_event(struct perf_sched *sched,
 822                               struct perf_evsel *evsel,
 823                               struct perf_sample *sample,
 824                               struct machine *machine __maybe_unused)
 825{
 826        const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 827                   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 828        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 829                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 830        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 831        struct task_desc *prev, __maybe_unused *next;
 832        u64 timestamp0, timestamp = sample->time;
 833        int cpu = sample->cpu;
 834        s64 delta;
 835
 836        if (verbose > 0)
 837                printf("sched_switch event %p\n", evsel);
 838
 839        if (cpu >= MAX_CPUS || cpu < 0)
 840                return 0;
 841
 842        timestamp0 = sched->cpu_last_switched[cpu];
 843        if (timestamp0)
 844                delta = timestamp - timestamp0;
 845        else
 846                delta = 0;
 847
 848        if (delta < 0) {
 849                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 850                return -1;
 851        }
 852
 853        pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 854                 prev_comm, prev_pid, next_comm, next_pid, delta);
 855
 856        prev = register_pid(sched, prev_pid, prev_comm);
 857        next = register_pid(sched, next_pid, next_comm);
 858
 859        sched->cpu_last_switched[cpu] = timestamp;
 860
 861        add_sched_event_run(sched, prev, timestamp, delta);
 862        add_sched_event_sleep(sched, prev, timestamp, prev_state);
 863
 864        return 0;
 865}
 866
 867static int replay_fork_event(struct perf_sched *sched,
 868                             union perf_event *event,
 869                             struct machine *machine)
 870{
 871        struct thread *child, *parent;
 872
 873        child = machine__findnew_thread(machine, event->fork.pid,
 874                                        event->fork.tid);
 875        parent = machine__findnew_thread(machine, event->fork.ppid,
 876                                         event->fork.ptid);
 877
 878        if (child == NULL || parent == NULL) {
 879                pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 880                                 child, parent);
 881                goto out_put;
 882        }
 883
 884        if (verbose > 0) {
 885                printf("fork event\n");
 886                printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 887                printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 888        }
 889
 890        register_pid(sched, parent->tid, thread__comm_str(parent));
 891        register_pid(sched, child->tid, thread__comm_str(child));
 892out_put:
 893        thread__put(child);
 894        thread__put(parent);
 895        return 0;
 896}
 897
 898struct sort_dimension {
 899        const char              *name;
 900        sort_fn_t               cmp;
 901        struct list_head        list;
 902};
 903
 904/*
 905 * handle runtime stats saved per thread
 906 */
 907static struct thread_runtime *thread__init_runtime(struct thread *thread)
 908{
 909        struct thread_runtime *r;
 910
 911        r = zalloc(sizeof(struct thread_runtime));
 912        if (!r)
 913                return NULL;
 914
 915        init_stats(&r->run_stats);
 916        thread__set_priv(thread, r);
 917
 918        return r;
 919}
 920
 921static struct thread_runtime *thread__get_runtime(struct thread *thread)
 922{
 923        struct thread_runtime *tr;
 924
 925        tr = thread__priv(thread);
 926        if (tr == NULL) {
 927                tr = thread__init_runtime(thread);
 928                if (tr == NULL)
 929                        pr_debug("Failed to malloc memory for runtime data.\n");
 930        }
 931
 932        return tr;
 933}
 934
 935static int
 936thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 937{
 938        struct sort_dimension *sort;
 939        int ret = 0;
 940
 941        BUG_ON(list_empty(list));
 942
 943        list_for_each_entry(sort, list, list) {
 944                ret = sort->cmp(l, r);
 945                if (ret)
 946                        return ret;
 947        }
 948
 949        return ret;
 950}
 951
 952static struct work_atoms *
 953thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 954                         struct list_head *sort_list)
 955{
 956        struct rb_node *node = root->rb_root.rb_node;
 957        struct work_atoms key = { .thread = thread };
 958
 959        while (node) {
 960                struct work_atoms *atoms;
 961                int cmp;
 962
 963                atoms = container_of(node, struct work_atoms, node);
 964
 965                cmp = thread_lat_cmp(sort_list, &key, atoms);
 966                if (cmp > 0)
 967                        node = node->rb_left;
 968                else if (cmp < 0)
 969                        node = node->rb_right;
 970                else {
 971                        BUG_ON(thread != atoms->thread);
 972                        return atoms;
 973                }
 974        }
 975        return NULL;
 976}
 977
 978static void
 979__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 980                         struct list_head *sort_list)
 981{
 982        struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 983        bool leftmost = true;
 984
 985        while (*new) {
 986                struct work_atoms *this;
 987                int cmp;
 988
 989                this = container_of(*new, struct work_atoms, node);
 990                parent = *new;
 991
 992                cmp = thread_lat_cmp(sort_list, data, this);
 993
 994                if (cmp > 0)
 995                        new = &((*new)->rb_left);
 996                else {
 997                        new = &((*new)->rb_right);
 998                        leftmost = false;
 999                }
1000        }
1001
1002        rb_link_node(&data->node, parent, new);
1003        rb_insert_color_cached(&data->node, root, leftmost);
1004}
1005
1006static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1007{
1008        struct work_atoms *atoms = zalloc(sizeof(*atoms));
1009        if (!atoms) {
1010                pr_err("No memory at %s\n", __func__);
1011                return -1;
1012        }
1013
1014        atoms->thread = thread__get(thread);
1015        INIT_LIST_HEAD(&atoms->work_list);
1016        __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1017        return 0;
1018}
1019
1020static char sched_out_state(u64 prev_state)
1021{
1022        const char *str = TASK_STATE_TO_CHAR_STR;
1023
1024        return str[prev_state];
1025}
1026
1027static int
1028add_sched_out_event(struct work_atoms *atoms,
1029                    char run_state,
1030                    u64 timestamp)
1031{
1032        struct work_atom *atom = zalloc(sizeof(*atom));
1033        if (!atom) {
1034                pr_err("Non memory at %s", __func__);
1035                return -1;
1036        }
1037
1038        atom->sched_out_time = timestamp;
1039
1040        if (run_state == 'R') {
1041                atom->state = THREAD_WAIT_CPU;
1042                atom->wake_up_time = atom->sched_out_time;
1043        }
1044
1045        list_add_tail(&atom->list, &atoms->work_list);
1046        return 0;
1047}
1048
1049static void
1050add_runtime_event(struct work_atoms *atoms, u64 delta,
1051                  u64 timestamp __maybe_unused)
1052{
1053        struct work_atom *atom;
1054
1055        BUG_ON(list_empty(&atoms->work_list));
1056
1057        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1058
1059        atom->runtime += delta;
1060        atoms->total_runtime += delta;
1061}
1062
1063static void
1064add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1065{
1066        struct work_atom *atom;
1067        u64 delta;
1068
1069        if (list_empty(&atoms->work_list))
1070                return;
1071
1072        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1073
1074        if (atom->state != THREAD_WAIT_CPU)
1075                return;
1076
1077        if (timestamp < atom->wake_up_time) {
1078                atom->state = THREAD_IGNORE;
1079                return;
1080        }
1081
1082        atom->state = THREAD_SCHED_IN;
1083        atom->sched_in_time = timestamp;
1084
1085        delta = atom->sched_in_time - atom->wake_up_time;
1086        atoms->total_lat += delta;
1087        if (delta > atoms->max_lat) {
1088                atoms->max_lat = delta;
1089                atoms->max_lat_at = timestamp;
1090        }
1091        atoms->nb_atoms++;
1092}
1093
1094static int latency_switch_event(struct perf_sched *sched,
1095                                struct perf_evsel *evsel,
1096                                struct perf_sample *sample,
1097                                struct machine *machine)
1098{
1099        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1100                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1101        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1102        struct work_atoms *out_events, *in_events;
1103        struct thread *sched_out, *sched_in;
1104        u64 timestamp0, timestamp = sample->time;
1105        int cpu = sample->cpu, err = -1;
1106        s64 delta;
1107
1108        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1109
1110        timestamp0 = sched->cpu_last_switched[cpu];
1111        sched->cpu_last_switched[cpu] = timestamp;
1112        if (timestamp0)
1113                delta = timestamp - timestamp0;
1114        else
1115                delta = 0;
1116
1117        if (delta < 0) {
1118                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1119                return -1;
1120        }
1121
1122        sched_out = machine__findnew_thread(machine, -1, prev_pid);
1123        sched_in = machine__findnew_thread(machine, -1, next_pid);
1124        if (sched_out == NULL || sched_in == NULL)
1125                goto out_put;
1126
1127        out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1128        if (!out_events) {
1129                if (thread_atoms_insert(sched, sched_out))
1130                        goto out_put;
1131                out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1132                if (!out_events) {
1133                        pr_err("out-event: Internal tree error");
1134                        goto out_put;
1135                }
1136        }
1137        if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1138                return -1;
1139
1140        in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1141        if (!in_events) {
1142                if (thread_atoms_insert(sched, sched_in))
1143                        goto out_put;
1144                in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1145                if (!in_events) {
1146                        pr_err("in-event: Internal tree error");
1147                        goto out_put;
1148                }
1149                /*
1150                 * Take came in we have not heard about yet,
1151                 * add in an initial atom in runnable state:
1152                 */
1153                if (add_sched_out_event(in_events, 'R', timestamp))
1154                        goto out_put;
1155        }
1156        add_sched_in_event(in_events, timestamp);
1157        err = 0;
1158out_put:
1159        thread__put(sched_out);
1160        thread__put(sched_in);
1161        return err;
1162}
1163
1164static int latency_runtime_event(struct perf_sched *sched,
1165                                 struct perf_evsel *evsel,
1166                                 struct perf_sample *sample,
1167                                 struct machine *machine)
1168{
1169        const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1170        const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1171        struct thread *thread = machine__findnew_thread(machine, -1, pid);
1172        struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1173        u64 timestamp = sample->time;
1174        int cpu = sample->cpu, err = -1;
1175
1176        if (thread == NULL)
1177                return -1;
1178
1179        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1180        if (!atoms) {
1181                if (thread_atoms_insert(sched, thread))
1182                        goto out_put;
1183                atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1184                if (!atoms) {
1185                        pr_err("in-event: Internal tree error");
1186                        goto out_put;
1187                }
1188                if (add_sched_out_event(atoms, 'R', timestamp))
1189                        goto out_put;
1190        }
1191
1192        add_runtime_event(atoms, runtime, timestamp);
1193        err = 0;
1194out_put:
1195        thread__put(thread);
1196        return err;
1197}
1198
1199static int latency_wakeup_event(struct perf_sched *sched,
1200                                struct perf_evsel *evsel,
1201                                struct perf_sample *sample,
1202                                struct machine *machine)
1203{
1204        const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1205        struct work_atoms *atoms;
1206        struct work_atom *atom;
1207        struct thread *wakee;
1208        u64 timestamp = sample->time;
1209        int err = -1;
1210
1211        wakee = machine__findnew_thread(machine, -1, pid);
1212        if (wakee == NULL)
1213                return -1;
1214        atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1215        if (!atoms) {
1216                if (thread_atoms_insert(sched, wakee))
1217                        goto out_put;
1218                atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1219                if (!atoms) {
1220                        pr_err("wakeup-event: Internal tree error");
1221                        goto out_put;
1222                }
1223                if (add_sched_out_event(atoms, 'S', timestamp))
1224                        goto out_put;
1225        }
1226
1227        BUG_ON(list_empty(&atoms->work_list));
1228
1229        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1230
1231        /*
1232         * As we do not guarantee the wakeup event happens when
1233         * task is out of run queue, also may happen when task is
1234         * on run queue and wakeup only change ->state to TASK_RUNNING,
1235         * then we should not set the ->wake_up_time when wake up a
1236         * task which is on run queue.
1237         *
1238         * You WILL be missing events if you've recorded only
1239         * one CPU, or are only looking at only one, so don't
1240         * skip in this case.
1241         */
1242        if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1243                goto out_ok;
1244
1245        sched->nr_timestamps++;
1246        if (atom->sched_out_time > timestamp) {
1247                sched->nr_unordered_timestamps++;
1248                goto out_ok;
1249        }
1250
1251        atom->state = THREAD_WAIT_CPU;
1252        atom->wake_up_time = timestamp;
1253out_ok:
1254        err = 0;
1255out_put:
1256        thread__put(wakee);
1257        return err;
1258}
1259
1260static int latency_migrate_task_event(struct perf_sched *sched,
1261                                      struct perf_evsel *evsel,
1262                                      struct perf_sample *sample,
1263                                      struct machine *machine)
1264{
1265        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1266        u64 timestamp = sample->time;
1267        struct work_atoms *atoms;
1268        struct work_atom *atom;
1269        struct thread *migrant;
1270        int err = -1;
1271
1272        /*
1273         * Only need to worry about migration when profiling one CPU.
1274         */
1275        if (sched->profile_cpu == -1)
1276                return 0;
1277
1278        migrant = machine__findnew_thread(machine, -1, pid);
1279        if (migrant == NULL)
1280                return -1;
1281        atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1282        if (!atoms) {
1283                if (thread_atoms_insert(sched, migrant))
1284                        goto out_put;
1285                register_pid(sched, migrant->tid, thread__comm_str(migrant));
1286                atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1287                if (!atoms) {
1288                        pr_err("migration-event: Internal tree error");
1289                        goto out_put;
1290                }
1291                if (add_sched_out_event(atoms, 'R', timestamp))
1292                        goto out_put;
1293        }
1294
1295        BUG_ON(list_empty(&atoms->work_list));
1296
1297        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1298        atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1299
1300        sched->nr_timestamps++;
1301
1302        if (atom->sched_out_time > timestamp)
1303                sched->nr_unordered_timestamps++;
1304        err = 0;
1305out_put:
1306        thread__put(migrant);
1307        return err;
1308}
1309
1310static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1311{
1312        int i;
1313        int ret;
1314        u64 avg;
1315        char max_lat_at[32];
1316
1317        if (!work_list->nb_atoms)
1318                return;
1319        /*
1320         * Ignore idle threads:
1321         */
1322        if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1323                return;
1324
1325        sched->all_runtime += work_list->total_runtime;
1326        sched->all_count   += work_list->nb_atoms;
1327
1328        if (work_list->num_merged > 1)
1329                ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1330        else
1331                ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1332
1333        for (i = 0; i < 24 - ret; i++)
1334                printf(" ");
1335
1336        avg = work_list->total_lat / work_list->nb_atoms;
1337        timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1338
1339        printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1340              (double)work_list->total_runtime / NSEC_PER_MSEC,
1341                 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1342                 (double)work_list->max_lat / NSEC_PER_MSEC,
1343                 max_lat_at);
1344}
1345
1346static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1347{
1348        if (l->thread == r->thread)
1349                return 0;
1350        if (l->thread->tid < r->thread->tid)
1351                return -1;
1352        if (l->thread->tid > r->thread->tid)
1353                return 1;
1354        return (int)(l->thread - r->thread);
1355}
1356
1357static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1358{
1359        u64 avgl, avgr;
1360
1361        if (!l->nb_atoms)
1362                return -1;
1363
1364        if (!r->nb_atoms)
1365                return 1;
1366
1367        avgl = l->total_lat / l->nb_atoms;
1368        avgr = r->total_lat / r->nb_atoms;
1369
1370        if (avgl < avgr)
1371                return -1;
1372        if (avgl > avgr)
1373                return 1;
1374
1375        return 0;
1376}
1377
1378static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1379{
1380        if (l->max_lat < r->max_lat)
1381                return -1;
1382        if (l->max_lat > r->max_lat)
1383                return 1;
1384
1385        return 0;
1386}
1387
1388static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1389{
1390        if (l->nb_atoms < r->nb_atoms)
1391                return -1;
1392        if (l->nb_atoms > r->nb_atoms)
1393                return 1;
1394
1395        return 0;
1396}
1397
1398static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1399{
1400        if (l->total_runtime < r->total_runtime)
1401                return -1;
1402        if (l->total_runtime > r->total_runtime)
1403                return 1;
1404
1405        return 0;
1406}
1407
1408static int sort_dimension__add(const char *tok, struct list_head *list)
1409{
1410        size_t i;
1411        static struct sort_dimension avg_sort_dimension = {
1412                .name = "avg",
1413                .cmp  = avg_cmp,
1414        };
1415        static struct sort_dimension max_sort_dimension = {
1416                .name = "max",
1417                .cmp  = max_cmp,
1418        };
1419        static struct sort_dimension pid_sort_dimension = {
1420                .name = "pid",
1421                .cmp  = pid_cmp,
1422        };
1423        static struct sort_dimension runtime_sort_dimension = {
1424                .name = "runtime",
1425                .cmp  = runtime_cmp,
1426        };
1427        static struct sort_dimension switch_sort_dimension = {
1428                .name = "switch",
1429                .cmp  = switch_cmp,
1430        };
1431        struct sort_dimension *available_sorts[] = {
1432                &pid_sort_dimension,
1433                &avg_sort_dimension,
1434                &max_sort_dimension,
1435                &switch_sort_dimension,
1436                &runtime_sort_dimension,
1437        };
1438
1439        for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1440                if (!strcmp(available_sorts[i]->name, tok)) {
1441                        list_add_tail(&available_sorts[i]->list, list);
1442
1443                        return 0;
1444                }
1445        }
1446
1447        return -1;
1448}
1449
1450static void perf_sched__sort_lat(struct perf_sched *sched)
1451{
1452        struct rb_node *node;
1453        struct rb_root_cached *root = &sched->atom_root;
1454again:
1455        for (;;) {
1456                struct work_atoms *data;
1457                node = rb_first_cached(root);
1458                if (!node)
1459                        break;
1460
1461                rb_erase_cached(node, root);
1462                data = rb_entry(node, struct work_atoms, node);
1463                __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1464        }
1465        if (root == &sched->atom_root) {
1466                root = &sched->merged_atom_root;
1467                goto again;
1468        }
1469}
1470
1471static int process_sched_wakeup_event(struct perf_tool *tool,
1472                                      struct perf_evsel *evsel,
1473                                      struct perf_sample *sample,
1474                                      struct machine *machine)
1475{
1476        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1477
1478        if (sched->tp_handler->wakeup_event)
1479                return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1480
1481        return 0;
1482}
1483
1484union map_priv {
1485        void    *ptr;
1486        bool     color;
1487};
1488
1489static bool thread__has_color(struct thread *thread)
1490{
1491        union map_priv priv = {
1492                .ptr = thread__priv(thread),
1493        };
1494
1495        return priv.color;
1496}
1497
1498static struct thread*
1499map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1500{
1501        struct thread *thread = machine__findnew_thread(machine, pid, tid);
1502        union map_priv priv = {
1503                .color = false,
1504        };
1505
1506        if (!sched->map.color_pids || !thread || thread__priv(thread))
1507                return thread;
1508
1509        if (thread_map__has(sched->map.color_pids, tid))
1510                priv.color = true;
1511
1512        thread__set_priv(thread, priv.ptr);
1513        return thread;
1514}
1515
1516static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1517                            struct perf_sample *sample, struct machine *machine)
1518{
1519        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1520        struct thread *sched_in;
1521        struct thread_runtime *tr;
1522        int new_shortname;
1523        u64 timestamp0, timestamp = sample->time;
1524        s64 delta;
1525        int i, this_cpu = sample->cpu;
1526        int cpus_nr;
1527        bool new_cpu = false;
1528        const char *color = PERF_COLOR_NORMAL;
1529        char stimestamp[32];
1530
1531        BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1532
1533        if (this_cpu > sched->max_cpu)
1534                sched->max_cpu = this_cpu;
1535
1536        if (sched->map.comp) {
1537                cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1538                if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1539                        sched->map.comp_cpus[cpus_nr++] = this_cpu;
1540                        new_cpu = true;
1541                }
1542        } else
1543                cpus_nr = sched->max_cpu;
1544
1545        timestamp0 = sched->cpu_last_switched[this_cpu];
1546        sched->cpu_last_switched[this_cpu] = timestamp;
1547        if (timestamp0)
1548                delta = timestamp - timestamp0;
1549        else
1550                delta = 0;
1551
1552        if (delta < 0) {
1553                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1554                return -1;
1555        }
1556
1557        sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1558        if (sched_in == NULL)
1559                return -1;
1560
1561        tr = thread__get_runtime(sched_in);
1562        if (tr == NULL) {
1563                thread__put(sched_in);
1564                return -1;
1565        }
1566
1567        sched->curr_thread[this_cpu] = thread__get(sched_in);
1568
1569        printf("  ");
1570
1571        new_shortname = 0;
1572        if (!tr->shortname[0]) {
1573                if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1574                        /*
1575                         * Don't allocate a letter-number for swapper:0
1576                         * as a shortname. Instead, we use '.' for it.
1577                         */
1578                        tr->shortname[0] = '.';
1579                        tr->shortname[1] = ' ';
1580                } else {
1581                        tr->shortname[0] = sched->next_shortname1;
1582                        tr->shortname[1] = sched->next_shortname2;
1583
1584                        if (sched->next_shortname1 < 'Z') {
1585                                sched->next_shortname1++;
1586                        } else {
1587                                sched->next_shortname1 = 'A';
1588                                if (sched->next_shortname2 < '9')
1589                                        sched->next_shortname2++;
1590                                else
1591                                        sched->next_shortname2 = '0';
1592                        }
1593                }
1594                new_shortname = 1;
1595        }
1596
1597        for (i = 0; i < cpus_nr; i++) {
1598                int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1599                struct thread *curr_thread = sched->curr_thread[cpu];
1600                struct thread_runtime *curr_tr;
1601                const char *pid_color = color;
1602                const char *cpu_color = color;
1603
1604                if (curr_thread && thread__has_color(curr_thread))
1605                        pid_color = COLOR_PIDS;
1606
1607                if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1608                        continue;
1609
1610                if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1611                        cpu_color = COLOR_CPUS;
1612
1613                if (cpu != this_cpu)
1614                        color_fprintf(stdout, color, " ");
1615                else
1616                        color_fprintf(stdout, cpu_color, "*");
1617
1618                if (sched->curr_thread[cpu]) {
1619                        curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1620                        if (curr_tr == NULL) {
1621                                thread__put(sched_in);
1622                                return -1;
1623                        }
1624                        color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1625                } else
1626                        color_fprintf(stdout, color, "   ");
1627        }
1628
1629        if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1630                goto out;
1631
1632        timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1633        color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1634        if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1635                const char *pid_color = color;
1636
1637                if (thread__has_color(sched_in))
1638                        pid_color = COLOR_PIDS;
1639
1640                color_fprintf(stdout, pid_color, "%s => %s:%d",
1641                       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1642                tr->comm_changed = false;
1643        }
1644
1645        if (sched->map.comp && new_cpu)
1646                color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1647
1648out:
1649        color_fprintf(stdout, color, "\n");
1650
1651        thread__put(sched_in);
1652
1653        return 0;
1654}
1655
1656static int process_sched_switch_event(struct perf_tool *tool,
1657                                      struct perf_evsel *evsel,
1658                                      struct perf_sample *sample,
1659                                      struct machine *machine)
1660{
1661        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1662        int this_cpu = sample->cpu, err = 0;
1663        u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1664            next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1665
1666        if (sched->curr_pid[this_cpu] != (u32)-1) {
1667                /*
1668                 * Are we trying to switch away a PID that is
1669                 * not current?
1670                 */
1671                if (sched->curr_pid[this_cpu] != prev_pid)
1672                        sched->nr_context_switch_bugs++;
1673        }
1674
1675        if (sched->tp_handler->switch_event)
1676                err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1677
1678        sched->curr_pid[this_cpu] = next_pid;
1679        return err;
1680}
1681
1682static int process_sched_runtime_event(struct perf_tool *tool,
1683                                       struct perf_evsel *evsel,
1684                                       struct perf_sample *sample,
1685                                       struct machine *machine)
1686{
1687        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1688
1689        if (sched->tp_handler->runtime_event)
1690                return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1691
1692        return 0;
1693}
1694
1695static int perf_sched__process_fork_event(struct perf_tool *tool,
1696                                          union perf_event *event,
1697                                          struct perf_sample *sample,
1698                                          struct machine *machine)
1699{
1700        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1701
1702        /* run the fork event through the perf machineruy */
1703        perf_event__process_fork(tool, event, sample, machine);
1704
1705        /* and then run additional processing needed for this command */
1706        if (sched->tp_handler->fork_event)
1707                return sched->tp_handler->fork_event(sched, event, machine);
1708
1709        return 0;
1710}
1711
1712static int process_sched_migrate_task_event(struct perf_tool *tool,
1713                                            struct perf_evsel *evsel,
1714                                            struct perf_sample *sample,
1715                                            struct machine *machine)
1716{
1717        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1718
1719        if (sched->tp_handler->migrate_task_event)
1720                return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1721
1722        return 0;
1723}
1724
1725typedef int (*tracepoint_handler)(struct perf_tool *tool,
1726                                  struct perf_evsel *evsel,
1727                                  struct perf_sample *sample,
1728                                  struct machine *machine);
1729
1730static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1731                                                 union perf_event *event __maybe_unused,
1732                                                 struct perf_sample *sample,
1733                                                 struct perf_evsel *evsel,
1734                                                 struct machine *machine)
1735{
1736        int err = 0;
1737
1738        if (evsel->handler != NULL) {
1739                tracepoint_handler f = evsel->handler;
1740                err = f(tool, evsel, sample, machine);
1741        }
1742
1743        return err;
1744}
1745
1746static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1747                                    union perf_event *event,
1748                                    struct perf_sample *sample,
1749                                    struct machine *machine)
1750{
1751        struct thread *thread;
1752        struct thread_runtime *tr;
1753        int err;
1754
1755        err = perf_event__process_comm(tool, event, sample, machine);
1756        if (err)
1757                return err;
1758
1759        thread = machine__find_thread(machine, sample->pid, sample->tid);
1760        if (!thread) {
1761                pr_err("Internal error: can't find thread\n");
1762                return -1;
1763        }
1764
1765        tr = thread__get_runtime(thread);
1766        if (tr == NULL) {
1767                thread__put(thread);
1768                return -1;
1769        }
1770
1771        tr->comm_changed = true;
1772        thread__put(thread);
1773
1774        return 0;
1775}
1776
1777static int perf_sched__read_events(struct perf_sched *sched)
1778{
1779        const struct perf_evsel_str_handler handlers[] = {
1780                { "sched:sched_switch",       process_sched_switch_event, },
1781                { "sched:sched_stat_runtime", process_sched_runtime_event, },
1782                { "sched:sched_wakeup",       process_sched_wakeup_event, },
1783                { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1784                { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1785        };
1786        struct perf_session *session;
1787        struct perf_data data = {
1788                .path  = input_name,
1789                .mode  = PERF_DATA_MODE_READ,
1790                .force = sched->force,
1791        };
1792        int rc = -1;
1793
1794        session = perf_session__new(&data, false, &sched->tool);
1795        if (session == NULL) {
1796                pr_debug("No Memory for session\n");
1797                return -1;
1798        }
1799
1800        symbol__init(&session->header.env);
1801
1802        if (perf_session__set_tracepoints_handlers(session, handlers))
1803                goto out_delete;
1804
1805        if (perf_session__has_traces(session, "record -R")) {
1806                int err = perf_session__process_events(session);
1807                if (err) {
1808                        pr_err("Failed to process events, error %d", err);
1809                        goto out_delete;
1810                }
1811
1812                sched->nr_events      = session->evlist->stats.nr_events[0];
1813                sched->nr_lost_events = session->evlist->stats.total_lost;
1814                sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1815        }
1816
1817        rc = 0;
1818out_delete:
1819        perf_session__delete(session);
1820        return rc;
1821}
1822
1823/*
1824 * scheduling times are printed as msec.usec
1825 */
1826static inline void print_sched_time(unsigned long long nsecs, int width)
1827{
1828        unsigned long msecs;
1829        unsigned long usecs;
1830
1831        msecs  = nsecs / NSEC_PER_MSEC;
1832        nsecs -= msecs * NSEC_PER_MSEC;
1833        usecs  = nsecs / NSEC_PER_USEC;
1834        printf("%*lu.%03lu ", width, msecs, usecs);
1835}
1836
1837/*
1838 * returns runtime data for event, allocating memory for it the
1839 * first time it is used.
1840 */
1841static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1842{
1843        struct evsel_runtime *r = evsel->priv;
1844
1845        if (r == NULL) {
1846                r = zalloc(sizeof(struct evsel_runtime));
1847                evsel->priv = r;
1848        }
1849
1850        return r;
1851}
1852
1853/*
1854 * save last time event was seen per cpu
1855 */
1856static void perf_evsel__save_time(struct perf_evsel *evsel,
1857                                  u64 timestamp, u32 cpu)
1858{
1859        struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1860
1861        if (r == NULL)
1862                return;
1863
1864        if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1865                int i, n = __roundup_pow_of_two(cpu+1);
1866                void *p = r->last_time;
1867
1868                p = realloc(r->last_time, n * sizeof(u64));
1869                if (!p)
1870                        return;
1871
1872                r->last_time = p;
1873                for (i = r->ncpu; i < n; ++i)
1874                        r->last_time[i] = (u64) 0;
1875
1876                r->ncpu = n;
1877        }
1878
1879        r->last_time[cpu] = timestamp;
1880}
1881
1882/* returns last time this event was seen on the given cpu */
1883static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1884{
1885        struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1886
1887        if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1888                return 0;
1889
1890        return r->last_time[cpu];
1891}
1892
1893static int comm_width = 30;
1894
1895static char *timehist_get_commstr(struct thread *thread)
1896{
1897        static char str[32];
1898        const char *comm = thread__comm_str(thread);
1899        pid_t tid = thread->tid;
1900        pid_t pid = thread->pid_;
1901        int n;
1902
1903        if (pid == 0)
1904                n = scnprintf(str, sizeof(str), "%s", comm);
1905
1906        else if (tid != pid)
1907                n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1908
1909        else
1910                n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1911
1912        if (n > comm_width)
1913                comm_width = n;
1914
1915        return str;
1916}
1917
1918static void timehist_header(struct perf_sched *sched)
1919{
1920        u32 ncpus = sched->max_cpu + 1;
1921        u32 i, j;
1922
1923        printf("%15s %6s ", "time", "cpu");
1924
1925        if (sched->show_cpu_visual) {
1926                printf(" ");
1927                for (i = 0, j = 0; i < ncpus; ++i) {
1928                        printf("%x", j++);
1929                        if (j > 15)
1930                                j = 0;
1931                }
1932                printf(" ");
1933        }
1934
1935        printf(" %-*s  %9s  %9s  %9s", comm_width,
1936                "task name", "wait time", "sch delay", "run time");
1937
1938        if (sched->show_state)
1939                printf("  %s", "state");
1940
1941        printf("\n");
1942
1943        /*
1944         * units row
1945         */
1946        printf("%15s %-6s ", "", "");
1947
1948        if (sched->show_cpu_visual)
1949                printf(" %*s ", ncpus, "");
1950
1951        printf(" %-*s  %9s  %9s  %9s", comm_width,
1952               "[tid/pid]", "(msec)", "(msec)", "(msec)");
1953
1954        if (sched->show_state)
1955                printf("  %5s", "");
1956
1957        printf("\n");
1958
1959        /*
1960         * separator
1961         */
1962        printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1963
1964        if (sched->show_cpu_visual)
1965                printf(" %.*s ", ncpus, graph_dotted_line);
1966
1967        printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1968                graph_dotted_line, graph_dotted_line, graph_dotted_line,
1969                graph_dotted_line);
1970
1971        if (sched->show_state)
1972                printf("  %.5s", graph_dotted_line);
1973
1974        printf("\n");
1975}
1976
1977static char task_state_char(struct thread *thread, int state)
1978{
1979        static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1980        unsigned bit = state ? ffs(state) : 0;
1981
1982        /* 'I' for idle */
1983        if (thread->tid == 0)
1984                return 'I';
1985
1986        return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1987}
1988
1989static void timehist_print_sample(struct perf_sched *sched,
1990                                  struct perf_evsel *evsel,
1991                                  struct perf_sample *sample,
1992                                  struct addr_location *al,
1993                                  struct thread *thread,
1994                                  u64 t, int state)
1995{
1996        struct thread_runtime *tr = thread__priv(thread);
1997        const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1998        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1999        u32 max_cpus = sched->max_cpu + 1;
2000        char tstr[64];
2001        char nstr[30];
2002        u64 wait_time;
2003
2004        timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2005        printf("%15s [%04d] ", tstr, sample->cpu);
2006
2007        if (sched->show_cpu_visual) {
2008                u32 i;
2009                char c;
2010
2011                printf(" ");
2012                for (i = 0; i < max_cpus; ++i) {
2013                        /* flag idle times with 'i'; others are sched events */
2014                        if (i == sample->cpu)
2015                                c = (thread->tid == 0) ? 'i' : 's';
2016                        else
2017                                c = ' ';
2018                        printf("%c", c);
2019                }
2020                printf(" ");
2021        }
2022
2023        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2024
2025        wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2026        print_sched_time(wait_time, 6);
2027
2028        print_sched_time(tr->dt_delay, 6);
2029        print_sched_time(tr->dt_run, 6);
2030
2031        if (sched->show_state)
2032                printf(" %5c ", task_state_char(thread, state));
2033
2034        if (sched->show_next) {
2035                snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2036                printf(" %-*s", comm_width, nstr);
2037        }
2038
2039        if (sched->show_wakeups && !sched->show_next)
2040                printf("  %-*s", comm_width, "");
2041
2042        if (thread->tid == 0)
2043                goto out;
2044
2045        if (sched->show_callchain)
2046                printf("  ");
2047
2048        sample__fprintf_sym(sample, al, 0,
2049                            EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2050                            EVSEL__PRINT_CALLCHAIN_ARROW |
2051                            EVSEL__PRINT_SKIP_IGNORED,
2052                            &callchain_cursor, stdout);
2053
2054out:
2055        printf("\n");
2056}
2057
2058/*
2059 * Explanation of delta-time stats:
2060 *
2061 *            t = time of current schedule out event
2062 *        tprev = time of previous sched out event
2063 *                also time of schedule-in event for current task
2064 *    last_time = time of last sched change event for current task
2065 *                (i.e, time process was last scheduled out)
2066 * ready_to_run = time of wakeup for current task
2067 *
2068 * -----|------------|------------|------------|------
2069 *    last         ready        tprev          t
2070 *    time         to run
2071 *
2072 *      |-------- dt_wait --------|
2073 *                   |- dt_delay -|-- dt_run --|
2074 *
2075 *   dt_run = run time of current task
2076 *  dt_wait = time between last schedule out event for task and tprev
2077 *            represents time spent off the cpu
2078 * dt_delay = time between wakeup and schedule-in of task
2079 */
2080
2081static void timehist_update_runtime_stats(struct thread_runtime *r,
2082                                         u64 t, u64 tprev)
2083{
2084        r->dt_delay   = 0;
2085        r->dt_sleep   = 0;
2086        r->dt_iowait  = 0;
2087        r->dt_preempt = 0;
2088        r->dt_run     = 0;
2089
2090        if (tprev) {
2091                r->dt_run = t - tprev;
2092                if (r->ready_to_run) {
2093                        if (r->ready_to_run > tprev)
2094                                pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2095                        else
2096                                r->dt_delay = tprev - r->ready_to_run;
2097                }
2098
2099                if (r->last_time > tprev)
2100                        pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2101                else if (r->last_time) {
2102                        u64 dt_wait = tprev - r->last_time;
2103
2104                        if (r->last_state == TASK_RUNNING)
2105                                r->dt_preempt = dt_wait;
2106                        else if (r->last_state == TASK_UNINTERRUPTIBLE)
2107                                r->dt_iowait = dt_wait;
2108                        else
2109                                r->dt_sleep = dt_wait;
2110                }
2111        }
2112
2113        update_stats(&r->run_stats, r->dt_run);
2114
2115        r->total_run_time     += r->dt_run;
2116        r->total_delay_time   += r->dt_delay;
2117        r->total_sleep_time   += r->dt_sleep;
2118        r->total_iowait_time  += r->dt_iowait;
2119        r->total_preempt_time += r->dt_preempt;
2120}
2121
2122static bool is_idle_sample(struct perf_sample *sample,
2123                           struct perf_evsel *evsel)
2124{
2125        /* pid 0 == swapper == idle task */
2126        if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2127                return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2128
2129        return sample->pid == 0;
2130}
2131
2132static void save_task_callchain(struct perf_sched *sched,
2133                                struct perf_sample *sample,
2134                                struct perf_evsel *evsel,
2135                                struct machine *machine)
2136{
2137        struct callchain_cursor *cursor = &callchain_cursor;
2138        struct thread *thread;
2139
2140        /* want main thread for process - has maps */
2141        thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2142        if (thread == NULL) {
2143                pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2144                return;
2145        }
2146
2147        if (!sched->show_callchain || sample->callchain == NULL)
2148                return;
2149
2150        if (thread__resolve_callchain(thread, cursor, evsel, sample,
2151                                      NULL, NULL, sched->max_stack + 2) != 0) {
2152                if (verbose > 0)
2153                        pr_err("Failed to resolve callchain. Skipping\n");
2154
2155                return;
2156        }
2157
2158        callchain_cursor_commit(cursor);
2159
2160        while (true) {
2161                struct callchain_cursor_node *node;
2162                struct symbol *sym;
2163
2164                node = callchain_cursor_current(cursor);
2165                if (node == NULL)
2166                        break;
2167
2168                sym = node->sym;
2169                if (sym) {
2170                        if (!strcmp(sym->name, "schedule") ||
2171                            !strcmp(sym->name, "__schedule") ||
2172                            !strcmp(sym->name, "preempt_schedule"))
2173                                sym->ignore = 1;
2174                }
2175
2176                callchain_cursor_advance(cursor);
2177        }
2178}
2179
2180static int init_idle_thread(struct thread *thread)
2181{
2182        struct idle_thread_runtime *itr;
2183
2184        thread__set_comm(thread, idle_comm, 0);
2185
2186        itr = zalloc(sizeof(*itr));
2187        if (itr == NULL)
2188                return -ENOMEM;
2189
2190        init_stats(&itr->tr.run_stats);
2191        callchain_init(&itr->callchain);
2192        callchain_cursor_reset(&itr->cursor);
2193        thread__set_priv(thread, itr);
2194
2195        return 0;
2196}
2197
2198/*
2199 * Track idle stats per cpu by maintaining a local thread
2200 * struct for the idle task on each cpu.
2201 */
2202static int init_idle_threads(int ncpu)
2203{
2204        int i, ret;
2205
2206        idle_threads = zalloc(ncpu * sizeof(struct thread *));
2207        if (!idle_threads)
2208                return -ENOMEM;
2209
2210        idle_max_cpu = ncpu;
2211
2212        /* allocate the actual thread struct if needed */
2213        for (i = 0; i < ncpu; ++i) {
2214                idle_threads[i] = thread__new(0, 0);
2215                if (idle_threads[i] == NULL)
2216                        return -ENOMEM;
2217
2218                ret = init_idle_thread(idle_threads[i]);
2219                if (ret < 0)
2220                        return ret;
2221        }
2222
2223        return 0;
2224}
2225
2226static void free_idle_threads(void)
2227{
2228        int i;
2229
2230        if (idle_threads == NULL)
2231                return;
2232
2233        for (i = 0; i < idle_max_cpu; ++i) {
2234                if ((idle_threads[i]))
2235                        thread__delete(idle_threads[i]);
2236        }
2237
2238        free(idle_threads);
2239}
2240
2241static struct thread *get_idle_thread(int cpu)
2242{
2243        /*
2244         * expand/allocate array of pointers to local thread
2245         * structs if needed
2246         */
2247        if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2248                int i, j = __roundup_pow_of_two(cpu+1);
2249                void *p;
2250
2251                p = realloc(idle_threads, j * sizeof(struct thread *));
2252                if (!p)
2253                        return NULL;
2254
2255                idle_threads = (struct thread **) p;
2256                for (i = idle_max_cpu; i < j; ++i)
2257                        idle_threads[i] = NULL;
2258
2259                idle_max_cpu = j;
2260        }
2261
2262        /* allocate a new thread struct if needed */
2263        if (idle_threads[cpu] == NULL) {
2264                idle_threads[cpu] = thread__new(0, 0);
2265
2266                if (idle_threads[cpu]) {
2267                        if (init_idle_thread(idle_threads[cpu]) < 0)
2268                                return NULL;
2269                }
2270        }
2271
2272        return idle_threads[cpu];
2273}
2274
2275static void save_idle_callchain(struct perf_sched *sched,
2276                                struct idle_thread_runtime *itr,
2277                                struct perf_sample *sample)
2278{
2279        if (!sched->show_callchain || sample->callchain == NULL)
2280                return;
2281
2282        callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2283}
2284
2285static struct thread *timehist_get_thread(struct perf_sched *sched,
2286                                          struct perf_sample *sample,
2287                                          struct machine *machine,
2288                                          struct perf_evsel *evsel)
2289{
2290        struct thread *thread;
2291
2292        if (is_idle_sample(sample, evsel)) {
2293                thread = get_idle_thread(sample->cpu);
2294                if (thread == NULL)
2295                        pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2296
2297        } else {
2298                /* there were samples with tid 0 but non-zero pid */
2299                thread = machine__findnew_thread(machine, sample->pid,
2300                                                 sample->tid ?: sample->pid);
2301                if (thread == NULL) {
2302                        pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2303                                 sample->tid);
2304                }
2305
2306                save_task_callchain(sched, sample, evsel, machine);
2307                if (sched->idle_hist) {
2308                        struct thread *idle;
2309                        struct idle_thread_runtime *itr;
2310
2311                        idle = get_idle_thread(sample->cpu);
2312                        if (idle == NULL) {
2313                                pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2314                                return NULL;
2315                        }
2316
2317                        itr = thread__priv(idle);
2318                        if (itr == NULL)
2319                                return NULL;
2320
2321                        itr->last_thread = thread;
2322
2323                        /* copy task callchain when entering to idle */
2324                        if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2325                                save_idle_callchain(sched, itr, sample);
2326                }
2327        }
2328
2329        return thread;
2330}
2331
2332static bool timehist_skip_sample(struct perf_sched *sched,
2333                                 struct thread *thread,
2334                                 struct perf_evsel *evsel,
2335                                 struct perf_sample *sample)
2336{
2337        bool rc = false;
2338
2339        if (thread__is_filtered(thread)) {
2340                rc = true;
2341                sched->skipped_samples++;
2342        }
2343
2344        if (sched->idle_hist) {
2345                if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2346                        rc = true;
2347                else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2348                         perf_evsel__intval(evsel, sample, "next_pid") != 0)
2349                        rc = true;
2350        }
2351
2352        return rc;
2353}
2354
2355static void timehist_print_wakeup_event(struct perf_sched *sched,
2356                                        struct perf_evsel *evsel,
2357                                        struct perf_sample *sample,
2358                                        struct machine *machine,
2359                                        struct thread *awakened)
2360{
2361        struct thread *thread;
2362        char tstr[64];
2363
2364        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2365        if (thread == NULL)
2366                return;
2367
2368        /* show wakeup unless both awakee and awaker are filtered */
2369        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2370            timehist_skip_sample(sched, awakened, evsel, sample)) {
2371                return;
2372        }
2373
2374        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2375        printf("%15s [%04d] ", tstr, sample->cpu);
2376        if (sched->show_cpu_visual)
2377                printf(" %*s ", sched->max_cpu + 1, "");
2378
2379        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2380
2381        /* dt spacer */
2382        printf("  %9s  %9s  %9s ", "", "", "");
2383
2384        printf("awakened: %s", timehist_get_commstr(awakened));
2385
2386        printf("\n");
2387}
2388
2389static int timehist_sched_wakeup_event(struct perf_tool *tool,
2390                                       union perf_event *event __maybe_unused,
2391                                       struct perf_evsel *evsel,
2392                                       struct perf_sample *sample,
2393                                       struct machine *machine)
2394{
2395        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2396        struct thread *thread;
2397        struct thread_runtime *tr = NULL;
2398        /* want pid of awakened task not pid in sample */
2399        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2400
2401        thread = machine__findnew_thread(machine, 0, pid);
2402        if (thread == NULL)
2403                return -1;
2404
2405        tr = thread__get_runtime(thread);
2406        if (tr == NULL)
2407                return -1;
2408
2409        if (tr->ready_to_run == 0)
2410                tr->ready_to_run = sample->time;
2411
2412        /* show wakeups if requested */
2413        if (sched->show_wakeups &&
2414            !perf_time__skip_sample(&sched->ptime, sample->time))
2415                timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2416
2417        return 0;
2418}
2419
2420static void timehist_print_migration_event(struct perf_sched *sched,
2421                                        struct perf_evsel *evsel,
2422                                        struct perf_sample *sample,
2423                                        struct machine *machine,
2424                                        struct thread *migrated)
2425{
2426        struct thread *thread;
2427        char tstr[64];
2428        u32 max_cpus = sched->max_cpu + 1;
2429        u32 ocpu, dcpu;
2430
2431        if (sched->summary_only)
2432                return;
2433
2434        max_cpus = sched->max_cpu + 1;
2435        ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2436        dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2437
2438        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2439        if (thread == NULL)
2440                return;
2441
2442        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2443            timehist_skip_sample(sched, migrated, evsel, sample)) {
2444                return;
2445        }
2446
2447        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2448        printf("%15s [%04d] ", tstr, sample->cpu);
2449
2450        if (sched->show_cpu_visual) {
2451                u32 i;
2452                char c;
2453
2454                printf("  ");
2455                for (i = 0; i < max_cpus; ++i) {
2456                        c = (i == sample->cpu) ? 'm' : ' ';
2457                        printf("%c", c);
2458                }
2459                printf("  ");
2460        }
2461
2462        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2463
2464        /* dt spacer */
2465        printf("  %9s  %9s  %9s ", "", "", "");
2466
2467        printf("migrated: %s", timehist_get_commstr(migrated));
2468        printf(" cpu %d => %d", ocpu, dcpu);
2469
2470        printf("\n");
2471}
2472
2473static int timehist_migrate_task_event(struct perf_tool *tool,
2474                                       union perf_event *event __maybe_unused,
2475                                       struct perf_evsel *evsel,
2476                                       struct perf_sample *sample,
2477                                       struct machine *machine)
2478{
2479        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2480        struct thread *thread;
2481        struct thread_runtime *tr = NULL;
2482        /* want pid of migrated task not pid in sample */
2483        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2484
2485        thread = machine__findnew_thread(machine, 0, pid);
2486        if (thread == NULL)
2487                return -1;
2488
2489        tr = thread__get_runtime(thread);
2490        if (tr == NULL)
2491                return -1;
2492
2493        tr->migrations++;
2494
2495        /* show migrations if requested */
2496        timehist_print_migration_event(sched, evsel, sample, machine, thread);
2497
2498        return 0;
2499}
2500
2501static int timehist_sched_change_event(struct perf_tool *tool,
2502                                       union perf_event *event,
2503                                       struct perf_evsel *evsel,
2504                                       struct perf_sample *sample,
2505                                       struct machine *machine)
2506{
2507        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2508        struct perf_time_interval *ptime = &sched->ptime;
2509        struct addr_location al;
2510        struct thread *thread;
2511        struct thread_runtime *tr = NULL;
2512        u64 tprev, t = sample->time;
2513        int rc = 0;
2514        int state = perf_evsel__intval(evsel, sample, "prev_state");
2515
2516
2517        if (machine__resolve(machine, &al, sample) < 0) {
2518                pr_err("problem processing %d event. skipping it\n",
2519                       event->header.type);
2520                rc = -1;
2521                goto out;
2522        }
2523
2524        thread = timehist_get_thread(sched, sample, machine, evsel);
2525        if (thread == NULL) {
2526                rc = -1;
2527                goto out;
2528        }
2529
2530        if (timehist_skip_sample(sched, thread, evsel, sample))
2531                goto out;
2532
2533        tr = thread__get_runtime(thread);
2534        if (tr == NULL) {
2535                rc = -1;
2536                goto out;
2537        }
2538
2539        tprev = perf_evsel__get_time(evsel, sample->cpu);
2540
2541        /*
2542         * If start time given:
2543         * - sample time is under window user cares about - skip sample
2544         * - tprev is under window user cares about  - reset to start of window
2545         */
2546        if (ptime->start && ptime->start > t)
2547                goto out;
2548
2549        if (tprev && ptime->start > tprev)
2550                tprev = ptime->start;
2551
2552        /*
2553         * If end time given:
2554         * - previous sched event is out of window - we are done
2555         * - sample time is beyond window user cares about - reset it
2556         *   to close out stats for time window interest
2557         */
2558        if (ptime->end) {
2559                if (tprev > ptime->end)
2560                        goto out;
2561
2562                if (t > ptime->end)
2563                        t = ptime->end;
2564        }
2565
2566        if (!sched->idle_hist || thread->tid == 0) {
2567                timehist_update_runtime_stats(tr, t, tprev);
2568
2569                if (sched->idle_hist) {
2570                        struct idle_thread_runtime *itr = (void *)tr;
2571                        struct thread_runtime *last_tr;
2572
2573                        BUG_ON(thread->tid != 0);
2574
2575                        if (itr->last_thread == NULL)
2576                                goto out;
2577
2578                        /* add current idle time as last thread's runtime */
2579                        last_tr = thread__get_runtime(itr->last_thread);
2580                        if (last_tr == NULL)
2581                                goto out;
2582
2583                        timehist_update_runtime_stats(last_tr, t, tprev);
2584                        /*
2585                         * remove delta time of last thread as it's not updated
2586                         * and otherwise it will show an invalid value next
2587                         * time.  we only care total run time and run stat.
2588                         */
2589                        last_tr->dt_run = 0;
2590                        last_tr->dt_delay = 0;
2591                        last_tr->dt_sleep = 0;
2592                        last_tr->dt_iowait = 0;
2593                        last_tr->dt_preempt = 0;
2594
2595                        if (itr->cursor.nr)
2596                                callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2597
2598                        itr->last_thread = NULL;
2599                }
2600        }
2601
2602        if (!sched->summary_only)
2603                timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2604
2605out:
2606        if (sched->hist_time.start == 0 && t >= ptime->start)
2607                sched->hist_time.start = t;
2608        if (ptime->end == 0 || t <= ptime->end)
2609                sched->hist_time.end = t;
2610
2611        if (tr) {
2612                /* time of this sched_switch event becomes last time task seen */
2613                tr->last_time = sample->time;
2614
2615                /* last state is used to determine where to account wait time */
2616                tr->last_state = state;
2617
2618                /* sched out event for task so reset ready to run time */
2619                tr->ready_to_run = 0;
2620        }
2621
2622        perf_evsel__save_time(evsel, sample->time, sample->cpu);
2623
2624        return rc;
2625}
2626
2627static int timehist_sched_switch_event(struct perf_tool *tool,
2628                             union perf_event *event,
2629                             struct perf_evsel *evsel,
2630                             struct perf_sample *sample,
2631                             struct machine *machine __maybe_unused)
2632{
2633        return timehist_sched_change_event(tool, event, evsel, sample, machine);
2634}
2635
2636static int process_lost(struct perf_tool *tool __maybe_unused,
2637                        union perf_event *event,
2638                        struct perf_sample *sample,
2639                        struct machine *machine __maybe_unused)
2640{
2641        char tstr[64];
2642
2643        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2644        printf("%15s ", tstr);
2645        printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2646
2647        return 0;
2648}
2649
2650
2651static void print_thread_runtime(struct thread *t,
2652                                 struct thread_runtime *r)
2653{
2654        double mean = avg_stats(&r->run_stats);
2655        float stddev;
2656
2657        printf("%*s   %5d  %9" PRIu64 " ",
2658               comm_width, timehist_get_commstr(t), t->ppid,
2659               (u64) r->run_stats.n);
2660
2661        print_sched_time(r->total_run_time, 8);
2662        stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2663        print_sched_time(r->run_stats.min, 6);
2664        printf(" ");
2665        print_sched_time((u64) mean, 6);
2666        printf(" ");
2667        print_sched_time(r->run_stats.max, 6);
2668        printf("  ");
2669        printf("%5.2f", stddev);
2670        printf("   %5" PRIu64, r->migrations);
2671        printf("\n");
2672}
2673
2674static void print_thread_waittime(struct thread *t,
2675                                  struct thread_runtime *r)
2676{
2677        printf("%*s   %5d  %9" PRIu64 " ",
2678               comm_width, timehist_get_commstr(t), t->ppid,
2679               (u64) r->run_stats.n);
2680
2681        print_sched_time(r->total_run_time, 8);
2682        print_sched_time(r->total_sleep_time, 6);
2683        printf(" ");
2684        print_sched_time(r->total_iowait_time, 6);
2685        printf(" ");
2686        print_sched_time(r->total_preempt_time, 6);
2687        printf(" ");
2688        print_sched_time(r->total_delay_time, 6);
2689        printf("\n");
2690}
2691
2692struct total_run_stats {
2693        struct perf_sched *sched;
2694        u64  sched_count;
2695        u64  task_count;
2696        u64  total_run_time;
2697};
2698
2699static int __show_thread_runtime(struct thread *t, void *priv)
2700{
2701        struct total_run_stats *stats = priv;
2702        struct thread_runtime *r;
2703
2704        if (thread__is_filtered(t))
2705                return 0;
2706
2707        r = thread__priv(t);
2708        if (r && r->run_stats.n) {
2709                stats->task_count++;
2710                stats->sched_count += r->run_stats.n;
2711                stats->total_run_time += r->total_run_time;
2712
2713                if (stats->sched->show_state)
2714                        print_thread_waittime(t, r);
2715                else
2716                        print_thread_runtime(t, r);
2717        }
2718
2719        return 0;
2720}
2721
2722static int show_thread_runtime(struct thread *t, void *priv)
2723{
2724        if (t->dead)
2725                return 0;
2726
2727        return __show_thread_runtime(t, priv);
2728}
2729
2730static int show_deadthread_runtime(struct thread *t, void *priv)
2731{
2732        if (!t->dead)
2733                return 0;
2734
2735        return __show_thread_runtime(t, priv);
2736}
2737
2738static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2739{
2740        const char *sep = " <- ";
2741        struct callchain_list *chain;
2742        size_t ret = 0;
2743        char bf[1024];
2744        bool first;
2745
2746        if (node == NULL)
2747                return 0;
2748
2749        ret = callchain__fprintf_folded(fp, node->parent);
2750        first = (ret == 0);
2751
2752        list_for_each_entry(chain, &node->val, list) {
2753                if (chain->ip >= PERF_CONTEXT_MAX)
2754                        continue;
2755                if (chain->ms.sym && chain->ms.sym->ignore)
2756                        continue;
2757                ret += fprintf(fp, "%s%s", first ? "" : sep,
2758                               callchain_list__sym_name(chain, bf, sizeof(bf),
2759                                                        false));
2760                first = false;
2761        }
2762
2763        return ret;
2764}
2765
2766static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2767{
2768        size_t ret = 0;
2769        FILE *fp = stdout;
2770        struct callchain_node *chain;
2771        struct rb_node *rb_node = rb_first_cached(root);
2772
2773        printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2774        printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2775               graph_dotted_line);
2776
2777        while (rb_node) {
2778                chain = rb_entry(rb_node, struct callchain_node, rb_node);
2779                rb_node = rb_next(rb_node);
2780
2781                ret += fprintf(fp, "  ");
2782                print_sched_time(chain->hit, 12);
2783                ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2784                ret += fprintf(fp, " %8d  ", chain->count);
2785                ret += callchain__fprintf_folded(fp, chain);
2786                ret += fprintf(fp, "\n");
2787        }
2788
2789        return ret;
2790}
2791
2792static void timehist_print_summary(struct perf_sched *sched,
2793                                   struct perf_session *session)
2794{
2795        struct machine *m = &session->machines.host;
2796        struct total_run_stats totals;
2797        u64 task_count;
2798        struct thread *t;
2799        struct thread_runtime *r;
2800        int i;
2801        u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2802
2803        memset(&totals, 0, sizeof(totals));
2804        totals.sched = sched;
2805
2806        if (sched->idle_hist) {
2807                printf("\nIdle-time summary\n");
2808                printf("%*s  parent  sched-out  ", comm_width, "comm");
2809                printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2810        } else if (sched->show_state) {
2811                printf("\nWait-time summary\n");
2812                printf("%*s  parent   sched-in  ", comm_width, "comm");
2813                printf("   run-time      sleep      iowait     preempt       delay\n");
2814        } else {
2815                printf("\nRuntime summary\n");
2816                printf("%*s  parent   sched-in  ", comm_width, "comm");
2817                printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2818        }
2819        printf("%*s            (count)  ", comm_width, "");
2820        printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2821               sched->show_state ? "(msec)" : "%");
2822        printf("%.117s\n", graph_dotted_line);
2823
2824        machine__for_each_thread(m, show_thread_runtime, &totals);
2825        task_count = totals.task_count;
2826        if (!task_count)
2827                printf("<no still running tasks>\n");
2828
2829        printf("\nTerminated tasks:\n");
2830        machine__for_each_thread(m, show_deadthread_runtime, &totals);
2831        if (task_count == totals.task_count)
2832                printf("<no terminated tasks>\n");
2833
2834        /* CPU idle stats not tracked when samples were skipped */
2835        if (sched->skipped_samples && !sched->idle_hist)
2836                return;
2837
2838        printf("\nIdle stats:\n");
2839        for (i = 0; i < idle_max_cpu; ++i) {
2840                t = idle_threads[i];
2841                if (!t)
2842                        continue;
2843
2844                r = thread__priv(t);
2845                if (r && r->run_stats.n) {
2846                        totals.sched_count += r->run_stats.n;
2847                        printf("    CPU %2d idle for ", i);
2848                        print_sched_time(r->total_run_time, 6);
2849                        printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2850                } else
2851                        printf("    CPU %2d idle entire time window\n", i);
2852        }
2853
2854        if (sched->idle_hist && sched->show_callchain) {
2855                callchain_param.mode  = CHAIN_FOLDED;
2856                callchain_param.value = CCVAL_PERIOD;
2857
2858                callchain_register_param(&callchain_param);
2859
2860                printf("\nIdle stats by callchain:\n");
2861                for (i = 0; i < idle_max_cpu; ++i) {
2862                        struct idle_thread_runtime *itr;
2863
2864                        t = idle_threads[i];
2865                        if (!t)
2866                                continue;
2867
2868                        itr = thread__priv(t);
2869                        if (itr == NULL)
2870                                continue;
2871
2872                        callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2873                                             0, &callchain_param);
2874
2875                        printf("  CPU %2d:", i);
2876                        print_sched_time(itr->tr.total_run_time, 6);
2877                        printf(" msec\n");
2878                        timehist_print_idlehist_callchain(&itr->sorted_root);
2879                        printf("\n");
2880                }
2881        }
2882
2883        printf("\n"
2884               "    Total number of unique tasks: %" PRIu64 "\n"
2885               "Total number of context switches: %" PRIu64 "\n",
2886               totals.task_count, totals.sched_count);
2887
2888        printf("           Total run time (msec): ");
2889        print_sched_time(totals.total_run_time, 2);
2890        printf("\n");
2891
2892        printf("    Total scheduling time (msec): ");
2893        print_sched_time(hist_time, 2);
2894        printf(" (x %d)\n", sched->max_cpu);
2895}
2896
2897typedef int (*sched_handler)(struct perf_tool *tool,
2898                          union perf_event *event,
2899                          struct perf_evsel *evsel,
2900                          struct perf_sample *sample,
2901                          struct machine *machine);
2902
2903static int perf_timehist__process_sample(struct perf_tool *tool,
2904                                         union perf_event *event,
2905                                         struct perf_sample *sample,
2906                                         struct perf_evsel *evsel,
2907                                         struct machine *machine)
2908{
2909        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2910        int err = 0;
2911        int this_cpu = sample->cpu;
2912
2913        if (this_cpu > sched->max_cpu)
2914                sched->max_cpu = this_cpu;
2915
2916        if (evsel->handler != NULL) {
2917                sched_handler f = evsel->handler;
2918
2919                err = f(tool, event, evsel, sample, machine);
2920        }
2921
2922        return err;
2923}
2924
2925static int timehist_check_attr(struct perf_sched *sched,
2926                               struct perf_evlist *evlist)
2927{
2928        struct perf_evsel *evsel;
2929        struct evsel_runtime *er;
2930
2931        list_for_each_entry(evsel, &evlist->entries, node) {
2932                er = perf_evsel__get_runtime(evsel);
2933                if (er == NULL) {
2934                        pr_err("Failed to allocate memory for evsel runtime data\n");
2935                        return -1;
2936                }
2937
2938                if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2939                        pr_info("Samples do not have callchains.\n");
2940                        sched->show_callchain = 0;
2941                        symbol_conf.use_callchain = 0;
2942                }
2943        }
2944
2945        return 0;
2946}
2947
2948static int perf_sched__timehist(struct perf_sched *sched)
2949{
2950        const struct perf_evsel_str_handler handlers[] = {
2951                { "sched:sched_switch",       timehist_sched_switch_event, },
2952                { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2953                { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2954        };
2955        const struct perf_evsel_str_handler migrate_handlers[] = {
2956                { "sched:sched_migrate_task", timehist_migrate_task_event, },
2957        };
2958        struct perf_data data = {
2959                .path  = input_name,
2960                .mode  = PERF_DATA_MODE_READ,
2961                .force = sched->force,
2962        };
2963
2964        struct perf_session *session;
2965        struct perf_evlist *evlist;
2966        int err = -1;
2967
2968        /*
2969         * event handlers for timehist option
2970         */
2971        sched->tool.sample       = perf_timehist__process_sample;
2972        sched->tool.mmap         = perf_event__process_mmap;
2973        sched->tool.comm         = perf_event__process_comm;
2974        sched->tool.exit         = perf_event__process_exit;
2975        sched->tool.fork         = perf_event__process_fork;
2976        sched->tool.lost         = process_lost;
2977        sched->tool.attr         = perf_event__process_attr;
2978        sched->tool.tracing_data = perf_event__process_tracing_data;
2979        sched->tool.build_id     = perf_event__process_build_id;
2980
2981        sched->tool.ordered_events = true;
2982        sched->tool.ordering_requires_timestamps = true;
2983
2984        symbol_conf.use_callchain = sched->show_callchain;
2985
2986        session = perf_session__new(&data, false, &sched->tool);
2987        if (session == NULL)
2988                return -ENOMEM;
2989
2990        evlist = session->evlist;
2991
2992        symbol__init(&session->header.env);
2993
2994        if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2995                pr_err("Invalid time string\n");
2996                return -EINVAL;
2997        }
2998
2999        if (timehist_check_attr(sched, evlist) != 0)
3000                goto out;
3001
3002        setup_pager();
3003
3004        /* setup per-evsel handlers */
3005        if (perf_session__set_tracepoints_handlers(session, handlers))
3006                goto out;
3007
3008        /* sched_switch event at a minimum needs to exist */
3009        if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3010                                                  "sched:sched_switch")) {
3011                pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3012                goto out;
3013        }
3014
3015        if (sched->show_migrations &&
3016            perf_session__set_tracepoints_handlers(session, migrate_handlers))
3017                goto out;
3018
3019        /* pre-allocate struct for per-CPU idle stats */
3020        sched->max_cpu = session->header.env.nr_cpus_online;
3021        if (sched->max_cpu == 0)
3022                sched->max_cpu = 4;
3023        if (init_idle_threads(sched->max_cpu))
3024                goto out;
3025
3026        /* summary_only implies summary option, but don't overwrite summary if set */
3027        if (sched->summary_only)
3028                sched->summary = sched->summary_only;
3029
3030        if (!sched->summary_only)
3031                timehist_header(sched);
3032
3033        err = perf_session__process_events(session);
3034        if (err) {
3035                pr_err("Failed to process events, error %d", err);
3036                goto out;
3037        }
3038
3039        sched->nr_events      = evlist->stats.nr_events[0];
3040        sched->nr_lost_events = evlist->stats.total_lost;
3041        sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3042
3043        if (sched->summary)
3044                timehist_print_summary(sched, session);
3045
3046out:
3047        free_idle_threads();
3048        perf_session__delete(session);
3049
3050        return err;
3051}
3052
3053
3054static void print_bad_events(struct perf_sched *sched)
3055{
3056        if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3057                printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3058                        (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3059                        sched->nr_unordered_timestamps, sched->nr_timestamps);
3060        }
3061        if (sched->nr_lost_events && sched->nr_events) {
3062                printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3063                        (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3064                        sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3065        }
3066        if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3067                printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3068                        (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3069                        sched->nr_context_switch_bugs, sched->nr_timestamps);
3070                if (sched->nr_lost_events)
3071                        printf(" (due to lost events?)");
3072                printf("\n");
3073        }
3074}
3075
3076static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3077{
3078        struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3079        struct work_atoms *this;
3080        const char *comm = thread__comm_str(data->thread), *this_comm;
3081        bool leftmost = true;
3082
3083        while (*new) {
3084                int cmp;
3085
3086                this = container_of(*new, struct work_atoms, node);
3087                parent = *new;
3088
3089                this_comm = thread__comm_str(this->thread);
3090                cmp = strcmp(comm, this_comm);
3091                if (cmp > 0) {
3092                        new = &((*new)->rb_left);
3093                } else if (cmp < 0) {
3094                        new = &((*new)->rb_right);
3095                        leftmost = false;
3096                } else {
3097                        this->num_merged++;
3098                        this->total_runtime += data->total_runtime;
3099                        this->nb_atoms += data->nb_atoms;
3100                        this->total_lat += data->total_lat;
3101                        list_splice(&data->work_list, &this->work_list);
3102                        if (this->max_lat < data->max_lat) {
3103                                this->max_lat = data->max_lat;
3104                                this->max_lat_at = data->max_lat_at;
3105                        }
3106                        zfree(&data);
3107                        return;
3108                }
3109        }
3110
3111        data->num_merged++;
3112        rb_link_node(&data->node, parent, new);
3113        rb_insert_color_cached(&data->node, root, leftmost);
3114}
3115
3116static void perf_sched__merge_lat(struct perf_sched *sched)
3117{
3118        struct work_atoms *data;
3119        struct rb_node *node;
3120
3121        if (sched->skip_merge)
3122                return;
3123
3124        while ((node = rb_first_cached(&sched->atom_root))) {
3125                rb_erase_cached(node, &sched->atom_root);
3126                data = rb_entry(node, struct work_atoms, node);
3127                __merge_work_atoms(&sched->merged_atom_root, data);
3128        }
3129}
3130
3131static int perf_sched__lat(struct perf_sched *sched)
3132{
3133        struct rb_node *next;
3134
3135        setup_pager();
3136
3137        if (perf_sched__read_events(sched))
3138                return -1;
3139
3140        perf_sched__merge_lat(sched);
3141        perf_sched__sort_lat(sched);
3142
3143        printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3144        printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3145        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3146
3147        next = rb_first_cached(&sched->sorted_atom_root);
3148
3149        while (next) {
3150                struct work_atoms *work_list;
3151
3152                work_list = rb_entry(next, struct work_atoms, node);
3153                output_lat_thread(sched, work_list);
3154                next = rb_next(next);
3155                thread__zput(work_list->thread);
3156        }
3157
3158        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3159        printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3160                (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3161
3162        printf(" ---------------------------------------------------\n");
3163
3164        print_bad_events(sched);
3165        printf("\n");
3166
3167        return 0;
3168}
3169
3170static int setup_map_cpus(struct perf_sched *sched)
3171{
3172        struct cpu_map *map;
3173
3174        sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3175
3176        if (sched->map.comp) {
3177                sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3178                if (!sched->map.comp_cpus)
3179                        return -1;
3180        }
3181
3182        if (!sched->map.cpus_str)
3183                return 0;
3184
3185        map = cpu_map__new(sched->map.cpus_str);
3186        if (!map) {
3187                pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3188                return -1;
3189        }
3190
3191        sched->map.cpus = map;
3192        return 0;
3193}
3194
3195static int setup_color_pids(struct perf_sched *sched)
3196{
3197        struct thread_map *map;
3198
3199        if (!sched->map.color_pids_str)
3200                return 0;
3201
3202        map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3203        if (!map) {
3204                pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3205                return -1;
3206        }
3207
3208        sched->map.color_pids = map;
3209        return 0;
3210}
3211
3212static int setup_color_cpus(struct perf_sched *sched)
3213{
3214        struct cpu_map *map;
3215
3216        if (!sched->map.color_cpus_str)
3217                return 0;
3218
3219        map = cpu_map__new(sched->map.color_cpus_str);
3220        if (!map) {
3221                pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3222                return -1;
3223        }
3224
3225        sched->map.color_cpus = map;
3226        return 0;
3227}
3228
3229static int perf_sched__map(struct perf_sched *sched)
3230{
3231        if (setup_map_cpus(sched))
3232                return -1;
3233
3234        if (setup_color_pids(sched))
3235                return -1;
3236
3237        if (setup_color_cpus(sched))
3238                return -1;
3239
3240        setup_pager();
3241        if (perf_sched__read_events(sched))
3242                return -1;
3243        print_bad_events(sched);
3244        return 0;
3245}
3246
3247static int perf_sched__replay(struct perf_sched *sched)
3248{
3249        unsigned long i;
3250
3251        calibrate_run_measurement_overhead(sched);
3252        calibrate_sleep_measurement_overhead(sched);
3253
3254        test_calibrations(sched);
3255
3256        if (perf_sched__read_events(sched))
3257                return -1;
3258
3259        printf("nr_run_events:        %ld\n", sched->nr_run_events);
3260        printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3261        printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3262
3263        if (sched->targetless_wakeups)
3264                printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3265        if (sched->multitarget_wakeups)
3266                printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3267        if (sched->nr_run_events_optimized)
3268                printf("run atoms optimized: %ld\n",
3269                        sched->nr_run_events_optimized);
3270
3271        print_task_traces(sched);
3272        add_cross_task_wakeups(sched);
3273
3274        create_tasks(sched);
3275        printf("------------------------------------------------------------\n");
3276        for (i = 0; i < sched->replay_repeat; i++)
3277                run_one_test(sched);
3278
3279        return 0;
3280}
3281
3282static void setup_sorting(struct perf_sched *sched, const struct option *options,
3283                          const char * const usage_msg[])
3284{
3285        char *tmp, *tok, *str = strdup(sched->sort_order);
3286
3287        for (tok = strtok_r(str, ", ", &tmp);
3288                        tok; tok = strtok_r(NULL, ", ", &tmp)) {
3289                if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3290                        usage_with_options_msg(usage_msg, options,
3291                                        "Unknown --sort key: `%s'", tok);
3292                }
3293        }
3294
3295        free(str);
3296
3297        sort_dimension__add("pid", &sched->cmp_pid);
3298}
3299
3300static int __cmd_record(int argc, const char **argv)
3301{
3302        unsigned int rec_argc, i, j;
3303        const char **rec_argv;
3304        const char * const record_args[] = {
3305                "record",
3306                "-a",
3307                "-R",
3308                "-m", "1024",
3309                "-c", "1",
3310                "-e", "sched:sched_switch",
3311                "-e", "sched:sched_stat_wait",
3312                "-e", "sched:sched_stat_sleep",
3313                "-e", "sched:sched_stat_iowait",
3314                "-e", "sched:sched_stat_runtime",
3315                "-e", "sched:sched_process_fork",
3316                "-e", "sched:sched_wakeup",
3317                "-e", "sched:sched_wakeup_new",
3318                "-e", "sched:sched_migrate_task",
3319        };
3320
3321        rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3322        rec_argv = calloc(rec_argc + 1, sizeof(char *));
3323
3324        if (rec_argv == NULL)
3325                return -ENOMEM;
3326
3327        for (i = 0; i < ARRAY_SIZE(record_args); i++)
3328                rec_argv[i] = strdup(record_args[i]);
3329
3330        for (j = 1; j < (unsigned int)argc; j++, i++)
3331                rec_argv[i] = argv[j];
3332
3333        BUG_ON(i != rec_argc);
3334
3335        return cmd_record(i, rec_argv);
3336}
3337
3338int cmd_sched(int argc, const char **argv)
3339{
3340        static const char default_sort_order[] = "avg, max, switch, runtime";
3341        struct perf_sched sched = {
3342                .tool = {
3343                        .sample          = perf_sched__process_tracepoint_sample,
3344                        .comm            = perf_sched__process_comm,
3345                        .namespaces      = perf_event__process_namespaces,
3346                        .lost            = perf_event__process_lost,
3347                        .fork            = perf_sched__process_fork_event,
3348                        .ordered_events = true,
3349                },
3350                .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3351                .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3352                .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3353                .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3354                .sort_order           = default_sort_order,
3355                .replay_repeat        = 10,
3356                .profile_cpu          = -1,
3357                .next_shortname1      = 'A',
3358                .next_shortname2      = '0',
3359                .skip_merge           = 0,
3360                .show_callchain       = 1,
3361                .max_stack            = 5,
3362        };
3363        const struct option sched_options[] = {
3364        OPT_STRING('i', "input", &input_name, "file",
3365                    "input file name"),
3366        OPT_INCR('v', "verbose", &verbose,
3367                    "be more verbose (show symbol address, etc)"),
3368        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3369                    "dump raw trace in ASCII"),
3370        OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3371        OPT_END()
3372        };
3373        const struct option latency_options[] = {
3374        OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3375                   "sort by key(s): runtime, switch, avg, max"),
3376        OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3377                    "CPU to profile on"),
3378        OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3379                    "latency stats per pid instead of per comm"),
3380        OPT_PARENT(sched_options)
3381        };
3382        const struct option replay_options[] = {
3383        OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3384                     "repeat the workload replay N times (-1: infinite)"),
3385        OPT_PARENT(sched_options)
3386        };
3387        const struct option map_options[] = {
3388        OPT_BOOLEAN(0, "compact", &sched.map.comp,
3389                    "map output in compact mode"),
3390        OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3391                   "highlight given pids in map"),
3392        OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3393                    "highlight given CPUs in map"),
3394        OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3395                    "display given CPUs in map"),
3396        OPT_PARENT(sched_options)
3397        };
3398        const struct option timehist_options[] = {
3399        OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3400                   "file", "vmlinux pathname"),
3401        OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3402                   "file", "kallsyms pathname"),
3403        OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3404                    "Display call chains if present (default on)"),
3405        OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3406                   "Maximum number of functions to display backtrace."),
3407        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3408                    "Look for files with symbols relative to this directory"),
3409        OPT_BOOLEAN('s', "summary", &sched.summary_only,
3410                    "Show only syscall summary with statistics"),
3411        OPT_BOOLEAN('S', "with-summary", &sched.summary,
3412                    "Show all syscalls and summary with statistics"),
3413        OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3414        OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3415        OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3416        OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3417        OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3418        OPT_STRING(0, "time", &sched.time_str, "str",
3419                   "Time span for analysis (start,stop)"),
3420        OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3421        OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3422                   "analyze events only for given process id(s)"),
3423        OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3424                   "analyze events only for given thread id(s)"),
3425        OPT_PARENT(sched_options)
3426        };
3427
3428        const char * const latency_usage[] = {
3429                "perf sched latency [<options>]",
3430                NULL
3431        };
3432        const char * const replay_usage[] = {
3433                "perf sched replay [<options>]",
3434                NULL
3435        };
3436        const char * const map_usage[] = {
3437                "perf sched map [<options>]",
3438                NULL
3439        };
3440        const char * const timehist_usage[] = {
3441                "perf sched timehist [<options>]",
3442                NULL
3443        };
3444        const char *const sched_subcommands[] = { "record", "latency", "map",
3445                                                  "replay", "script",
3446                                                  "timehist", NULL };
3447        const char *sched_usage[] = {
3448                NULL,
3449                NULL
3450        };
3451        struct trace_sched_handler lat_ops  = {
3452                .wakeup_event       = latency_wakeup_event,
3453                .switch_event       = latency_switch_event,
3454                .runtime_event      = latency_runtime_event,
3455                .migrate_task_event = latency_migrate_task_event,
3456        };
3457        struct trace_sched_handler map_ops  = {
3458                .switch_event       = map_switch_event,
3459        };
3460        struct trace_sched_handler replay_ops  = {
3461                .wakeup_event       = replay_wakeup_event,
3462                .switch_event       = replay_switch_event,
3463                .fork_event         = replay_fork_event,
3464        };
3465        unsigned int i;
3466
3467        for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3468                sched.curr_pid[i] = -1;
3469
3470        argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3471                                        sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3472        if (!argc)
3473                usage_with_options(sched_usage, sched_options);
3474
3475        /*
3476         * Aliased to 'perf script' for now:
3477         */
3478        if (!strcmp(argv[0], "script"))
3479                return cmd_script(argc, argv);
3480
3481        if (!strncmp(argv[0], "rec", 3)) {
3482                return __cmd_record(argc, argv);
3483        } else if (!strncmp(argv[0], "lat", 3)) {
3484                sched.tp_handler = &lat_ops;
3485                if (argc > 1) {
3486                        argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3487                        if (argc)
3488                                usage_with_options(latency_usage, latency_options);
3489                }
3490                setup_sorting(&sched, latency_options, latency_usage);
3491                return perf_sched__lat(&sched);
3492        } else if (!strcmp(argv[0], "map")) {
3493                if (argc) {
3494                        argc = parse_options(argc, argv, map_options, map_usage, 0);
3495                        if (argc)
3496                                usage_with_options(map_usage, map_options);
3497                }
3498                sched.tp_handler = &map_ops;
3499                setup_sorting(&sched, latency_options, latency_usage);
3500                return perf_sched__map(&sched);
3501        } else if (!strncmp(argv[0], "rep", 3)) {
3502                sched.tp_handler = &replay_ops;
3503                if (argc) {
3504                        argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3505                        if (argc)
3506                                usage_with_options(replay_usage, replay_options);
3507                }
3508                return perf_sched__replay(&sched);
3509        } else if (!strcmp(argv[0], "timehist")) {
3510                if (argc) {
3511                        argc = parse_options(argc, argv, timehist_options,
3512                                             timehist_usage, 0);
3513                        if (argc)
3514                                usage_with_options(timehist_usage, timehist_options);
3515                }
3516                if ((sched.show_wakeups || sched.show_next) &&
3517                    sched.summary_only) {
3518                        pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3519                        parse_options_usage(timehist_usage, timehist_options, "s", true);
3520                        if (sched.show_wakeups)
3521                                parse_options_usage(NULL, timehist_options, "w", true);
3522                        if (sched.show_next)
3523                                parse_options_usage(NULL, timehist_options, "n", true);
3524                        return -EINVAL;
3525                }
3526
3527                return perf_sched__timehist(&sched);
3528        } else {
3529                usage_with_options(sched_usage, sched_options);
3530        }
3531
3532        return 0;
3533}
3534