linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include "callchain.h"
   7#include "debug.h"
   8#include "event.h"
   9#include "evsel.h"
  10#include "hist.h"
  11#include "machine.h"
  12#include "map.h"
  13#include "symbol.h"
  14#include "sort.h"
  15#include "strlist.h"
  16#include "thread.h"
  17#include "vdso.h"
  18#include <stdbool.h>
  19#include <sys/types.h>
  20#include <sys/stat.h>
  21#include <unistd.h>
  22#include "unwind.h"
  23#include "linux/hash.h"
  24#include "asm/bug.h"
  25#include "bpf-event.h"
  26
  27#include "sane_ctype.h"
  28#include <symbol/kallsyms.h>
  29#include <linux/mman.h>
  30
  31static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  32
  33static void dsos__init(struct dsos *dsos)
  34{
  35        INIT_LIST_HEAD(&dsos->head);
  36        dsos->root = RB_ROOT;
  37        init_rwsem(&dsos->lock);
  38}
  39
  40static void machine__threads_init(struct machine *machine)
  41{
  42        int i;
  43
  44        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  45                struct threads *threads = &machine->threads[i];
  46                threads->entries = RB_ROOT_CACHED;
  47                init_rwsem(&threads->lock);
  48                threads->nr = 0;
  49                INIT_LIST_HEAD(&threads->dead);
  50                threads->last_match = NULL;
  51        }
  52}
  53
  54static int machine__set_mmap_name(struct machine *machine)
  55{
  56        if (machine__is_host(machine))
  57                machine->mmap_name = strdup("[kernel.kallsyms]");
  58        else if (machine__is_default_guest(machine))
  59                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  60        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  61                          machine->pid) < 0)
  62                machine->mmap_name = NULL;
  63
  64        return machine->mmap_name ? 0 : -ENOMEM;
  65}
  66
  67int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  68{
  69        int err = -ENOMEM;
  70
  71        memset(machine, 0, sizeof(*machine));
  72        map_groups__init(&machine->kmaps, machine);
  73        RB_CLEAR_NODE(&machine->rb_node);
  74        dsos__init(&machine->dsos);
  75
  76        machine__threads_init(machine);
  77
  78        machine->vdso_info = NULL;
  79        machine->env = NULL;
  80
  81        machine->pid = pid;
  82
  83        machine->id_hdr_size = 0;
  84        machine->kptr_restrict_warned = false;
  85        machine->comm_exec = false;
  86        machine->kernel_start = 0;
  87        machine->vmlinux_map = NULL;
  88
  89        machine->root_dir = strdup(root_dir);
  90        if (machine->root_dir == NULL)
  91                return -ENOMEM;
  92
  93        if (machine__set_mmap_name(machine))
  94                goto out;
  95
  96        if (pid != HOST_KERNEL_ID) {
  97                struct thread *thread = machine__findnew_thread(machine, -1,
  98                                                                pid);
  99                char comm[64];
 100
 101                if (thread == NULL)
 102                        goto out;
 103
 104                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 105                thread__set_comm(thread, comm, 0);
 106                thread__put(thread);
 107        }
 108
 109        machine->current_tid = NULL;
 110        err = 0;
 111
 112out:
 113        if (err) {
 114                zfree(&machine->root_dir);
 115                zfree(&machine->mmap_name);
 116        }
 117        return 0;
 118}
 119
 120struct machine *machine__new_host(void)
 121{
 122        struct machine *machine = malloc(sizeof(*machine));
 123
 124        if (machine != NULL) {
 125                machine__init(machine, "", HOST_KERNEL_ID);
 126
 127                if (machine__create_kernel_maps(machine) < 0)
 128                        goto out_delete;
 129        }
 130
 131        return machine;
 132out_delete:
 133        free(machine);
 134        return NULL;
 135}
 136
 137struct machine *machine__new_kallsyms(void)
 138{
 139        struct machine *machine = machine__new_host();
 140        /*
 141         * FIXME:
 142         * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 143         *    ask for not using the kcore parsing code, once this one is fixed
 144         *    to create a map per module.
 145         */
 146        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 147                machine__delete(machine);
 148                machine = NULL;
 149        }
 150
 151        return machine;
 152}
 153
 154static void dsos__purge(struct dsos *dsos)
 155{
 156        struct dso *pos, *n;
 157
 158        down_write(&dsos->lock);
 159
 160        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 161                RB_CLEAR_NODE(&pos->rb_node);
 162                pos->root = NULL;
 163                list_del_init(&pos->node);
 164                dso__put(pos);
 165        }
 166
 167        up_write(&dsos->lock);
 168}
 169
 170static void dsos__exit(struct dsos *dsos)
 171{
 172        dsos__purge(dsos);
 173        exit_rwsem(&dsos->lock);
 174}
 175
 176void machine__delete_threads(struct machine *machine)
 177{
 178        struct rb_node *nd;
 179        int i;
 180
 181        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 182                struct threads *threads = &machine->threads[i];
 183                down_write(&threads->lock);
 184                nd = rb_first_cached(&threads->entries);
 185                while (nd) {
 186                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 187
 188                        nd = rb_next(nd);
 189                        __machine__remove_thread(machine, t, false);
 190                }
 191                up_write(&threads->lock);
 192        }
 193}
 194
 195void machine__exit(struct machine *machine)
 196{
 197        int i;
 198
 199        if (machine == NULL)
 200                return;
 201
 202        machine__destroy_kernel_maps(machine);
 203        map_groups__exit(&machine->kmaps);
 204        dsos__exit(&machine->dsos);
 205        machine__exit_vdso(machine);
 206        zfree(&machine->root_dir);
 207        zfree(&machine->mmap_name);
 208        zfree(&machine->current_tid);
 209
 210        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 211                struct threads *threads = &machine->threads[i];
 212                exit_rwsem(&threads->lock);
 213        }
 214}
 215
 216void machine__delete(struct machine *machine)
 217{
 218        if (machine) {
 219                machine__exit(machine);
 220                free(machine);
 221        }
 222}
 223
 224void machines__init(struct machines *machines)
 225{
 226        machine__init(&machines->host, "", HOST_KERNEL_ID);
 227        machines->guests = RB_ROOT_CACHED;
 228}
 229
 230void machines__exit(struct machines *machines)
 231{
 232        machine__exit(&machines->host);
 233        /* XXX exit guest */
 234}
 235
 236struct machine *machines__add(struct machines *machines, pid_t pid,
 237                              const char *root_dir)
 238{
 239        struct rb_node **p = &machines->guests.rb_root.rb_node;
 240        struct rb_node *parent = NULL;
 241        struct machine *pos, *machine = malloc(sizeof(*machine));
 242        bool leftmost = true;
 243
 244        if (machine == NULL)
 245                return NULL;
 246
 247        if (machine__init(machine, root_dir, pid) != 0) {
 248                free(machine);
 249                return NULL;
 250        }
 251
 252        while (*p != NULL) {
 253                parent = *p;
 254                pos = rb_entry(parent, struct machine, rb_node);
 255                if (pid < pos->pid)
 256                        p = &(*p)->rb_left;
 257                else {
 258                        p = &(*p)->rb_right;
 259                        leftmost = false;
 260                }
 261        }
 262
 263        rb_link_node(&machine->rb_node, parent, p);
 264        rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 265
 266        return machine;
 267}
 268
 269void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 270{
 271        struct rb_node *nd;
 272
 273        machines->host.comm_exec = comm_exec;
 274
 275        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 276                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 277
 278                machine->comm_exec = comm_exec;
 279        }
 280}
 281
 282struct machine *machines__find(struct machines *machines, pid_t pid)
 283{
 284        struct rb_node **p = &machines->guests.rb_root.rb_node;
 285        struct rb_node *parent = NULL;
 286        struct machine *machine;
 287        struct machine *default_machine = NULL;
 288
 289        if (pid == HOST_KERNEL_ID)
 290                return &machines->host;
 291
 292        while (*p != NULL) {
 293                parent = *p;
 294                machine = rb_entry(parent, struct machine, rb_node);
 295                if (pid < machine->pid)
 296                        p = &(*p)->rb_left;
 297                else if (pid > machine->pid)
 298                        p = &(*p)->rb_right;
 299                else
 300                        return machine;
 301                if (!machine->pid)
 302                        default_machine = machine;
 303        }
 304
 305        return default_machine;
 306}
 307
 308struct machine *machines__findnew(struct machines *machines, pid_t pid)
 309{
 310        char path[PATH_MAX];
 311        const char *root_dir = "";
 312        struct machine *machine = machines__find(machines, pid);
 313
 314        if (machine && (machine->pid == pid))
 315                goto out;
 316
 317        if ((pid != HOST_KERNEL_ID) &&
 318            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 319            (symbol_conf.guestmount)) {
 320                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 321                if (access(path, R_OK)) {
 322                        static struct strlist *seen;
 323
 324                        if (!seen)
 325                                seen = strlist__new(NULL, NULL);
 326
 327                        if (!strlist__has_entry(seen, path)) {
 328                                pr_err("Can't access file %s\n", path);
 329                                strlist__add(seen, path);
 330                        }
 331                        machine = NULL;
 332                        goto out;
 333                }
 334                root_dir = path;
 335        }
 336
 337        machine = machines__add(machines, pid, root_dir);
 338out:
 339        return machine;
 340}
 341
 342void machines__process_guests(struct machines *machines,
 343                              machine__process_t process, void *data)
 344{
 345        struct rb_node *nd;
 346
 347        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 348                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 349                process(pos, data);
 350        }
 351}
 352
 353void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 354{
 355        struct rb_node *node;
 356        struct machine *machine;
 357
 358        machines->host.id_hdr_size = id_hdr_size;
 359
 360        for (node = rb_first_cached(&machines->guests); node;
 361             node = rb_next(node)) {
 362                machine = rb_entry(node, struct machine, rb_node);
 363                machine->id_hdr_size = id_hdr_size;
 364        }
 365
 366        return;
 367}
 368
 369static void machine__update_thread_pid(struct machine *machine,
 370                                       struct thread *th, pid_t pid)
 371{
 372        struct thread *leader;
 373
 374        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 375                return;
 376
 377        th->pid_ = pid;
 378
 379        if (th->pid_ == th->tid)
 380                return;
 381
 382        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 383        if (!leader)
 384                goto out_err;
 385
 386        if (!leader->mg)
 387                leader->mg = map_groups__new(machine);
 388
 389        if (!leader->mg)
 390                goto out_err;
 391
 392        if (th->mg == leader->mg)
 393                return;
 394
 395        if (th->mg) {
 396                /*
 397                 * Maps are created from MMAP events which provide the pid and
 398                 * tid.  Consequently there never should be any maps on a thread
 399                 * with an unknown pid.  Just print an error if there are.
 400                 */
 401                if (!map_groups__empty(th->mg))
 402                        pr_err("Discarding thread maps for %d:%d\n",
 403                               th->pid_, th->tid);
 404                map_groups__put(th->mg);
 405        }
 406
 407        th->mg = map_groups__get(leader->mg);
 408out_put:
 409        thread__put(leader);
 410        return;
 411out_err:
 412        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 413        goto out_put;
 414}
 415
 416/*
 417 * Front-end cache - TID lookups come in blocks,
 418 * so most of the time we dont have to look up
 419 * the full rbtree:
 420 */
 421static struct thread*
 422__threads__get_last_match(struct threads *threads, struct machine *machine,
 423                          int pid, int tid)
 424{
 425        struct thread *th;
 426
 427        th = threads->last_match;
 428        if (th != NULL) {
 429                if (th->tid == tid) {
 430                        machine__update_thread_pid(machine, th, pid);
 431                        return thread__get(th);
 432                }
 433
 434                threads->last_match = NULL;
 435        }
 436
 437        return NULL;
 438}
 439
 440static struct thread*
 441threads__get_last_match(struct threads *threads, struct machine *machine,
 442                        int pid, int tid)
 443{
 444        struct thread *th = NULL;
 445
 446        if (perf_singlethreaded)
 447                th = __threads__get_last_match(threads, machine, pid, tid);
 448
 449        return th;
 450}
 451
 452static void
 453__threads__set_last_match(struct threads *threads, struct thread *th)
 454{
 455        threads->last_match = th;
 456}
 457
 458static void
 459threads__set_last_match(struct threads *threads, struct thread *th)
 460{
 461        if (perf_singlethreaded)
 462                __threads__set_last_match(threads, th);
 463}
 464
 465/*
 466 * Caller must eventually drop thread->refcnt returned with a successful
 467 * lookup/new thread inserted.
 468 */
 469static struct thread *____machine__findnew_thread(struct machine *machine,
 470                                                  struct threads *threads,
 471                                                  pid_t pid, pid_t tid,
 472                                                  bool create)
 473{
 474        struct rb_node **p = &threads->entries.rb_root.rb_node;
 475        struct rb_node *parent = NULL;
 476        struct thread *th;
 477        bool leftmost = true;
 478
 479        th = threads__get_last_match(threads, machine, pid, tid);
 480        if (th)
 481                return th;
 482
 483        while (*p != NULL) {
 484                parent = *p;
 485                th = rb_entry(parent, struct thread, rb_node);
 486
 487                if (th->tid == tid) {
 488                        threads__set_last_match(threads, th);
 489                        machine__update_thread_pid(machine, th, pid);
 490                        return thread__get(th);
 491                }
 492
 493                if (tid < th->tid)
 494                        p = &(*p)->rb_left;
 495                else {
 496                        p = &(*p)->rb_right;
 497                        leftmost = false;
 498                }
 499        }
 500
 501        if (!create)
 502                return NULL;
 503
 504        th = thread__new(pid, tid);
 505        if (th != NULL) {
 506                rb_link_node(&th->rb_node, parent, p);
 507                rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 508
 509                /*
 510                 * We have to initialize map_groups separately
 511                 * after rb tree is updated.
 512                 *
 513                 * The reason is that we call machine__findnew_thread
 514                 * within thread__init_map_groups to find the thread
 515                 * leader and that would screwed the rb tree.
 516                 */
 517                if (thread__init_map_groups(th, machine)) {
 518                        rb_erase_cached(&th->rb_node, &threads->entries);
 519                        RB_CLEAR_NODE(&th->rb_node);
 520                        thread__put(th);
 521                        return NULL;
 522                }
 523                /*
 524                 * It is now in the rbtree, get a ref
 525                 */
 526                thread__get(th);
 527                threads__set_last_match(threads, th);
 528                ++threads->nr;
 529        }
 530
 531        return th;
 532}
 533
 534struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 535{
 536        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 537}
 538
 539struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 540                                       pid_t tid)
 541{
 542        struct threads *threads = machine__threads(machine, tid);
 543        struct thread *th;
 544
 545        down_write(&threads->lock);
 546        th = __machine__findnew_thread(machine, pid, tid);
 547        up_write(&threads->lock);
 548        return th;
 549}
 550
 551struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 552                                    pid_t tid)
 553{
 554        struct threads *threads = machine__threads(machine, tid);
 555        struct thread *th;
 556
 557        down_read(&threads->lock);
 558        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 559        up_read(&threads->lock);
 560        return th;
 561}
 562
 563struct comm *machine__thread_exec_comm(struct machine *machine,
 564                                       struct thread *thread)
 565{
 566        if (machine->comm_exec)
 567                return thread__exec_comm(thread);
 568        else
 569                return thread__comm(thread);
 570}
 571
 572int machine__process_comm_event(struct machine *machine, union perf_event *event,
 573                                struct perf_sample *sample)
 574{
 575        struct thread *thread = machine__findnew_thread(machine,
 576                                                        event->comm.pid,
 577                                                        event->comm.tid);
 578        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 579        int err = 0;
 580
 581        if (exec)
 582                machine->comm_exec = true;
 583
 584        if (dump_trace)
 585                perf_event__fprintf_comm(event, stdout);
 586
 587        if (thread == NULL ||
 588            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 589                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 590                err = -1;
 591        }
 592
 593        thread__put(thread);
 594
 595        return err;
 596}
 597
 598int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 599                                      union perf_event *event,
 600                                      struct perf_sample *sample __maybe_unused)
 601{
 602        struct thread *thread = machine__findnew_thread(machine,
 603                                                        event->namespaces.pid,
 604                                                        event->namespaces.tid);
 605        int err = 0;
 606
 607        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 608                  "\nWARNING: kernel seems to support more namespaces than perf"
 609                  " tool.\nTry updating the perf tool..\n\n");
 610
 611        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 612                  "\nWARNING: perf tool seems to support more namespaces than"
 613                  " the kernel.\nTry updating the kernel..\n\n");
 614
 615        if (dump_trace)
 616                perf_event__fprintf_namespaces(event, stdout);
 617
 618        if (thread == NULL ||
 619            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 620                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 621                err = -1;
 622        }
 623
 624        thread__put(thread);
 625
 626        return err;
 627}
 628
 629int machine__process_lost_event(struct machine *machine __maybe_unused,
 630                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 631{
 632        dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 633                    event->lost.id, event->lost.lost);
 634        return 0;
 635}
 636
 637int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 638                                        union perf_event *event, struct perf_sample *sample)
 639{
 640        dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 641                    sample->id, event->lost_samples.lost);
 642        return 0;
 643}
 644
 645static struct dso *machine__findnew_module_dso(struct machine *machine,
 646                                               struct kmod_path *m,
 647                                               const char *filename)
 648{
 649        struct dso *dso;
 650
 651        down_write(&machine->dsos.lock);
 652
 653        dso = __dsos__find(&machine->dsos, m->name, true);
 654        if (!dso) {
 655                dso = __dsos__addnew(&machine->dsos, m->name);
 656                if (dso == NULL)
 657                        goto out_unlock;
 658
 659                dso__set_module_info(dso, m, machine);
 660                dso__set_long_name(dso, strdup(filename), true);
 661        }
 662
 663        dso__get(dso);
 664out_unlock:
 665        up_write(&machine->dsos.lock);
 666        return dso;
 667}
 668
 669int machine__process_aux_event(struct machine *machine __maybe_unused,
 670                               union perf_event *event)
 671{
 672        if (dump_trace)
 673                perf_event__fprintf_aux(event, stdout);
 674        return 0;
 675}
 676
 677int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 678                                        union perf_event *event)
 679{
 680        if (dump_trace)
 681                perf_event__fprintf_itrace_start(event, stdout);
 682        return 0;
 683}
 684
 685int machine__process_switch_event(struct machine *machine __maybe_unused,
 686                                  union perf_event *event)
 687{
 688        if (dump_trace)
 689                perf_event__fprintf_switch(event, stdout);
 690        return 0;
 691}
 692
 693static int machine__process_ksymbol_register(struct machine *machine,
 694                                             union perf_event *event,
 695                                             struct perf_sample *sample __maybe_unused)
 696{
 697        struct symbol *sym;
 698        struct map *map;
 699
 700        map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
 701        if (!map) {
 702                map = dso__new_map(event->ksymbol_event.name);
 703                if (!map)
 704                        return -ENOMEM;
 705
 706                map->start = event->ksymbol_event.addr;
 707                map->pgoff = map->start;
 708                map->end = map->start + event->ksymbol_event.len;
 709                map_groups__insert(&machine->kmaps, map);
 710        }
 711
 712        sym = symbol__new(event->ksymbol_event.addr, event->ksymbol_event.len,
 713                          0, 0, event->ksymbol_event.name);
 714        if (!sym)
 715                return -ENOMEM;
 716        dso__insert_symbol(map->dso, sym);
 717        return 0;
 718}
 719
 720static int machine__process_ksymbol_unregister(struct machine *machine,
 721                                               union perf_event *event,
 722                                               struct perf_sample *sample __maybe_unused)
 723{
 724        struct map *map;
 725
 726        map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
 727        if (map)
 728                map_groups__remove(&machine->kmaps, map);
 729
 730        return 0;
 731}
 732
 733int machine__process_ksymbol(struct machine *machine __maybe_unused,
 734                             union perf_event *event,
 735                             struct perf_sample *sample)
 736{
 737        if (dump_trace)
 738                perf_event__fprintf_ksymbol(event, stdout);
 739
 740        if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 741                return machine__process_ksymbol_unregister(machine, event,
 742                                                           sample);
 743        return machine__process_ksymbol_register(machine, event, sample);
 744}
 745
 746static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 747{
 748        const char *dup_filename;
 749
 750        if (!filename || !dso || !dso->long_name)
 751                return;
 752        if (dso->long_name[0] != '[')
 753                return;
 754        if (!strchr(filename, '/'))
 755                return;
 756
 757        dup_filename = strdup(filename);
 758        if (!dup_filename)
 759                return;
 760
 761        dso__set_long_name(dso, dup_filename, true);
 762}
 763
 764struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 765                                        const char *filename)
 766{
 767        struct map *map = NULL;
 768        struct dso *dso = NULL;
 769        struct kmod_path m;
 770
 771        if (kmod_path__parse_name(&m, filename))
 772                return NULL;
 773
 774        map = map_groups__find_by_name(&machine->kmaps, m.name);
 775        if (map) {
 776                /*
 777                 * If the map's dso is an offline module, give dso__load()
 778                 * a chance to find the file path of that module by fixing
 779                 * long_name.
 780                 */
 781                dso__adjust_kmod_long_name(map->dso, filename);
 782                goto out;
 783        }
 784
 785        dso = machine__findnew_module_dso(machine, &m, filename);
 786        if (dso == NULL)
 787                goto out;
 788
 789        map = map__new2(start, dso);
 790        if (map == NULL)
 791                goto out;
 792
 793        map_groups__insert(&machine->kmaps, map);
 794
 795        /* Put the map here because map_groups__insert alread got it */
 796        map__put(map);
 797out:
 798        /* put the dso here, corresponding to  machine__findnew_module_dso */
 799        dso__put(dso);
 800        free(m.name);
 801        return map;
 802}
 803
 804size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 805{
 806        struct rb_node *nd;
 807        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 808
 809        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 810                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 811                ret += __dsos__fprintf(&pos->dsos.head, fp);
 812        }
 813
 814        return ret;
 815}
 816
 817size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 818                                     bool (skip)(struct dso *dso, int parm), int parm)
 819{
 820        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 821}
 822
 823size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 824                                     bool (skip)(struct dso *dso, int parm), int parm)
 825{
 826        struct rb_node *nd;
 827        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 828
 829        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 830                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 831                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 832        }
 833        return ret;
 834}
 835
 836size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 837{
 838        int i;
 839        size_t printed = 0;
 840        struct dso *kdso = machine__kernel_map(machine)->dso;
 841
 842        if (kdso->has_build_id) {
 843                char filename[PATH_MAX];
 844                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 845                                           false))
 846                        printed += fprintf(fp, "[0] %s\n", filename);
 847        }
 848
 849        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 850                printed += fprintf(fp, "[%d] %s\n",
 851                                   i + kdso->has_build_id, vmlinux_path[i]);
 852
 853        return printed;
 854}
 855
 856size_t machine__fprintf(struct machine *machine, FILE *fp)
 857{
 858        struct rb_node *nd;
 859        size_t ret;
 860        int i;
 861
 862        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 863                struct threads *threads = &machine->threads[i];
 864
 865                down_read(&threads->lock);
 866
 867                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 868
 869                for (nd = rb_first_cached(&threads->entries); nd;
 870                     nd = rb_next(nd)) {
 871                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 872
 873                        ret += thread__fprintf(pos, fp);
 874                }
 875
 876                up_read(&threads->lock);
 877        }
 878        return ret;
 879}
 880
 881static struct dso *machine__get_kernel(struct machine *machine)
 882{
 883        const char *vmlinux_name = machine->mmap_name;
 884        struct dso *kernel;
 885
 886        if (machine__is_host(machine)) {
 887                if (symbol_conf.vmlinux_name)
 888                        vmlinux_name = symbol_conf.vmlinux_name;
 889
 890                kernel = machine__findnew_kernel(machine, vmlinux_name,
 891                                                 "[kernel]", DSO_TYPE_KERNEL);
 892        } else {
 893                if (symbol_conf.default_guest_vmlinux_name)
 894                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 895
 896                kernel = machine__findnew_kernel(machine, vmlinux_name,
 897                                                 "[guest.kernel]",
 898                                                 DSO_TYPE_GUEST_KERNEL);
 899        }
 900
 901        if (kernel != NULL && (!kernel->has_build_id))
 902                dso__read_running_kernel_build_id(kernel, machine);
 903
 904        return kernel;
 905}
 906
 907struct process_args {
 908        u64 start;
 909};
 910
 911void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 912                                    size_t bufsz)
 913{
 914        if (machine__is_default_guest(machine))
 915                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 916        else
 917                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 918}
 919
 920const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 921
 922/* Figure out the start address of kernel map from /proc/kallsyms.
 923 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 924 * symbol_name if it's not that important.
 925 */
 926static int machine__get_running_kernel_start(struct machine *machine,
 927                                             const char **symbol_name,
 928                                             u64 *start, u64 *end)
 929{
 930        char filename[PATH_MAX];
 931        int i, err = -1;
 932        const char *name;
 933        u64 addr = 0;
 934
 935        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 936
 937        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 938                return 0;
 939
 940        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 941                err = kallsyms__get_function_start(filename, name, &addr);
 942                if (!err)
 943                        break;
 944        }
 945
 946        if (err)
 947                return -1;
 948
 949        if (symbol_name)
 950                *symbol_name = name;
 951
 952        *start = addr;
 953
 954        err = kallsyms__get_function_start(filename, "_etext", &addr);
 955        if (!err)
 956                *end = addr;
 957
 958        return 0;
 959}
 960
 961int machine__create_extra_kernel_map(struct machine *machine,
 962                                     struct dso *kernel,
 963                                     struct extra_kernel_map *xm)
 964{
 965        struct kmap *kmap;
 966        struct map *map;
 967
 968        map = map__new2(xm->start, kernel);
 969        if (!map)
 970                return -1;
 971
 972        map->end   = xm->end;
 973        map->pgoff = xm->pgoff;
 974
 975        kmap = map__kmap(map);
 976
 977        kmap->kmaps = &machine->kmaps;
 978        strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
 979
 980        map_groups__insert(&machine->kmaps, map);
 981
 982        pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
 983                  kmap->name, map->start, map->end);
 984
 985        map__put(map);
 986
 987        return 0;
 988}
 989
 990static u64 find_entry_trampoline(struct dso *dso)
 991{
 992        /* Duplicates are removed so lookup all aliases */
 993        const char *syms[] = {
 994                "_entry_trampoline",
 995                "__entry_trampoline_start",
 996                "entry_SYSCALL_64_trampoline",
 997        };
 998        struct symbol *sym = dso__first_symbol(dso);
 999        unsigned int i;
1000
1001        for (; sym; sym = dso__next_symbol(sym)) {
1002                if (sym->binding != STB_GLOBAL)
1003                        continue;
1004                for (i = 0; i < ARRAY_SIZE(syms); i++) {
1005                        if (!strcmp(sym->name, syms[i]))
1006                                return sym->start;
1007                }
1008        }
1009
1010        return 0;
1011}
1012
1013/*
1014 * These values can be used for kernels that do not have symbols for the entry
1015 * trampolines in kallsyms.
1016 */
1017#define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1018#define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1019#define X86_64_ENTRY_TRAMPOLINE         0x6000
1020
1021/* Map x86_64 PTI entry trampolines */
1022int machine__map_x86_64_entry_trampolines(struct machine *machine,
1023                                          struct dso *kernel)
1024{
1025        struct map_groups *kmaps = &machine->kmaps;
1026        struct maps *maps = &kmaps->maps;
1027        int nr_cpus_avail, cpu;
1028        bool found = false;
1029        struct map *map;
1030        u64 pgoff;
1031
1032        /*
1033         * In the vmlinux case, pgoff is a virtual address which must now be
1034         * mapped to a vmlinux offset.
1035         */
1036        for (map = maps__first(maps); map; map = map__next(map)) {
1037                struct kmap *kmap = __map__kmap(map);
1038                struct map *dest_map;
1039
1040                if (!kmap || !is_entry_trampoline(kmap->name))
1041                        continue;
1042
1043                dest_map = map_groups__find(kmaps, map->pgoff);
1044                if (dest_map != map)
1045                        map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1046                found = true;
1047        }
1048        if (found || machine->trampolines_mapped)
1049                return 0;
1050
1051        pgoff = find_entry_trampoline(kernel);
1052        if (!pgoff)
1053                return 0;
1054
1055        nr_cpus_avail = machine__nr_cpus_avail(machine);
1056
1057        /* Add a 1 page map for each CPU's entry trampoline */
1058        for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1059                u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1060                         cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1061                         X86_64_ENTRY_TRAMPOLINE;
1062                struct extra_kernel_map xm = {
1063                        .start = va,
1064                        .end   = va + page_size,
1065                        .pgoff = pgoff,
1066                };
1067
1068                strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1069
1070                if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1071                        return -1;
1072        }
1073
1074        machine->trampolines_mapped = nr_cpus_avail;
1075
1076        return 0;
1077}
1078
1079int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1080                                             struct dso *kernel __maybe_unused)
1081{
1082        return 0;
1083}
1084
1085static int
1086__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1087{
1088        struct kmap *kmap;
1089        struct map *map;
1090
1091        /* In case of renewal the kernel map, destroy previous one */
1092        machine__destroy_kernel_maps(machine);
1093
1094        machine->vmlinux_map = map__new2(0, kernel);
1095        if (machine->vmlinux_map == NULL)
1096                return -1;
1097
1098        machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1099        map = machine__kernel_map(machine);
1100        kmap = map__kmap(map);
1101        if (!kmap)
1102                return -1;
1103
1104        kmap->kmaps = &machine->kmaps;
1105        map_groups__insert(&machine->kmaps, map);
1106
1107        return 0;
1108}
1109
1110void machine__destroy_kernel_maps(struct machine *machine)
1111{
1112        struct kmap *kmap;
1113        struct map *map = machine__kernel_map(machine);
1114
1115        if (map == NULL)
1116                return;
1117
1118        kmap = map__kmap(map);
1119        map_groups__remove(&machine->kmaps, map);
1120        if (kmap && kmap->ref_reloc_sym) {
1121                zfree((char **)&kmap->ref_reloc_sym->name);
1122                zfree(&kmap->ref_reloc_sym);
1123        }
1124
1125        map__zput(machine->vmlinux_map);
1126}
1127
1128int machines__create_guest_kernel_maps(struct machines *machines)
1129{
1130        int ret = 0;
1131        struct dirent **namelist = NULL;
1132        int i, items = 0;
1133        char path[PATH_MAX];
1134        pid_t pid;
1135        char *endp;
1136
1137        if (symbol_conf.default_guest_vmlinux_name ||
1138            symbol_conf.default_guest_modules ||
1139            symbol_conf.default_guest_kallsyms) {
1140                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1141        }
1142
1143        if (symbol_conf.guestmount) {
1144                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1145                if (items <= 0)
1146                        return -ENOENT;
1147                for (i = 0; i < items; i++) {
1148                        if (!isdigit(namelist[i]->d_name[0])) {
1149                                /* Filter out . and .. */
1150                                continue;
1151                        }
1152                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1153                        if ((*endp != '\0') ||
1154                            (endp == namelist[i]->d_name) ||
1155                            (errno == ERANGE)) {
1156                                pr_debug("invalid directory (%s). Skipping.\n",
1157                                         namelist[i]->d_name);
1158                                continue;
1159                        }
1160                        sprintf(path, "%s/%s/proc/kallsyms",
1161                                symbol_conf.guestmount,
1162                                namelist[i]->d_name);
1163                        ret = access(path, R_OK);
1164                        if (ret) {
1165                                pr_debug("Can't access file %s\n", path);
1166                                goto failure;
1167                        }
1168                        machines__create_kernel_maps(machines, pid);
1169                }
1170failure:
1171                free(namelist);
1172        }
1173
1174        return ret;
1175}
1176
1177void machines__destroy_kernel_maps(struct machines *machines)
1178{
1179        struct rb_node *next = rb_first_cached(&machines->guests);
1180
1181        machine__destroy_kernel_maps(&machines->host);
1182
1183        while (next) {
1184                struct machine *pos = rb_entry(next, struct machine, rb_node);
1185
1186                next = rb_next(&pos->rb_node);
1187                rb_erase_cached(&pos->rb_node, &machines->guests);
1188                machine__delete(pos);
1189        }
1190}
1191
1192int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1193{
1194        struct machine *machine = machines__findnew(machines, pid);
1195
1196        if (machine == NULL)
1197                return -1;
1198
1199        return machine__create_kernel_maps(machine);
1200}
1201
1202int machine__load_kallsyms(struct machine *machine, const char *filename)
1203{
1204        struct map *map = machine__kernel_map(machine);
1205        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1206
1207        if (ret > 0) {
1208                dso__set_loaded(map->dso);
1209                /*
1210                 * Since /proc/kallsyms will have multiple sessions for the
1211                 * kernel, with modules between them, fixup the end of all
1212                 * sections.
1213                 */
1214                map_groups__fixup_end(&machine->kmaps);
1215        }
1216
1217        return ret;
1218}
1219
1220int machine__load_vmlinux_path(struct machine *machine)
1221{
1222        struct map *map = machine__kernel_map(machine);
1223        int ret = dso__load_vmlinux_path(map->dso, map);
1224
1225        if (ret > 0)
1226                dso__set_loaded(map->dso);
1227
1228        return ret;
1229}
1230
1231static char *get_kernel_version(const char *root_dir)
1232{
1233        char version[PATH_MAX];
1234        FILE *file;
1235        char *name, *tmp;
1236        const char *prefix = "Linux version ";
1237
1238        sprintf(version, "%s/proc/version", root_dir);
1239        file = fopen(version, "r");
1240        if (!file)
1241                return NULL;
1242
1243        tmp = fgets(version, sizeof(version), file);
1244        if (!tmp)
1245                *version = '\0';
1246        fclose(file);
1247
1248        name = strstr(version, prefix);
1249        if (!name)
1250                return NULL;
1251        name += strlen(prefix);
1252        tmp = strchr(name, ' ');
1253        if (tmp)
1254                *tmp = '\0';
1255
1256        return strdup(name);
1257}
1258
1259static bool is_kmod_dso(struct dso *dso)
1260{
1261        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1262               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1263}
1264
1265static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1266                                       struct kmod_path *m)
1267{
1268        char *long_name;
1269        struct map *map = map_groups__find_by_name(mg, m->name);
1270
1271        if (map == NULL)
1272                return 0;
1273
1274        long_name = strdup(path);
1275        if (long_name == NULL)
1276                return -ENOMEM;
1277
1278        dso__set_long_name(map->dso, long_name, true);
1279        dso__kernel_module_get_build_id(map->dso, "");
1280
1281        /*
1282         * Full name could reveal us kmod compression, so
1283         * we need to update the symtab_type if needed.
1284         */
1285        if (m->comp && is_kmod_dso(map->dso)) {
1286                map->dso->symtab_type++;
1287                map->dso->comp = m->comp;
1288        }
1289
1290        return 0;
1291}
1292
1293static int map_groups__set_modules_path_dir(struct map_groups *mg,
1294                                const char *dir_name, int depth)
1295{
1296        struct dirent *dent;
1297        DIR *dir = opendir(dir_name);
1298        int ret = 0;
1299
1300        if (!dir) {
1301                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1302                return -1;
1303        }
1304
1305        while ((dent = readdir(dir)) != NULL) {
1306                char path[PATH_MAX];
1307                struct stat st;
1308
1309                /*sshfs might return bad dent->d_type, so we have to stat*/
1310                snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1311                if (stat(path, &st))
1312                        continue;
1313
1314                if (S_ISDIR(st.st_mode)) {
1315                        if (!strcmp(dent->d_name, ".") ||
1316                            !strcmp(dent->d_name, ".."))
1317                                continue;
1318
1319                        /* Do not follow top-level source and build symlinks */
1320                        if (depth == 0) {
1321                                if (!strcmp(dent->d_name, "source") ||
1322                                    !strcmp(dent->d_name, "build"))
1323                                        continue;
1324                        }
1325
1326                        ret = map_groups__set_modules_path_dir(mg, path,
1327                                                               depth + 1);
1328                        if (ret < 0)
1329                                goto out;
1330                } else {
1331                        struct kmod_path m;
1332
1333                        ret = kmod_path__parse_name(&m, dent->d_name);
1334                        if (ret)
1335                                goto out;
1336
1337                        if (m.kmod)
1338                                ret = map_groups__set_module_path(mg, path, &m);
1339
1340                        free(m.name);
1341
1342                        if (ret)
1343                                goto out;
1344                }
1345        }
1346
1347out:
1348        closedir(dir);
1349        return ret;
1350}
1351
1352static int machine__set_modules_path(struct machine *machine)
1353{
1354        char *version;
1355        char modules_path[PATH_MAX];
1356
1357        version = get_kernel_version(machine->root_dir);
1358        if (!version)
1359                return -1;
1360
1361        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1362                 machine->root_dir, version);
1363        free(version);
1364
1365        return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1366}
1367int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1368                                const char *name __maybe_unused)
1369{
1370        return 0;
1371}
1372
1373static int machine__create_module(void *arg, const char *name, u64 start,
1374                                  u64 size)
1375{
1376        struct machine *machine = arg;
1377        struct map *map;
1378
1379        if (arch__fix_module_text_start(&start, name) < 0)
1380                return -1;
1381
1382        map = machine__findnew_module_map(machine, start, name);
1383        if (map == NULL)
1384                return -1;
1385        map->end = start + size;
1386
1387        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1388
1389        return 0;
1390}
1391
1392static int machine__create_modules(struct machine *machine)
1393{
1394        const char *modules;
1395        char path[PATH_MAX];
1396
1397        if (machine__is_default_guest(machine)) {
1398                modules = symbol_conf.default_guest_modules;
1399        } else {
1400                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1401                modules = path;
1402        }
1403
1404        if (symbol__restricted_filename(modules, "/proc/modules"))
1405                return -1;
1406
1407        if (modules__parse(modules, machine, machine__create_module))
1408                return -1;
1409
1410        if (!machine__set_modules_path(machine))
1411                return 0;
1412
1413        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1414
1415        return 0;
1416}
1417
1418static void machine__set_kernel_mmap(struct machine *machine,
1419                                     u64 start, u64 end)
1420{
1421        machine->vmlinux_map->start = start;
1422        machine->vmlinux_map->end   = end;
1423        /*
1424         * Be a bit paranoid here, some perf.data file came with
1425         * a zero sized synthesized MMAP event for the kernel.
1426         */
1427        if (start == 0 && end == 0)
1428                machine->vmlinux_map->end = ~0ULL;
1429}
1430
1431static void machine__update_kernel_mmap(struct machine *machine,
1432                                     u64 start, u64 end)
1433{
1434        struct map *map = machine__kernel_map(machine);
1435
1436        map__get(map);
1437        map_groups__remove(&machine->kmaps, map);
1438
1439        machine__set_kernel_mmap(machine, start, end);
1440
1441        map_groups__insert(&machine->kmaps, map);
1442        map__put(map);
1443}
1444
1445int machine__create_kernel_maps(struct machine *machine)
1446{
1447        struct dso *kernel = machine__get_kernel(machine);
1448        const char *name = NULL;
1449        struct map *map;
1450        u64 start = 0, end = ~0ULL;
1451        int ret;
1452
1453        if (kernel == NULL)
1454                return -1;
1455
1456        ret = __machine__create_kernel_maps(machine, kernel);
1457        if (ret < 0)
1458                goto out_put;
1459
1460        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1461                if (machine__is_host(machine))
1462                        pr_debug("Problems creating module maps, "
1463                                 "continuing anyway...\n");
1464                else
1465                        pr_debug("Problems creating module maps for guest %d, "
1466                                 "continuing anyway...\n", machine->pid);
1467        }
1468
1469        if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1470                if (name &&
1471                    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1472                        machine__destroy_kernel_maps(machine);
1473                        ret = -1;
1474                        goto out_put;
1475                }
1476
1477                /*
1478                 * we have a real start address now, so re-order the kmaps
1479                 * assume it's the last in the kmaps
1480                 */
1481                machine__update_kernel_mmap(machine, start, end);
1482        }
1483
1484        if (machine__create_extra_kernel_maps(machine, kernel))
1485                pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1486
1487        if (end == ~0ULL) {
1488                /* update end address of the kernel map using adjacent module address */
1489                map = map__next(machine__kernel_map(machine));
1490                if (map)
1491                        machine__set_kernel_mmap(machine, start, map->start);
1492        }
1493
1494out_put:
1495        dso__put(kernel);
1496        return ret;
1497}
1498
1499static bool machine__uses_kcore(struct machine *machine)
1500{
1501        struct dso *dso;
1502
1503        list_for_each_entry(dso, &machine->dsos.head, node) {
1504                if (dso__is_kcore(dso))
1505                        return true;
1506        }
1507
1508        return false;
1509}
1510
1511static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1512                                             union perf_event *event)
1513{
1514        return machine__is(machine, "x86_64") &&
1515               is_entry_trampoline(event->mmap.filename);
1516}
1517
1518static int machine__process_extra_kernel_map(struct machine *machine,
1519                                             union perf_event *event)
1520{
1521        struct map *kernel_map = machine__kernel_map(machine);
1522        struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1523        struct extra_kernel_map xm = {
1524                .start = event->mmap.start,
1525                .end   = event->mmap.start + event->mmap.len,
1526                .pgoff = event->mmap.pgoff,
1527        };
1528
1529        if (kernel == NULL)
1530                return -1;
1531
1532        strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1533
1534        return machine__create_extra_kernel_map(machine, kernel, &xm);
1535}
1536
1537static int machine__process_kernel_mmap_event(struct machine *machine,
1538                                              union perf_event *event)
1539{
1540        struct map *map;
1541        enum dso_kernel_type kernel_type;
1542        bool is_kernel_mmap;
1543
1544        /* If we have maps from kcore then we do not need or want any others */
1545        if (machine__uses_kcore(machine))
1546                return 0;
1547
1548        if (machine__is_host(machine))
1549                kernel_type = DSO_TYPE_KERNEL;
1550        else
1551                kernel_type = DSO_TYPE_GUEST_KERNEL;
1552
1553        is_kernel_mmap = memcmp(event->mmap.filename,
1554                                machine->mmap_name,
1555                                strlen(machine->mmap_name) - 1) == 0;
1556        if (event->mmap.filename[0] == '/' ||
1557            (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1558                map = machine__findnew_module_map(machine, event->mmap.start,
1559                                                  event->mmap.filename);
1560                if (map == NULL)
1561                        goto out_problem;
1562
1563                map->end = map->start + event->mmap.len;
1564        } else if (is_kernel_mmap) {
1565                const char *symbol_name = (event->mmap.filename +
1566                                strlen(machine->mmap_name));
1567                /*
1568                 * Should be there already, from the build-id table in
1569                 * the header.
1570                 */
1571                struct dso *kernel = NULL;
1572                struct dso *dso;
1573
1574                down_read(&machine->dsos.lock);
1575
1576                list_for_each_entry(dso, &machine->dsos.head, node) {
1577
1578                        /*
1579                         * The cpumode passed to is_kernel_module is not the
1580                         * cpumode of *this* event. If we insist on passing
1581                         * correct cpumode to is_kernel_module, we should
1582                         * record the cpumode when we adding this dso to the
1583                         * linked list.
1584                         *
1585                         * However we don't really need passing correct
1586                         * cpumode.  We know the correct cpumode must be kernel
1587                         * mode (if not, we should not link it onto kernel_dsos
1588                         * list).
1589                         *
1590                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1591                         * is_kernel_module() treats it as a kernel cpumode.
1592                         */
1593
1594                        if (!dso->kernel ||
1595                            is_kernel_module(dso->long_name,
1596                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1597                                continue;
1598
1599
1600                        kernel = dso;
1601                        break;
1602                }
1603
1604                up_read(&machine->dsos.lock);
1605
1606                if (kernel == NULL)
1607                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1608                if (kernel == NULL)
1609                        goto out_problem;
1610
1611                kernel->kernel = kernel_type;
1612                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1613                        dso__put(kernel);
1614                        goto out_problem;
1615                }
1616
1617                if (strstr(kernel->long_name, "vmlinux"))
1618                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1619
1620                machine__update_kernel_mmap(machine, event->mmap.start,
1621                                         event->mmap.start + event->mmap.len);
1622
1623                /*
1624                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1625                 * symbol. Effectively having zero here means that at record
1626                 * time /proc/sys/kernel/kptr_restrict was non zero.
1627                 */
1628                if (event->mmap.pgoff != 0) {
1629                        map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1630                                                        symbol_name,
1631                                                        event->mmap.pgoff);
1632                }
1633
1634                if (machine__is_default_guest(machine)) {
1635                        /*
1636                         * preload dso of guest kernel and modules
1637                         */
1638                        dso__load(kernel, machine__kernel_map(machine));
1639                }
1640        } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1641                return machine__process_extra_kernel_map(machine, event);
1642        }
1643        return 0;
1644out_problem:
1645        return -1;
1646}
1647
1648int machine__process_mmap2_event(struct machine *machine,
1649                                 union perf_event *event,
1650                                 struct perf_sample *sample)
1651{
1652        struct thread *thread;
1653        struct map *map;
1654        int ret = 0;
1655
1656        if (dump_trace)
1657                perf_event__fprintf_mmap2(event, stdout);
1658
1659        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1660            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1661                ret = machine__process_kernel_mmap_event(machine, event);
1662                if (ret < 0)
1663                        goto out_problem;
1664                return 0;
1665        }
1666
1667        thread = machine__findnew_thread(machine, event->mmap2.pid,
1668                                        event->mmap2.tid);
1669        if (thread == NULL)
1670                goto out_problem;
1671
1672        map = map__new(machine, event->mmap2.start,
1673                        event->mmap2.len, event->mmap2.pgoff,
1674                        event->mmap2.maj,
1675                        event->mmap2.min, event->mmap2.ino,
1676                        event->mmap2.ino_generation,
1677                        event->mmap2.prot,
1678                        event->mmap2.flags,
1679                        event->mmap2.filename, thread);
1680
1681        if (map == NULL)
1682                goto out_problem_map;
1683
1684        ret = thread__insert_map(thread, map);
1685        if (ret)
1686                goto out_problem_insert;
1687
1688        thread__put(thread);
1689        map__put(map);
1690        return 0;
1691
1692out_problem_insert:
1693        map__put(map);
1694out_problem_map:
1695        thread__put(thread);
1696out_problem:
1697        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1698        return 0;
1699}
1700
1701int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1702                                struct perf_sample *sample)
1703{
1704        struct thread *thread;
1705        struct map *map;
1706        u32 prot = 0;
1707        int ret = 0;
1708
1709        if (dump_trace)
1710                perf_event__fprintf_mmap(event, stdout);
1711
1712        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1713            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1714                ret = machine__process_kernel_mmap_event(machine, event);
1715                if (ret < 0)
1716                        goto out_problem;
1717                return 0;
1718        }
1719
1720        thread = machine__findnew_thread(machine, event->mmap.pid,
1721                                         event->mmap.tid);
1722        if (thread == NULL)
1723                goto out_problem;
1724
1725        if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1726                prot = PROT_EXEC;
1727
1728        map = map__new(machine, event->mmap.start,
1729                        event->mmap.len, event->mmap.pgoff,
1730                        0, 0, 0, 0, prot, 0,
1731                        event->mmap.filename,
1732                        thread);
1733
1734        if (map == NULL)
1735                goto out_problem_map;
1736
1737        ret = thread__insert_map(thread, map);
1738        if (ret)
1739                goto out_problem_insert;
1740
1741        thread__put(thread);
1742        map__put(map);
1743        return 0;
1744
1745out_problem_insert:
1746        map__put(map);
1747out_problem_map:
1748        thread__put(thread);
1749out_problem:
1750        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1751        return 0;
1752}
1753
1754static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1755{
1756        struct threads *threads = machine__threads(machine, th->tid);
1757
1758        if (threads->last_match == th)
1759                threads__set_last_match(threads, NULL);
1760
1761        BUG_ON(refcount_read(&th->refcnt) == 0);
1762        if (lock)
1763                down_write(&threads->lock);
1764        rb_erase_cached(&th->rb_node, &threads->entries);
1765        RB_CLEAR_NODE(&th->rb_node);
1766        --threads->nr;
1767        /*
1768         * Move it first to the dead_threads list, then drop the reference,
1769         * if this is the last reference, then the thread__delete destructor
1770         * will be called and we will remove it from the dead_threads list.
1771         */
1772        list_add_tail(&th->node, &threads->dead);
1773        if (lock)
1774                up_write(&threads->lock);
1775        thread__put(th);
1776}
1777
1778void machine__remove_thread(struct machine *machine, struct thread *th)
1779{
1780        return __machine__remove_thread(machine, th, true);
1781}
1782
1783int machine__process_fork_event(struct machine *machine, union perf_event *event,
1784                                struct perf_sample *sample)
1785{
1786        struct thread *thread = machine__find_thread(machine,
1787                                                     event->fork.pid,
1788                                                     event->fork.tid);
1789        struct thread *parent = machine__findnew_thread(machine,
1790                                                        event->fork.ppid,
1791                                                        event->fork.ptid);
1792        bool do_maps_clone = true;
1793        int err = 0;
1794
1795        if (dump_trace)
1796                perf_event__fprintf_task(event, stdout);
1797
1798        /*
1799         * There may be an existing thread that is not actually the parent,
1800         * either because we are processing events out of order, or because the
1801         * (fork) event that would have removed the thread was lost. Assume the
1802         * latter case and continue on as best we can.
1803         */
1804        if (parent->pid_ != (pid_t)event->fork.ppid) {
1805                dump_printf("removing erroneous parent thread %d/%d\n",
1806                            parent->pid_, parent->tid);
1807                machine__remove_thread(machine, parent);
1808                thread__put(parent);
1809                parent = machine__findnew_thread(machine, event->fork.ppid,
1810                                                 event->fork.ptid);
1811        }
1812
1813        /* if a thread currently exists for the thread id remove it */
1814        if (thread != NULL) {
1815                machine__remove_thread(machine, thread);
1816                thread__put(thread);
1817        }
1818
1819        thread = machine__findnew_thread(machine, event->fork.pid,
1820                                         event->fork.tid);
1821        /*
1822         * When synthesizing FORK events, we are trying to create thread
1823         * objects for the already running tasks on the machine.
1824         *
1825         * Normally, for a kernel FORK event, we want to clone the parent's
1826         * maps because that is what the kernel just did.
1827         *
1828         * But when synthesizing, this should not be done.  If we do, we end up
1829         * with overlapping maps as we process the sythesized MMAP2 events that
1830         * get delivered shortly thereafter.
1831         *
1832         * Use the FORK event misc flags in an internal way to signal this
1833         * situation, so we can elide the map clone when appropriate.
1834         */
1835        if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1836                do_maps_clone = false;
1837
1838        if (thread == NULL || parent == NULL ||
1839            thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1840                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1841                err = -1;
1842        }
1843        thread__put(thread);
1844        thread__put(parent);
1845
1846        return err;
1847}
1848
1849int machine__process_exit_event(struct machine *machine, union perf_event *event,
1850                                struct perf_sample *sample __maybe_unused)
1851{
1852        struct thread *thread = machine__find_thread(machine,
1853                                                     event->fork.pid,
1854                                                     event->fork.tid);
1855
1856        if (dump_trace)
1857                perf_event__fprintf_task(event, stdout);
1858
1859        if (thread != NULL) {
1860                thread__exited(thread);
1861                thread__put(thread);
1862        }
1863
1864        return 0;
1865}
1866
1867int machine__process_event(struct machine *machine, union perf_event *event,
1868                           struct perf_sample *sample)
1869{
1870        int ret;
1871
1872        switch (event->header.type) {
1873        case PERF_RECORD_COMM:
1874                ret = machine__process_comm_event(machine, event, sample); break;
1875        case PERF_RECORD_MMAP:
1876                ret = machine__process_mmap_event(machine, event, sample); break;
1877        case PERF_RECORD_NAMESPACES:
1878                ret = machine__process_namespaces_event(machine, event, sample); break;
1879        case PERF_RECORD_MMAP2:
1880                ret = machine__process_mmap2_event(machine, event, sample); break;
1881        case PERF_RECORD_FORK:
1882                ret = machine__process_fork_event(machine, event, sample); break;
1883        case PERF_RECORD_EXIT:
1884                ret = machine__process_exit_event(machine, event, sample); break;
1885        case PERF_RECORD_LOST:
1886                ret = machine__process_lost_event(machine, event, sample); break;
1887        case PERF_RECORD_AUX:
1888                ret = machine__process_aux_event(machine, event); break;
1889        case PERF_RECORD_ITRACE_START:
1890                ret = machine__process_itrace_start_event(machine, event); break;
1891        case PERF_RECORD_LOST_SAMPLES:
1892                ret = machine__process_lost_samples_event(machine, event, sample); break;
1893        case PERF_RECORD_SWITCH:
1894        case PERF_RECORD_SWITCH_CPU_WIDE:
1895                ret = machine__process_switch_event(machine, event); break;
1896        case PERF_RECORD_KSYMBOL:
1897                ret = machine__process_ksymbol(machine, event, sample); break;
1898        case PERF_RECORD_BPF_EVENT:
1899                ret = machine__process_bpf_event(machine, event, sample); break;
1900        default:
1901                ret = -1;
1902                break;
1903        }
1904
1905        return ret;
1906}
1907
1908static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1909{
1910        if (!regexec(regex, sym->name, 0, NULL, 0))
1911                return 1;
1912        return 0;
1913}
1914
1915static void ip__resolve_ams(struct thread *thread,
1916                            struct addr_map_symbol *ams,
1917                            u64 ip)
1918{
1919        struct addr_location al;
1920
1921        memset(&al, 0, sizeof(al));
1922        /*
1923         * We cannot use the header.misc hint to determine whether a
1924         * branch stack address is user, kernel, guest, hypervisor.
1925         * Branches may straddle the kernel/user/hypervisor boundaries.
1926         * Thus, we have to try consecutively until we find a match
1927         * or else, the symbol is unknown
1928         */
1929        thread__find_cpumode_addr_location(thread, ip, &al);
1930
1931        ams->addr = ip;
1932        ams->al_addr = al.addr;
1933        ams->sym = al.sym;
1934        ams->map = al.map;
1935        ams->phys_addr = 0;
1936}
1937
1938static void ip__resolve_data(struct thread *thread,
1939                             u8 m, struct addr_map_symbol *ams,
1940                             u64 addr, u64 phys_addr)
1941{
1942        struct addr_location al;
1943
1944        memset(&al, 0, sizeof(al));
1945
1946        thread__find_symbol(thread, m, addr, &al);
1947
1948        ams->addr = addr;
1949        ams->al_addr = al.addr;
1950        ams->sym = al.sym;
1951        ams->map = al.map;
1952        ams->phys_addr = phys_addr;
1953}
1954
1955struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1956                                     struct addr_location *al)
1957{
1958        struct mem_info *mi = mem_info__new();
1959
1960        if (!mi)
1961                return NULL;
1962
1963        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1964        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1965                         sample->addr, sample->phys_addr);
1966        mi->data_src.val = sample->data_src;
1967
1968        return mi;
1969}
1970
1971static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1972{
1973        char *srcline = NULL;
1974
1975        if (!map || callchain_param.key == CCKEY_FUNCTION)
1976                return srcline;
1977
1978        srcline = srcline__tree_find(&map->dso->srclines, ip);
1979        if (!srcline) {
1980                bool show_sym = false;
1981                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1982
1983                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1984                                      sym, show_sym, show_addr, ip);
1985                srcline__tree_insert(&map->dso->srclines, ip, srcline);
1986        }
1987
1988        return srcline;
1989}
1990
1991struct iterations {
1992        int nr_loop_iter;
1993        u64 cycles;
1994};
1995
1996static int add_callchain_ip(struct thread *thread,
1997                            struct callchain_cursor *cursor,
1998                            struct symbol **parent,
1999                            struct addr_location *root_al,
2000                            u8 *cpumode,
2001                            u64 ip,
2002                            bool branch,
2003                            struct branch_flags *flags,
2004                            struct iterations *iter,
2005                            u64 branch_from)
2006{
2007        struct addr_location al;
2008        int nr_loop_iter = 0;
2009        u64 iter_cycles = 0;
2010        const char *srcline = NULL;
2011
2012        al.filtered = 0;
2013        al.sym = NULL;
2014        if (!cpumode) {
2015                thread__find_cpumode_addr_location(thread, ip, &al);
2016        } else {
2017                if (ip >= PERF_CONTEXT_MAX) {
2018                        switch (ip) {
2019                        case PERF_CONTEXT_HV:
2020                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2021                                break;
2022                        case PERF_CONTEXT_KERNEL:
2023                                *cpumode = PERF_RECORD_MISC_KERNEL;
2024                                break;
2025                        case PERF_CONTEXT_USER:
2026                                *cpumode = PERF_RECORD_MISC_USER;
2027                                break;
2028                        default:
2029                                pr_debug("invalid callchain context: "
2030                                         "%"PRId64"\n", (s64) ip);
2031                                /*
2032                                 * It seems the callchain is corrupted.
2033                                 * Discard all.
2034                                 */
2035                                callchain_cursor_reset(cursor);
2036                                return 1;
2037                        }
2038                        return 0;
2039                }
2040                thread__find_symbol(thread, *cpumode, ip, &al);
2041        }
2042
2043        if (al.sym != NULL) {
2044                if (perf_hpp_list.parent && !*parent &&
2045                    symbol__match_regex(al.sym, &parent_regex))
2046                        *parent = al.sym;
2047                else if (have_ignore_callees && root_al &&
2048                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2049                        /* Treat this symbol as the root,
2050                           forgetting its callees. */
2051                        *root_al = al;
2052                        callchain_cursor_reset(cursor);
2053                }
2054        }
2055
2056        if (symbol_conf.hide_unresolved && al.sym == NULL)
2057                return 0;
2058
2059        if (iter) {
2060                nr_loop_iter = iter->nr_loop_iter;
2061                iter_cycles = iter->cycles;
2062        }
2063
2064        srcline = callchain_srcline(al.map, al.sym, al.addr);
2065        return callchain_cursor_append(cursor, ip, al.map, al.sym,
2066                                       branch, flags, nr_loop_iter,
2067                                       iter_cycles, branch_from, srcline);
2068}
2069
2070struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2071                                           struct addr_location *al)
2072{
2073        unsigned int i;
2074        const struct branch_stack *bs = sample->branch_stack;
2075        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2076
2077        if (!bi)
2078                return NULL;
2079
2080        for (i = 0; i < bs->nr; i++) {
2081                ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2082                ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2083                bi[i].flags = bs->entries[i].flags;
2084        }
2085        return bi;
2086}
2087
2088static void save_iterations(struct iterations *iter,
2089                            struct branch_entry *be, int nr)
2090{
2091        int i;
2092
2093        iter->nr_loop_iter++;
2094        iter->cycles = 0;
2095
2096        for (i = 0; i < nr; i++)
2097                iter->cycles += be[i].flags.cycles;
2098}
2099
2100#define CHASHSZ 127
2101#define CHASHBITS 7
2102#define NO_ENTRY 0xff
2103
2104#define PERF_MAX_BRANCH_DEPTH 127
2105
2106/* Remove loops. */
2107static int remove_loops(struct branch_entry *l, int nr,
2108                        struct iterations *iter)
2109{
2110        int i, j, off;
2111        unsigned char chash[CHASHSZ];
2112
2113        memset(chash, NO_ENTRY, sizeof(chash));
2114
2115        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2116
2117        for (i = 0; i < nr; i++) {
2118                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2119
2120                /* no collision handling for now */
2121                if (chash[h] == NO_ENTRY) {
2122                        chash[h] = i;
2123                } else if (l[chash[h]].from == l[i].from) {
2124                        bool is_loop = true;
2125                        /* check if it is a real loop */
2126                        off = 0;
2127                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
2128                                if (l[j].from != l[i + off].from) {
2129                                        is_loop = false;
2130                                        break;
2131                                }
2132                        if (is_loop) {
2133                                j = nr - (i + off);
2134                                if (j > 0) {
2135                                        save_iterations(iter + i + off,
2136                                                l + i, off);
2137
2138                                        memmove(iter + i, iter + i + off,
2139                                                j * sizeof(*iter));
2140
2141                                        memmove(l + i, l + i + off,
2142                                                j * sizeof(*l));
2143                                }
2144
2145                                nr -= off;
2146                        }
2147                }
2148        }
2149        return nr;
2150}
2151
2152/*
2153 * Recolve LBR callstack chain sample
2154 * Return:
2155 * 1 on success get LBR callchain information
2156 * 0 no available LBR callchain information, should try fp
2157 * negative error code on other errors.
2158 */
2159static int resolve_lbr_callchain_sample(struct thread *thread,
2160                                        struct callchain_cursor *cursor,
2161                                        struct perf_sample *sample,
2162                                        struct symbol **parent,
2163                                        struct addr_location *root_al,
2164                                        int max_stack)
2165{
2166        struct ip_callchain *chain = sample->callchain;
2167        int chain_nr = min(max_stack, (int)chain->nr), i;
2168        u8 cpumode = PERF_RECORD_MISC_USER;
2169        u64 ip, branch_from = 0;
2170
2171        for (i = 0; i < chain_nr; i++) {
2172                if (chain->ips[i] == PERF_CONTEXT_USER)
2173                        break;
2174        }
2175
2176        /* LBR only affects the user callchain */
2177        if (i != chain_nr) {
2178                struct branch_stack *lbr_stack = sample->branch_stack;
2179                int lbr_nr = lbr_stack->nr, j, k;
2180                bool branch;
2181                struct branch_flags *flags;
2182                /*
2183                 * LBR callstack can only get user call chain.
2184                 * The mix_chain_nr is kernel call chain
2185                 * number plus LBR user call chain number.
2186                 * i is kernel call chain number,
2187                 * 1 is PERF_CONTEXT_USER,
2188                 * lbr_nr + 1 is the user call chain number.
2189                 * For details, please refer to the comments
2190                 * in callchain__printf
2191                 */
2192                int mix_chain_nr = i + 1 + lbr_nr + 1;
2193
2194                for (j = 0; j < mix_chain_nr; j++) {
2195                        int err;
2196                        branch = false;
2197                        flags = NULL;
2198
2199                        if (callchain_param.order == ORDER_CALLEE) {
2200                                if (j < i + 1)
2201                                        ip = chain->ips[j];
2202                                else if (j > i + 1) {
2203                                        k = j - i - 2;
2204                                        ip = lbr_stack->entries[k].from;
2205                                        branch = true;
2206                                        flags = &lbr_stack->entries[k].flags;
2207                                } else {
2208                                        ip = lbr_stack->entries[0].to;
2209                                        branch = true;
2210                                        flags = &lbr_stack->entries[0].flags;
2211                                        branch_from =
2212                                                lbr_stack->entries[0].from;
2213                                }
2214                        } else {
2215                                if (j < lbr_nr) {
2216                                        k = lbr_nr - j - 1;
2217                                        ip = lbr_stack->entries[k].from;
2218                                        branch = true;
2219                                        flags = &lbr_stack->entries[k].flags;
2220                                }
2221                                else if (j > lbr_nr)
2222                                        ip = chain->ips[i + 1 - (j - lbr_nr)];
2223                                else {
2224                                        ip = lbr_stack->entries[0].to;
2225                                        branch = true;
2226                                        flags = &lbr_stack->entries[0].flags;
2227                                        branch_from =
2228                                                lbr_stack->entries[0].from;
2229                                }
2230                        }
2231
2232                        err = add_callchain_ip(thread, cursor, parent,
2233                                               root_al, &cpumode, ip,
2234                                               branch, flags, NULL,
2235                                               branch_from);
2236                        if (err)
2237                                return (err < 0) ? err : 0;
2238                }
2239                return 1;
2240        }
2241
2242        return 0;
2243}
2244
2245static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2246                             struct callchain_cursor *cursor,
2247                             struct symbol **parent,
2248                             struct addr_location *root_al,
2249                             u8 *cpumode, int ent)
2250{
2251        int err = 0;
2252
2253        while (--ent >= 0) {
2254                u64 ip = chain->ips[ent];
2255
2256                if (ip >= PERF_CONTEXT_MAX) {
2257                        err = add_callchain_ip(thread, cursor, parent,
2258                                               root_al, cpumode, ip,
2259                                               false, NULL, NULL, 0);
2260                        break;
2261                }
2262        }
2263        return err;
2264}
2265
2266static int thread__resolve_callchain_sample(struct thread *thread,
2267                                            struct callchain_cursor *cursor,
2268                                            struct perf_evsel *evsel,
2269                                            struct perf_sample *sample,
2270                                            struct symbol **parent,
2271                                            struct addr_location *root_al,
2272                                            int max_stack)
2273{
2274        struct branch_stack *branch = sample->branch_stack;
2275        struct ip_callchain *chain = sample->callchain;
2276        int chain_nr = 0;
2277        u8 cpumode = PERF_RECORD_MISC_USER;
2278        int i, j, err, nr_entries;
2279        int skip_idx = -1;
2280        int first_call = 0;
2281
2282        if (chain)
2283                chain_nr = chain->nr;
2284
2285        if (perf_evsel__has_branch_callstack(evsel)) {
2286                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2287                                                   root_al, max_stack);
2288                if (err)
2289                        return (err < 0) ? err : 0;
2290        }
2291
2292        /*
2293         * Based on DWARF debug information, some architectures skip
2294         * a callchain entry saved by the kernel.
2295         */
2296        skip_idx = arch_skip_callchain_idx(thread, chain);
2297
2298        /*
2299         * Add branches to call stack for easier browsing. This gives
2300         * more context for a sample than just the callers.
2301         *
2302         * This uses individual histograms of paths compared to the
2303         * aggregated histograms the normal LBR mode uses.
2304         *
2305         * Limitations for now:
2306         * - No extra filters
2307         * - No annotations (should annotate somehow)
2308         */
2309
2310        if (branch && callchain_param.branch_callstack) {
2311                int nr = min(max_stack, (int)branch->nr);
2312                struct branch_entry be[nr];
2313                struct iterations iter[nr];
2314
2315                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2316                        pr_warning("corrupted branch chain. skipping...\n");
2317                        goto check_calls;
2318                }
2319
2320                for (i = 0; i < nr; i++) {
2321                        if (callchain_param.order == ORDER_CALLEE) {
2322                                be[i] = branch->entries[i];
2323
2324                                if (chain == NULL)
2325                                        continue;
2326
2327                                /*
2328                                 * Check for overlap into the callchain.
2329                                 * The return address is one off compared to
2330                                 * the branch entry. To adjust for this
2331                                 * assume the calling instruction is not longer
2332                                 * than 8 bytes.
2333                                 */
2334                                if (i == skip_idx ||
2335                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2336                                        first_call++;
2337                                else if (be[i].from < chain->ips[first_call] &&
2338                                    be[i].from >= chain->ips[first_call] - 8)
2339                                        first_call++;
2340                        } else
2341                                be[i] = branch->entries[branch->nr - i - 1];
2342                }
2343
2344                memset(iter, 0, sizeof(struct iterations) * nr);
2345                nr = remove_loops(be, nr, iter);
2346
2347                for (i = 0; i < nr; i++) {
2348                        err = add_callchain_ip(thread, cursor, parent,
2349                                               root_al,
2350                                               NULL, be[i].to,
2351                                               true, &be[i].flags,
2352                                               NULL, be[i].from);
2353
2354                        if (!err)
2355                                err = add_callchain_ip(thread, cursor, parent, root_al,
2356                                                       NULL, be[i].from,
2357                                                       true, &be[i].flags,
2358                                                       &iter[i], 0);
2359                        if (err == -EINVAL)
2360                                break;
2361                        if (err)
2362                                return err;
2363                }
2364
2365                if (chain_nr == 0)
2366                        return 0;
2367
2368                chain_nr -= nr;
2369        }
2370
2371check_calls:
2372        if (callchain_param.order != ORDER_CALLEE) {
2373                err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2374                                        &cpumode, chain->nr - first_call);
2375                if (err)
2376                        return (err < 0) ? err : 0;
2377        }
2378        for (i = first_call, nr_entries = 0;
2379             i < chain_nr && nr_entries < max_stack; i++) {
2380                u64 ip;
2381
2382                if (callchain_param.order == ORDER_CALLEE)
2383                        j = i;
2384                else
2385                        j = chain->nr - i - 1;
2386
2387#ifdef HAVE_SKIP_CALLCHAIN_IDX
2388                if (j == skip_idx)
2389                        continue;
2390#endif
2391                ip = chain->ips[j];
2392                if (ip < PERF_CONTEXT_MAX)
2393                       ++nr_entries;
2394                else if (callchain_param.order != ORDER_CALLEE) {
2395                        err = find_prev_cpumode(chain, thread, cursor, parent,
2396                                                root_al, &cpumode, j);
2397                        if (err)
2398                                return (err < 0) ? err : 0;
2399                        continue;
2400                }
2401
2402                err = add_callchain_ip(thread, cursor, parent,
2403                                       root_al, &cpumode, ip,
2404                                       false, NULL, NULL, 0);
2405
2406                if (err)
2407                        return (err < 0) ? err : 0;
2408        }
2409
2410        return 0;
2411}
2412
2413static int append_inlines(struct callchain_cursor *cursor,
2414                          struct map *map, struct symbol *sym, u64 ip)
2415{
2416        struct inline_node *inline_node;
2417        struct inline_list *ilist;
2418        u64 addr;
2419        int ret = 1;
2420
2421        if (!symbol_conf.inline_name || !map || !sym)
2422                return ret;
2423
2424        addr = map__map_ip(map, ip);
2425        addr = map__rip_2objdump(map, addr);
2426
2427        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2428        if (!inline_node) {
2429                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2430                if (!inline_node)
2431                        return ret;
2432                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2433        }
2434
2435        list_for_each_entry(ilist, &inline_node->val, list) {
2436                ret = callchain_cursor_append(cursor, ip, map,
2437                                              ilist->symbol, false,
2438                                              NULL, 0, 0, 0, ilist->srcline);
2439
2440                if (ret != 0)
2441                        return ret;
2442        }
2443
2444        return ret;
2445}
2446
2447static int unwind_entry(struct unwind_entry *entry, void *arg)
2448{
2449        struct callchain_cursor *cursor = arg;
2450        const char *srcline = NULL;
2451        u64 addr = entry->ip;
2452
2453        if (symbol_conf.hide_unresolved && entry->sym == NULL)
2454                return 0;
2455
2456        if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2457                return 0;
2458
2459        /*
2460         * Convert entry->ip from a virtual address to an offset in
2461         * its corresponding binary.
2462         */
2463        if (entry->map)
2464                addr = map__map_ip(entry->map, entry->ip);
2465
2466        srcline = callchain_srcline(entry->map, entry->sym, addr);
2467        return callchain_cursor_append(cursor, entry->ip,
2468                                       entry->map, entry->sym,
2469                                       false, NULL, 0, 0, 0, srcline);
2470}
2471
2472static int thread__resolve_callchain_unwind(struct thread *thread,
2473                                            struct callchain_cursor *cursor,
2474                                            struct perf_evsel *evsel,
2475                                            struct perf_sample *sample,
2476                                            int max_stack)
2477{
2478        /* Can we do dwarf post unwind? */
2479        if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2480              (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2481                return 0;
2482
2483        /* Bail out if nothing was captured. */
2484        if ((!sample->user_regs.regs) ||
2485            (!sample->user_stack.size))
2486                return 0;
2487
2488        return unwind__get_entries(unwind_entry, cursor,
2489                                   thread, sample, max_stack);
2490}
2491
2492int thread__resolve_callchain(struct thread *thread,
2493                              struct callchain_cursor *cursor,
2494                              struct perf_evsel *evsel,
2495                              struct perf_sample *sample,
2496                              struct symbol **parent,
2497                              struct addr_location *root_al,
2498                              int max_stack)
2499{
2500        int ret = 0;
2501
2502        callchain_cursor_reset(cursor);
2503
2504        if (callchain_param.order == ORDER_CALLEE) {
2505                ret = thread__resolve_callchain_sample(thread, cursor,
2506                                                       evsel, sample,
2507                                                       parent, root_al,
2508                                                       max_stack);
2509                if (ret)
2510                        return ret;
2511                ret = thread__resolve_callchain_unwind(thread, cursor,
2512                                                       evsel, sample,
2513                                                       max_stack);
2514        } else {
2515                ret = thread__resolve_callchain_unwind(thread, cursor,
2516                                                       evsel, sample,
2517                                                       max_stack);
2518                if (ret)
2519                        return ret;
2520                ret = thread__resolve_callchain_sample(thread, cursor,
2521                                                       evsel, sample,
2522                                                       parent, root_al,
2523                                                       max_stack);
2524        }
2525
2526        return ret;
2527}
2528
2529int machine__for_each_thread(struct machine *machine,
2530                             int (*fn)(struct thread *thread, void *p),
2531                             void *priv)
2532{
2533        struct threads *threads;
2534        struct rb_node *nd;
2535        struct thread *thread;
2536        int rc = 0;
2537        int i;
2538
2539        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2540                threads = &machine->threads[i];
2541                for (nd = rb_first_cached(&threads->entries); nd;
2542                     nd = rb_next(nd)) {
2543                        thread = rb_entry(nd, struct thread, rb_node);
2544                        rc = fn(thread, priv);
2545                        if (rc != 0)
2546                                return rc;
2547                }
2548
2549                list_for_each_entry(thread, &threads->dead, node) {
2550                        rc = fn(thread, priv);
2551                        if (rc != 0)
2552                                return rc;
2553                }
2554        }
2555        return rc;
2556}
2557
2558int machines__for_each_thread(struct machines *machines,
2559                              int (*fn)(struct thread *thread, void *p),
2560                              void *priv)
2561{
2562        struct rb_node *nd;
2563        int rc = 0;
2564
2565        rc = machine__for_each_thread(&machines->host, fn, priv);
2566        if (rc != 0)
2567                return rc;
2568
2569        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2570                struct machine *machine = rb_entry(nd, struct machine, rb_node);
2571
2572                rc = machine__for_each_thread(machine, fn, priv);
2573                if (rc != 0)
2574                        return rc;
2575        }
2576        return rc;
2577}
2578
2579int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2580                                  struct target *target, struct thread_map *threads,
2581                                  perf_event__handler_t process, bool data_mmap,
2582                                  unsigned int nr_threads_synthesize)
2583{
2584        if (target__has_task(target))
2585                return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2586        else if (target__has_cpu(target))
2587                return perf_event__synthesize_threads(tool, process,
2588                                                      machine, data_mmap,
2589                                                      nr_threads_synthesize);
2590        /* command specified */
2591        return 0;
2592}
2593
2594pid_t machine__get_current_tid(struct machine *machine, int cpu)
2595{
2596        if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2597                return -1;
2598
2599        return machine->current_tid[cpu];
2600}
2601
2602int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2603                             pid_t tid)
2604{
2605        struct thread *thread;
2606
2607        if (cpu < 0)
2608                return -EINVAL;
2609
2610        if (!machine->current_tid) {
2611                int i;
2612
2613                machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2614                if (!machine->current_tid)
2615                        return -ENOMEM;
2616                for (i = 0; i < MAX_NR_CPUS; i++)
2617                        machine->current_tid[i] = -1;
2618        }
2619
2620        if (cpu >= MAX_NR_CPUS) {
2621                pr_err("Requested CPU %d too large. ", cpu);
2622                pr_err("Consider raising MAX_NR_CPUS\n");
2623                return -EINVAL;
2624        }
2625
2626        machine->current_tid[cpu] = tid;
2627
2628        thread = machine__findnew_thread(machine, pid, tid);
2629        if (!thread)
2630                return -ENOMEM;
2631
2632        thread->cpu = cpu;
2633        thread__put(thread);
2634
2635        return 0;
2636}
2637
2638/*
2639 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2640 * normalized arch is needed.
2641 */
2642bool machine__is(struct machine *machine, const char *arch)
2643{
2644        return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2645}
2646
2647int machine__nr_cpus_avail(struct machine *machine)
2648{
2649        return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2650}
2651
2652int machine__get_kernel_start(struct machine *machine)
2653{
2654        struct map *map = machine__kernel_map(machine);
2655        int err = 0;
2656
2657        /*
2658         * The only addresses above 2^63 are kernel addresses of a 64-bit
2659         * kernel.  Note that addresses are unsigned so that on a 32-bit system
2660         * all addresses including kernel addresses are less than 2^32.  In
2661         * that case (32-bit system), if the kernel mapping is unknown, all
2662         * addresses will be assumed to be in user space - see
2663         * machine__kernel_ip().
2664         */
2665        machine->kernel_start = 1ULL << 63;
2666        if (map) {
2667                err = map__load(map);
2668                /*
2669                 * On x86_64, PTI entry trampolines are less than the
2670                 * start of kernel text, but still above 2^63. So leave
2671                 * kernel_start = 1ULL << 63 for x86_64.
2672                 */
2673                if (!err && !machine__is(machine, "x86_64"))
2674                        machine->kernel_start = map->start;
2675        }
2676        return err;
2677}
2678
2679u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2680{
2681        u8 addr_cpumode = cpumode;
2682        bool kernel_ip;
2683
2684        if (!machine->single_address_space)
2685                goto out;
2686
2687        kernel_ip = machine__kernel_ip(machine, addr);
2688        switch (cpumode) {
2689        case PERF_RECORD_MISC_KERNEL:
2690        case PERF_RECORD_MISC_USER:
2691                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2692                                           PERF_RECORD_MISC_USER;
2693                break;
2694        case PERF_RECORD_MISC_GUEST_KERNEL:
2695        case PERF_RECORD_MISC_GUEST_USER:
2696                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2697                                           PERF_RECORD_MISC_GUEST_USER;
2698                break;
2699        default:
2700                break;
2701        }
2702out:
2703        return addr_cpumode;
2704}
2705
2706struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2707{
2708        return dsos__findnew(&machine->dsos, filename);
2709}
2710
2711char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2712{
2713        struct machine *machine = vmachine;
2714        struct map *map;
2715        struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2716
2717        if (sym == NULL)
2718                return NULL;
2719
2720        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2721        *addrp = map->unmap_ip(map, sym->start);
2722        return sym->name;
2723}
2724