linux/tools/testing/selftests/kvm/lib/kvm_util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * tools/testing/selftests/kvm/lib/kvm_util.c
   4 *
   5 * Copyright (C) 2018, Google LLC.
   6 */
   7
   8#include "test_util.h"
   9#include "kvm_util.h"
  10#include "kvm_util_internal.h"
  11
  12#include <assert.h>
  13#include <sys/mman.h>
  14#include <sys/types.h>
  15#include <sys/stat.h>
  16#include <linux/kernel.h>
  17
  18#define KVM_UTIL_PGS_PER_HUGEPG 512
  19#define KVM_UTIL_MIN_PFN        2
  20
  21/* Aligns x up to the next multiple of size. Size must be a power of 2. */
  22static void *align(void *x, size_t size)
  23{
  24        size_t mask = size - 1;
  25        TEST_ASSERT(size != 0 && !(size & (size - 1)),
  26                    "size not a power of 2: %lu", size);
  27        return (void *) (((size_t) x + mask) & ~mask);
  28}
  29
  30/*
  31 * Capability
  32 *
  33 * Input Args:
  34 *   cap - Capability
  35 *
  36 * Output Args: None
  37 *
  38 * Return:
  39 *   On success, the Value corresponding to the capability (KVM_CAP_*)
  40 *   specified by the value of cap.  On failure a TEST_ASSERT failure
  41 *   is produced.
  42 *
  43 * Looks up and returns the value corresponding to the capability
  44 * (KVM_CAP_*) given by cap.
  45 */
  46int kvm_check_cap(long cap)
  47{
  48        int ret;
  49        int kvm_fd;
  50
  51        kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
  52        if (kvm_fd < 0)
  53                exit(KSFT_SKIP);
  54
  55        ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
  56        TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
  57                "  rc: %i errno: %i", ret, errno);
  58
  59        close(kvm_fd);
  60
  61        return ret;
  62}
  63
  64/* VM Enable Capability
  65 *
  66 * Input Args:
  67 *   vm - Virtual Machine
  68 *   cap - Capability
  69 *
  70 * Output Args: None
  71 *
  72 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
  73 *
  74 * Enables a capability (KVM_CAP_*) on the VM.
  75 */
  76int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
  77{
  78        int ret;
  79
  80        ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
  81        TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
  82                "  rc: %i errno: %i", ret, errno);
  83
  84        return ret;
  85}
  86
  87static void vm_open(struct kvm_vm *vm, int perm, unsigned long type)
  88{
  89        vm->kvm_fd = open(KVM_DEV_PATH, perm);
  90        if (vm->kvm_fd < 0)
  91                exit(KSFT_SKIP);
  92
  93        if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
  94                fprintf(stderr, "immediate_exit not available, skipping test\n");
  95                exit(KSFT_SKIP);
  96        }
  97
  98        vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, type);
  99        TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
 100                "rc: %i errno: %i", vm->fd, errno);
 101}
 102
 103const char * const vm_guest_mode_string[] = {
 104        "PA-bits:52, VA-bits:48, 4K pages",
 105        "PA-bits:52, VA-bits:48, 64K pages",
 106        "PA-bits:48, VA-bits:48, 4K pages",
 107        "PA-bits:48, VA-bits:48, 64K pages",
 108        "PA-bits:40, VA-bits:48, 4K pages",
 109        "PA-bits:40, VA-bits:48, 64K pages",
 110};
 111_Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
 112               "Missing new mode strings?");
 113
 114/*
 115 * VM Create
 116 *
 117 * Input Args:
 118 *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
 119 *   phy_pages - Physical memory pages
 120 *   perm - permission
 121 *
 122 * Output Args: None
 123 *
 124 * Return:
 125 *   Pointer to opaque structure that describes the created VM.
 126 *
 127 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
 128 * When phy_pages is non-zero, a memory region of phy_pages physical pages
 129 * is created and mapped starting at guest physical address 0.  The file
 130 * descriptor to control the created VM is created with the permissions
 131 * given by perm (e.g. O_RDWR).
 132 */
 133struct kvm_vm *_vm_create(enum vm_guest_mode mode, uint64_t phy_pages,
 134                          int perm, unsigned long type)
 135{
 136        struct kvm_vm *vm;
 137
 138        vm = calloc(1, sizeof(*vm));
 139        TEST_ASSERT(vm != NULL, "Insufficient Memory");
 140
 141        vm->mode = mode;
 142        vm->type = type;
 143        vm_open(vm, perm, type);
 144
 145        /* Setup mode specific traits. */
 146        switch (vm->mode) {
 147        case VM_MODE_P52V48_4K:
 148                vm->pgtable_levels = 4;
 149                vm->pa_bits = 52;
 150                vm->va_bits = 48;
 151                vm->page_size = 0x1000;
 152                vm->page_shift = 12;
 153                break;
 154        case VM_MODE_P52V48_64K:
 155                vm->pgtable_levels = 3;
 156                vm->pa_bits = 52;
 157                vm->va_bits = 48;
 158                vm->page_size = 0x10000;
 159                vm->page_shift = 16;
 160                break;
 161        case VM_MODE_P48V48_4K:
 162                vm->pgtable_levels = 4;
 163                vm->pa_bits = 48;
 164                vm->va_bits = 48;
 165                vm->page_size = 0x1000;
 166                vm->page_shift = 12;
 167                break;
 168        case VM_MODE_P48V48_64K:
 169                vm->pgtable_levels = 3;
 170                vm->pa_bits = 48;
 171                vm->va_bits = 48;
 172                vm->page_size = 0x10000;
 173                vm->page_shift = 16;
 174                break;
 175        case VM_MODE_P40V48_4K:
 176                vm->pgtable_levels = 4;
 177                vm->pa_bits = 40;
 178                vm->va_bits = 48;
 179                vm->page_size = 0x1000;
 180                vm->page_shift = 12;
 181                break;
 182        case VM_MODE_P40V48_64K:
 183                vm->pgtable_levels = 3;
 184                vm->pa_bits = 40;
 185                vm->va_bits = 48;
 186                vm->page_size = 0x10000;
 187                vm->page_shift = 16;
 188                break;
 189        default:
 190                TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
 191        }
 192
 193        /* Limit to VA-bit canonical virtual addresses. */
 194        vm->vpages_valid = sparsebit_alloc();
 195        sparsebit_set_num(vm->vpages_valid,
 196                0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
 197        sparsebit_set_num(vm->vpages_valid,
 198                (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
 199                (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
 200
 201        /* Limit physical addresses to PA-bits. */
 202        vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
 203
 204        /* Allocate and setup memory for guest. */
 205        vm->vpages_mapped = sparsebit_alloc();
 206        if (phy_pages != 0)
 207                vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
 208                                            0, 0, phy_pages, 0);
 209
 210        return vm;
 211}
 212
 213struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
 214{
 215        return _vm_create(mode, phy_pages, perm, 0);
 216}
 217
 218/*
 219 * VM Restart
 220 *
 221 * Input Args:
 222 *   vm - VM that has been released before
 223 *   perm - permission
 224 *
 225 * Output Args: None
 226 *
 227 * Reopens the file descriptors associated to the VM and reinstates the
 228 * global state, such as the irqchip and the memory regions that are mapped
 229 * into the guest.
 230 */
 231void kvm_vm_restart(struct kvm_vm *vmp, int perm)
 232{
 233        struct userspace_mem_region *region;
 234
 235        vm_open(vmp, perm, vmp->type);
 236        if (vmp->has_irqchip)
 237                vm_create_irqchip(vmp);
 238
 239        for (region = vmp->userspace_mem_region_head; region;
 240                region = region->next) {
 241                int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
 242                TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
 243                            "  rc: %i errno: %i\n"
 244                            "  slot: %u flags: 0x%x\n"
 245                            "  guest_phys_addr: 0x%lx size: 0x%lx",
 246                            ret, errno, region->region.slot,
 247                            region->region.flags,
 248                            region->region.guest_phys_addr,
 249                            region->region.memory_size);
 250        }
 251}
 252
 253void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
 254{
 255        struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
 256        int ret;
 257
 258        ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
 259        TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
 260                    strerror(-ret));
 261}
 262
 263void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
 264                            uint64_t first_page, uint32_t num_pages)
 265{
 266        struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
 267                                            .first_page = first_page,
 268                                            .num_pages = num_pages };
 269        int ret;
 270
 271        ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
 272        TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
 273                    strerror(-ret));
 274}
 275
 276/*
 277 * Userspace Memory Region Find
 278 *
 279 * Input Args:
 280 *   vm - Virtual Machine
 281 *   start - Starting VM physical address
 282 *   end - Ending VM physical address, inclusive.
 283 *
 284 * Output Args: None
 285 *
 286 * Return:
 287 *   Pointer to overlapping region, NULL if no such region.
 288 *
 289 * Searches for a region with any physical memory that overlaps with
 290 * any portion of the guest physical addresses from start to end
 291 * inclusive.  If multiple overlapping regions exist, a pointer to any
 292 * of the regions is returned.  Null is returned only when no overlapping
 293 * region exists.
 294 */
 295static struct userspace_mem_region *
 296userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
 297{
 298        struct userspace_mem_region *region;
 299
 300        for (region = vm->userspace_mem_region_head; region;
 301                region = region->next) {
 302                uint64_t existing_start = region->region.guest_phys_addr;
 303                uint64_t existing_end = region->region.guest_phys_addr
 304                        + region->region.memory_size - 1;
 305                if (start <= existing_end && end >= existing_start)
 306                        return region;
 307        }
 308
 309        return NULL;
 310}
 311
 312/*
 313 * KVM Userspace Memory Region Find
 314 *
 315 * Input Args:
 316 *   vm - Virtual Machine
 317 *   start - Starting VM physical address
 318 *   end - Ending VM physical address, inclusive.
 319 *
 320 * Output Args: None
 321 *
 322 * Return:
 323 *   Pointer to overlapping region, NULL if no such region.
 324 *
 325 * Public interface to userspace_mem_region_find. Allows tests to look up
 326 * the memslot datastructure for a given range of guest physical memory.
 327 */
 328struct kvm_userspace_memory_region *
 329kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
 330                                 uint64_t end)
 331{
 332        struct userspace_mem_region *region;
 333
 334        region = userspace_mem_region_find(vm, start, end);
 335        if (!region)
 336                return NULL;
 337
 338        return &region->region;
 339}
 340
 341/*
 342 * VCPU Find
 343 *
 344 * Input Args:
 345 *   vm - Virtual Machine
 346 *   vcpuid - VCPU ID
 347 *
 348 * Output Args: None
 349 *
 350 * Return:
 351 *   Pointer to VCPU structure
 352 *
 353 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
 354 * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
 355 * for the specified vcpuid.
 356 */
 357struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
 358{
 359        struct vcpu *vcpup;
 360
 361        for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
 362                if (vcpup->id == vcpuid)
 363                        return vcpup;
 364        }
 365
 366        return NULL;
 367}
 368
 369/*
 370 * VM VCPU Remove
 371 *
 372 * Input Args:
 373 *   vm - Virtual Machine
 374 *   vcpuid - VCPU ID
 375 *
 376 * Output Args: None
 377 *
 378 * Return: None, TEST_ASSERT failures for all error conditions
 379 *
 380 * Within the VM specified by vm, removes the VCPU given by vcpuid.
 381 */
 382static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
 383{
 384        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
 385        int ret;
 386
 387        ret = munmap(vcpu->state, sizeof(*vcpu->state));
 388        TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
 389                "errno: %i", ret, errno);
 390        close(vcpu->fd);
 391        TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
 392                "errno: %i", ret, errno);
 393
 394        if (vcpu->next)
 395                vcpu->next->prev = vcpu->prev;
 396        if (vcpu->prev)
 397                vcpu->prev->next = vcpu->next;
 398        else
 399                vm->vcpu_head = vcpu->next;
 400        free(vcpu);
 401}
 402
 403void kvm_vm_release(struct kvm_vm *vmp)
 404{
 405        int ret;
 406
 407        while (vmp->vcpu_head)
 408                vm_vcpu_rm(vmp, vmp->vcpu_head->id);
 409
 410        ret = close(vmp->fd);
 411        TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
 412                "  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
 413
 414        close(vmp->kvm_fd);
 415        TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
 416                "  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
 417}
 418
 419/*
 420 * Destroys and frees the VM pointed to by vmp.
 421 */
 422void kvm_vm_free(struct kvm_vm *vmp)
 423{
 424        int ret;
 425
 426        if (vmp == NULL)
 427                return;
 428
 429        /* Free userspace_mem_regions. */
 430        while (vmp->userspace_mem_region_head) {
 431                struct userspace_mem_region *region
 432                        = vmp->userspace_mem_region_head;
 433
 434                region->region.memory_size = 0;
 435                ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
 436                        &region->region);
 437                TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
 438                        "rc: %i errno: %i", ret, errno);
 439
 440                vmp->userspace_mem_region_head = region->next;
 441                sparsebit_free(&region->unused_phy_pages);
 442                ret = munmap(region->mmap_start, region->mmap_size);
 443                TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
 444                            ret, errno);
 445
 446                free(region);
 447        }
 448
 449        /* Free sparsebit arrays. */
 450        sparsebit_free(&vmp->vpages_valid);
 451        sparsebit_free(&vmp->vpages_mapped);
 452
 453        kvm_vm_release(vmp);
 454
 455        /* Free the structure describing the VM. */
 456        free(vmp);
 457}
 458
 459/*
 460 * Memory Compare, host virtual to guest virtual
 461 *
 462 * Input Args:
 463 *   hva - Starting host virtual address
 464 *   vm - Virtual Machine
 465 *   gva - Starting guest virtual address
 466 *   len - number of bytes to compare
 467 *
 468 * Output Args: None
 469 *
 470 * Input/Output Args: None
 471 *
 472 * Return:
 473 *   Returns 0 if the bytes starting at hva for a length of len
 474 *   are equal the guest virtual bytes starting at gva.  Returns
 475 *   a value < 0, if bytes at hva are less than those at gva.
 476 *   Otherwise a value > 0 is returned.
 477 *
 478 * Compares the bytes starting at the host virtual address hva, for
 479 * a length of len, to the guest bytes starting at the guest virtual
 480 * address given by gva.
 481 */
 482int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
 483{
 484        size_t amt;
 485
 486        /*
 487         * Compare a batch of bytes until either a match is found
 488         * or all the bytes have been compared.
 489         */
 490        for (uintptr_t offset = 0; offset < len; offset += amt) {
 491                uintptr_t ptr1 = (uintptr_t)hva + offset;
 492
 493                /*
 494                 * Determine host address for guest virtual address
 495                 * at offset.
 496                 */
 497                uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
 498
 499                /*
 500                 * Determine amount to compare on this pass.
 501                 * Don't allow the comparsion to cross a page boundary.
 502                 */
 503                amt = len - offset;
 504                if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
 505                        amt = vm->page_size - (ptr1 % vm->page_size);
 506                if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
 507                        amt = vm->page_size - (ptr2 % vm->page_size);
 508
 509                assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
 510                assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
 511
 512                /*
 513                 * Perform the comparison.  If there is a difference
 514                 * return that result to the caller, otherwise need
 515                 * to continue on looking for a mismatch.
 516                 */
 517                int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
 518                if (ret != 0)
 519                        return ret;
 520        }
 521
 522        /*
 523         * No mismatch found.  Let the caller know the two memory
 524         * areas are equal.
 525         */
 526        return 0;
 527}
 528
 529/*
 530 * VM Userspace Memory Region Add
 531 *
 532 * Input Args:
 533 *   vm - Virtual Machine
 534 *   backing_src - Storage source for this region.
 535 *                 NULL to use anonymous memory.
 536 *   guest_paddr - Starting guest physical address
 537 *   slot - KVM region slot
 538 *   npages - Number of physical pages
 539 *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
 540 *
 541 * Output Args: None
 542 *
 543 * Return: None
 544 *
 545 * Allocates a memory area of the number of pages specified by npages
 546 * and maps it to the VM specified by vm, at a starting physical address
 547 * given by guest_paddr.  The region is created with a KVM region slot
 548 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
 549 * region is created with the flags given by flags.
 550 */
 551void vm_userspace_mem_region_add(struct kvm_vm *vm,
 552        enum vm_mem_backing_src_type src_type,
 553        uint64_t guest_paddr, uint32_t slot, uint64_t npages,
 554        uint32_t flags)
 555{
 556        int ret;
 557        struct userspace_mem_region *region;
 558        size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
 559
 560        TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
 561                "address not on a page boundary.\n"
 562                "  guest_paddr: 0x%lx vm->page_size: 0x%x",
 563                guest_paddr, vm->page_size);
 564        TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
 565                <= vm->max_gfn, "Physical range beyond maximum "
 566                "supported physical address,\n"
 567                "  guest_paddr: 0x%lx npages: 0x%lx\n"
 568                "  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
 569                guest_paddr, npages, vm->max_gfn, vm->page_size);
 570
 571        /*
 572         * Confirm a mem region with an overlapping address doesn't
 573         * already exist.
 574         */
 575        region = (struct userspace_mem_region *) userspace_mem_region_find(
 576                vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
 577        if (region != NULL)
 578                TEST_ASSERT(false, "overlapping userspace_mem_region already "
 579                        "exists\n"
 580                        "  requested guest_paddr: 0x%lx npages: 0x%lx "
 581                        "page_size: 0x%x\n"
 582                        "  existing guest_paddr: 0x%lx size: 0x%lx",
 583                        guest_paddr, npages, vm->page_size,
 584                        (uint64_t) region->region.guest_phys_addr,
 585                        (uint64_t) region->region.memory_size);
 586
 587        /* Confirm no region with the requested slot already exists. */
 588        for (region = vm->userspace_mem_region_head; region;
 589                region = region->next) {
 590                if (region->region.slot == slot)
 591                        break;
 592        }
 593        if (region != NULL)
 594                TEST_ASSERT(false, "A mem region with the requested slot "
 595                        "already exists.\n"
 596                        "  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
 597                        "  existing slot: %u paddr: 0x%lx size: 0x%lx",
 598                        slot, guest_paddr, npages,
 599                        region->region.slot,
 600                        (uint64_t) region->region.guest_phys_addr,
 601                        (uint64_t) region->region.memory_size);
 602
 603        /* Allocate and initialize new mem region structure. */
 604        region = calloc(1, sizeof(*region));
 605        TEST_ASSERT(region != NULL, "Insufficient Memory");
 606        region->mmap_size = npages * vm->page_size;
 607
 608        /* Enough memory to align up to a huge page. */
 609        if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
 610                region->mmap_size += huge_page_size;
 611        region->mmap_start = mmap(NULL, region->mmap_size,
 612                                  PROT_READ | PROT_WRITE,
 613                                  MAP_PRIVATE | MAP_ANONYMOUS
 614                                  | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
 615                                  -1, 0);
 616        TEST_ASSERT(region->mmap_start != MAP_FAILED,
 617                    "test_malloc failed, mmap_start: %p errno: %i",
 618                    region->mmap_start, errno);
 619
 620        /* Align THP allocation up to start of a huge page. */
 621        region->host_mem = align(region->mmap_start,
 622                                 src_type == VM_MEM_SRC_ANONYMOUS_THP ?  huge_page_size : 1);
 623
 624        /* As needed perform madvise */
 625        if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
 626                ret = madvise(region->host_mem, npages * vm->page_size,
 627                             src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
 628                TEST_ASSERT(ret == 0, "madvise failed,\n"
 629                            "  addr: %p\n"
 630                            "  length: 0x%lx\n"
 631                            "  src_type: %x",
 632                            region->host_mem, npages * vm->page_size, src_type);
 633        }
 634
 635        region->unused_phy_pages = sparsebit_alloc();
 636        sparsebit_set_num(region->unused_phy_pages,
 637                guest_paddr >> vm->page_shift, npages);
 638        region->region.slot = slot;
 639        region->region.flags = flags;
 640        region->region.guest_phys_addr = guest_paddr;
 641        region->region.memory_size = npages * vm->page_size;
 642        region->region.userspace_addr = (uintptr_t) region->host_mem;
 643        ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
 644        TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
 645                "  rc: %i errno: %i\n"
 646                "  slot: %u flags: 0x%x\n"
 647                "  guest_phys_addr: 0x%lx size: 0x%lx",
 648                ret, errno, slot, flags,
 649                guest_paddr, (uint64_t) region->region.memory_size);
 650
 651        /* Add to linked-list of memory regions. */
 652        if (vm->userspace_mem_region_head)
 653                vm->userspace_mem_region_head->prev = region;
 654        region->next = vm->userspace_mem_region_head;
 655        vm->userspace_mem_region_head = region;
 656}
 657
 658/*
 659 * Memslot to region
 660 *
 661 * Input Args:
 662 *   vm - Virtual Machine
 663 *   memslot - KVM memory slot ID
 664 *
 665 * Output Args: None
 666 *
 667 * Return:
 668 *   Pointer to memory region structure that describe memory region
 669 *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
 670 *   on error (e.g. currently no memory region using memslot as a KVM
 671 *   memory slot ID).
 672 */
 673static struct userspace_mem_region *
 674memslot2region(struct kvm_vm *vm, uint32_t memslot)
 675{
 676        struct userspace_mem_region *region;
 677
 678        for (region = vm->userspace_mem_region_head; region;
 679                region = region->next) {
 680                if (region->region.slot == memslot)
 681                        break;
 682        }
 683        if (region == NULL) {
 684                fprintf(stderr, "No mem region with the requested slot found,\n"
 685                        "  requested slot: %u\n", memslot);
 686                fputs("---- vm dump ----\n", stderr);
 687                vm_dump(stderr, vm, 2);
 688                TEST_ASSERT(false, "Mem region not found");
 689        }
 690
 691        return region;
 692}
 693
 694/*
 695 * VM Memory Region Flags Set
 696 *
 697 * Input Args:
 698 *   vm - Virtual Machine
 699 *   flags - Starting guest physical address
 700 *
 701 * Output Args: None
 702 *
 703 * Return: None
 704 *
 705 * Sets the flags of the memory region specified by the value of slot,
 706 * to the values given by flags.
 707 */
 708void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
 709{
 710        int ret;
 711        struct userspace_mem_region *region;
 712
 713        region = memslot2region(vm, slot);
 714
 715        region->region.flags = flags;
 716
 717        ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
 718
 719        TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
 720                "  rc: %i errno: %i slot: %u flags: 0x%x",
 721                ret, errno, slot, flags);
 722}
 723
 724/*
 725 * VCPU mmap Size
 726 *
 727 * Input Args: None
 728 *
 729 * Output Args: None
 730 *
 731 * Return:
 732 *   Size of VCPU state
 733 *
 734 * Returns the size of the structure pointed to by the return value
 735 * of vcpu_state().
 736 */
 737static int vcpu_mmap_sz(void)
 738{
 739        int dev_fd, ret;
 740
 741        dev_fd = open(KVM_DEV_PATH, O_RDONLY);
 742        if (dev_fd < 0)
 743                exit(KSFT_SKIP);
 744
 745        ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
 746        TEST_ASSERT(ret >= sizeof(struct kvm_run),
 747                "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
 748                __func__, ret, errno);
 749
 750        close(dev_fd);
 751
 752        return ret;
 753}
 754
 755/*
 756 * VM VCPU Add
 757 *
 758 * Input Args:
 759 *   vm - Virtual Machine
 760 *   vcpuid - VCPU ID
 761 *
 762 * Output Args: None
 763 *
 764 * Return: None
 765 *
 766 * Creates and adds to the VM specified by vm and virtual CPU with
 767 * the ID given by vcpuid.
 768 */
 769void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid, int pgd_memslot,
 770                 int gdt_memslot)
 771{
 772        struct vcpu *vcpu;
 773
 774        /* Confirm a vcpu with the specified id doesn't already exist. */
 775        vcpu = vcpu_find(vm, vcpuid);
 776        if (vcpu != NULL)
 777                TEST_ASSERT(false, "vcpu with the specified id "
 778                        "already exists,\n"
 779                        "  requested vcpuid: %u\n"
 780                        "  existing vcpuid: %u state: %p",
 781                        vcpuid, vcpu->id, vcpu->state);
 782
 783        /* Allocate and initialize new vcpu structure. */
 784        vcpu = calloc(1, sizeof(*vcpu));
 785        TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
 786        vcpu->id = vcpuid;
 787        vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
 788        TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
 789                vcpu->fd, errno);
 790
 791        TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
 792                "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
 793                vcpu_mmap_sz(), sizeof(*vcpu->state));
 794        vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
 795                PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
 796        TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
 797                "vcpu id: %u errno: %i", vcpuid, errno);
 798
 799        /* Add to linked-list of VCPUs. */
 800        if (vm->vcpu_head)
 801                vm->vcpu_head->prev = vcpu;
 802        vcpu->next = vm->vcpu_head;
 803        vm->vcpu_head = vcpu;
 804
 805        vcpu_setup(vm, vcpuid, pgd_memslot, gdt_memslot);
 806}
 807
 808/*
 809 * VM Virtual Address Unused Gap
 810 *
 811 * Input Args:
 812 *   vm - Virtual Machine
 813 *   sz - Size (bytes)
 814 *   vaddr_min - Minimum Virtual Address
 815 *
 816 * Output Args: None
 817 *
 818 * Return:
 819 *   Lowest virtual address at or below vaddr_min, with at least
 820 *   sz unused bytes.  TEST_ASSERT failure if no area of at least
 821 *   size sz is available.
 822 *
 823 * Within the VM specified by vm, locates the lowest starting virtual
 824 * address >= vaddr_min, that has at least sz unallocated bytes.  A
 825 * TEST_ASSERT failure occurs for invalid input or no area of at least
 826 * sz unallocated bytes >= vaddr_min is available.
 827 */
 828static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
 829                                      vm_vaddr_t vaddr_min)
 830{
 831        uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
 832
 833        /* Determine lowest permitted virtual page index. */
 834        uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
 835        if ((pgidx_start * vm->page_size) < vaddr_min)
 836                goto no_va_found;
 837
 838        /* Loop over section with enough valid virtual page indexes. */
 839        if (!sparsebit_is_set_num(vm->vpages_valid,
 840                pgidx_start, pages))
 841                pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
 842                        pgidx_start, pages);
 843        do {
 844                /*
 845                 * Are there enough unused virtual pages available at
 846                 * the currently proposed starting virtual page index.
 847                 * If not, adjust proposed starting index to next
 848                 * possible.
 849                 */
 850                if (sparsebit_is_clear_num(vm->vpages_mapped,
 851                        pgidx_start, pages))
 852                        goto va_found;
 853                pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
 854                        pgidx_start, pages);
 855                if (pgidx_start == 0)
 856                        goto no_va_found;
 857
 858                /*
 859                 * If needed, adjust proposed starting virtual address,
 860                 * to next range of valid virtual addresses.
 861                 */
 862                if (!sparsebit_is_set_num(vm->vpages_valid,
 863                        pgidx_start, pages)) {
 864                        pgidx_start = sparsebit_next_set_num(
 865                                vm->vpages_valid, pgidx_start, pages);
 866                        if (pgidx_start == 0)
 867                                goto no_va_found;
 868                }
 869        } while (pgidx_start != 0);
 870
 871no_va_found:
 872        TEST_ASSERT(false, "No vaddr of specified pages available, "
 873                "pages: 0x%lx", pages);
 874
 875        /* NOT REACHED */
 876        return -1;
 877
 878va_found:
 879        TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
 880                pgidx_start, pages),
 881                "Unexpected, invalid virtual page index range,\n"
 882                "  pgidx_start: 0x%lx\n"
 883                "  pages: 0x%lx",
 884                pgidx_start, pages);
 885        TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
 886                pgidx_start, pages),
 887                "Unexpected, pages already mapped,\n"
 888                "  pgidx_start: 0x%lx\n"
 889                "  pages: 0x%lx",
 890                pgidx_start, pages);
 891
 892        return pgidx_start * vm->page_size;
 893}
 894
 895/*
 896 * VM Virtual Address Allocate
 897 *
 898 * Input Args:
 899 *   vm - Virtual Machine
 900 *   sz - Size in bytes
 901 *   vaddr_min - Minimum starting virtual address
 902 *   data_memslot - Memory region slot for data pages
 903 *   pgd_memslot - Memory region slot for new virtual translation tables
 904 *
 905 * Output Args: None
 906 *
 907 * Return:
 908 *   Starting guest virtual address
 909 *
 910 * Allocates at least sz bytes within the virtual address space of the vm
 911 * given by vm.  The allocated bytes are mapped to a virtual address >=
 912 * the address given by vaddr_min.  Note that each allocation uses a
 913 * a unique set of pages, with the minimum real allocation being at least
 914 * a page.
 915 */
 916vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
 917                          uint32_t data_memslot, uint32_t pgd_memslot)
 918{
 919        uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
 920
 921        virt_pgd_alloc(vm, pgd_memslot);
 922
 923        /*
 924         * Find an unused range of virtual page addresses of at least
 925         * pages in length.
 926         */
 927        vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
 928
 929        /* Map the virtual pages. */
 930        for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
 931                pages--, vaddr += vm->page_size) {
 932                vm_paddr_t paddr;
 933
 934                paddr = vm_phy_page_alloc(vm,
 935                                KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
 936
 937                virt_pg_map(vm, vaddr, paddr, pgd_memslot);
 938
 939                sparsebit_set(vm->vpages_mapped,
 940                        vaddr >> vm->page_shift);
 941        }
 942
 943        return vaddr_start;
 944}
 945
 946/*
 947 * Map a range of VM virtual address to the VM's physical address
 948 *
 949 * Input Args:
 950 *   vm - Virtual Machine
 951 *   vaddr - Virtuall address to map
 952 *   paddr - VM Physical Address
 953 *   size - The size of the range to map
 954 *   pgd_memslot - Memory region slot for new virtual translation tables
 955 *
 956 * Output Args: None
 957 *
 958 * Return: None
 959 *
 960 * Within the VM given by vm, creates a virtual translation for the
 961 * page range starting at vaddr to the page range starting at paddr.
 962 */
 963void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
 964              size_t size, uint32_t pgd_memslot)
 965{
 966        size_t page_size = vm->page_size;
 967        size_t npages = size / page_size;
 968
 969        TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
 970        TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
 971
 972        while (npages--) {
 973                virt_pg_map(vm, vaddr, paddr, pgd_memslot);
 974                vaddr += page_size;
 975                paddr += page_size;
 976        }
 977}
 978
 979/*
 980 * Address VM Physical to Host Virtual
 981 *
 982 * Input Args:
 983 *   vm - Virtual Machine
 984 *   gpa - VM physical address
 985 *
 986 * Output Args: None
 987 *
 988 * Return:
 989 *   Equivalent host virtual address
 990 *
 991 * Locates the memory region containing the VM physical address given
 992 * by gpa, within the VM given by vm.  When found, the host virtual
 993 * address providing the memory to the vm physical address is returned.
 994 * A TEST_ASSERT failure occurs if no region containing gpa exists.
 995 */
 996void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
 997{
 998        struct userspace_mem_region *region;
 999        for (region = vm->userspace_mem_region_head; region;
1000             region = region->next) {
1001                if ((gpa >= region->region.guest_phys_addr)
1002                        && (gpa <= (region->region.guest_phys_addr
1003                                + region->region.memory_size - 1)))
1004                        return (void *) ((uintptr_t) region->host_mem
1005                                + (gpa - region->region.guest_phys_addr));
1006        }
1007
1008        TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
1009        return NULL;
1010}
1011
1012/*
1013 * Address Host Virtual to VM Physical
1014 *
1015 * Input Args:
1016 *   vm - Virtual Machine
1017 *   hva - Host virtual address
1018 *
1019 * Output Args: None
1020 *
1021 * Return:
1022 *   Equivalent VM physical address
1023 *
1024 * Locates the memory region containing the host virtual address given
1025 * by hva, within the VM given by vm.  When found, the equivalent
1026 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1027 * region containing hva exists.
1028 */
1029vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1030{
1031        struct userspace_mem_region *region;
1032        for (region = vm->userspace_mem_region_head; region;
1033             region = region->next) {
1034                if ((hva >= region->host_mem)
1035                        && (hva <= (region->host_mem
1036                                + region->region.memory_size - 1)))
1037                        return (vm_paddr_t) ((uintptr_t)
1038                                region->region.guest_phys_addr
1039                                + (hva - (uintptr_t) region->host_mem));
1040        }
1041
1042        TEST_ASSERT(false, "No mapping to a guest physical address, "
1043                "hva: %p", hva);
1044        return -1;
1045}
1046
1047/*
1048 * VM Create IRQ Chip
1049 *
1050 * Input Args:
1051 *   vm - Virtual Machine
1052 *
1053 * Output Args: None
1054 *
1055 * Return: None
1056 *
1057 * Creates an interrupt controller chip for the VM specified by vm.
1058 */
1059void vm_create_irqchip(struct kvm_vm *vm)
1060{
1061        int ret;
1062
1063        ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1064        TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1065                "rc: %i errno: %i", ret, errno);
1066
1067        vm->has_irqchip = true;
1068}
1069
1070/*
1071 * VM VCPU State
1072 *
1073 * Input Args:
1074 *   vm - Virtual Machine
1075 *   vcpuid - VCPU ID
1076 *
1077 * Output Args: None
1078 *
1079 * Return:
1080 *   Pointer to structure that describes the state of the VCPU.
1081 *
1082 * Locates and returns a pointer to a structure that describes the
1083 * state of the VCPU with the given vcpuid.
1084 */
1085struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1086{
1087        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1088        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1089
1090        return vcpu->state;
1091}
1092
1093/*
1094 * VM VCPU Run
1095 *
1096 * Input Args:
1097 *   vm - Virtual Machine
1098 *   vcpuid - VCPU ID
1099 *
1100 * Output Args: None
1101 *
1102 * Return: None
1103 *
1104 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1105 * given by vm.
1106 */
1107void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1108{
1109        int ret = _vcpu_run(vm, vcpuid);
1110        TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1111                "rc: %i errno: %i", ret, errno);
1112}
1113
1114int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1115{
1116        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1117        int rc;
1118
1119        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1120        do {
1121                rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1122        } while (rc == -1 && errno == EINTR);
1123        return rc;
1124}
1125
1126void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1127{
1128        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1129        int ret;
1130
1131        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1132
1133        vcpu->state->immediate_exit = 1;
1134        ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1135        vcpu->state->immediate_exit = 0;
1136
1137        TEST_ASSERT(ret == -1 && errno == EINTR,
1138                    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1139                    ret, errno);
1140}
1141
1142/*
1143 * VM VCPU Set MP State
1144 *
1145 * Input Args:
1146 *   vm - Virtual Machine
1147 *   vcpuid - VCPU ID
1148 *   mp_state - mp_state to be set
1149 *
1150 * Output Args: None
1151 *
1152 * Return: None
1153 *
1154 * Sets the MP state of the VCPU given by vcpuid, to the state given
1155 * by mp_state.
1156 */
1157void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1158                       struct kvm_mp_state *mp_state)
1159{
1160        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1161        int ret;
1162
1163        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1164
1165        ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1166        TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1167                "rc: %i errno: %i", ret, errno);
1168}
1169
1170/*
1171 * VM VCPU Regs Get
1172 *
1173 * Input Args:
1174 *   vm - Virtual Machine
1175 *   vcpuid - VCPU ID
1176 *
1177 * Output Args:
1178 *   regs - current state of VCPU regs
1179 *
1180 * Return: None
1181 *
1182 * Obtains the current register state for the VCPU specified by vcpuid
1183 * and stores it at the location given by regs.
1184 */
1185void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1186{
1187        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1188        int ret;
1189
1190        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1191
1192        ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1193        TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1194                ret, errno);
1195}
1196
1197/*
1198 * VM VCPU Regs Set
1199 *
1200 * Input Args:
1201 *   vm - Virtual Machine
1202 *   vcpuid - VCPU ID
1203 *   regs - Values to set VCPU regs to
1204 *
1205 * Output Args: None
1206 *
1207 * Return: None
1208 *
1209 * Sets the regs of the VCPU specified by vcpuid to the values
1210 * given by regs.
1211 */
1212void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1213{
1214        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1215        int ret;
1216
1217        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1218
1219        ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1220        TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1221                ret, errno);
1222}
1223
1224void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1225                     struct kvm_vcpu_events *events)
1226{
1227        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1228        int ret;
1229
1230        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1231
1232        ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1233        TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1234                ret, errno);
1235}
1236
1237void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1238                     struct kvm_vcpu_events *events)
1239{
1240        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1241        int ret;
1242
1243        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1244
1245        ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1246        TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1247                ret, errno);
1248}
1249
1250#ifdef __x86_64__
1251void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1252                           struct kvm_nested_state *state)
1253{
1254        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1255        int ret;
1256
1257        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1258
1259        ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1260        TEST_ASSERT(ret == 0,
1261                "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1262                ret, errno);
1263}
1264
1265int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1266                          struct kvm_nested_state *state, bool ignore_error)
1267{
1268        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1269        int ret;
1270
1271        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1272
1273        ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1274        if (!ignore_error) {
1275                TEST_ASSERT(ret == 0,
1276                        "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1277                        ret, errno);
1278        }
1279
1280        return ret;
1281}
1282#endif
1283
1284/*
1285 * VM VCPU System Regs Get
1286 *
1287 * Input Args:
1288 *   vm - Virtual Machine
1289 *   vcpuid - VCPU ID
1290 *
1291 * Output Args:
1292 *   sregs - current state of VCPU system regs
1293 *
1294 * Return: None
1295 *
1296 * Obtains the current system register state for the VCPU specified by
1297 * vcpuid and stores it at the location given by sregs.
1298 */
1299void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1300{
1301        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1302        int ret;
1303
1304        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1305
1306        ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1307        TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1308                ret, errno);
1309}
1310
1311/*
1312 * VM VCPU System Regs Set
1313 *
1314 * Input Args:
1315 *   vm - Virtual Machine
1316 *   vcpuid - VCPU ID
1317 *   sregs - Values to set VCPU system regs to
1318 *
1319 * Output Args: None
1320 *
1321 * Return: None
1322 *
1323 * Sets the system regs of the VCPU specified by vcpuid to the values
1324 * given by sregs.
1325 */
1326void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1327{
1328        int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1329        TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1330                "rc: %i errno: %i", ret, errno);
1331}
1332
1333int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1334{
1335        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1336
1337        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1338
1339        return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1340}
1341
1342/*
1343 * VCPU Ioctl
1344 *
1345 * Input Args:
1346 *   vm - Virtual Machine
1347 *   vcpuid - VCPU ID
1348 *   cmd - Ioctl number
1349 *   arg - Argument to pass to the ioctl
1350 *
1351 * Return: None
1352 *
1353 * Issues an arbitrary ioctl on a VCPU fd.
1354 */
1355void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1356                unsigned long cmd, void *arg)
1357{
1358        int ret;
1359
1360        ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1361        TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1362                cmd, ret, errno, strerror(errno));
1363}
1364
1365int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1366                unsigned long cmd, void *arg)
1367{
1368        struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1369        int ret;
1370
1371        TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1372
1373        ret = ioctl(vcpu->fd, cmd, arg);
1374
1375        return ret;
1376}
1377
1378/*
1379 * VM Ioctl
1380 *
1381 * Input Args:
1382 *   vm - Virtual Machine
1383 *   cmd - Ioctl number
1384 *   arg - Argument to pass to the ioctl
1385 *
1386 * Return: None
1387 *
1388 * Issues an arbitrary ioctl on a VM fd.
1389 */
1390void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1391{
1392        int ret;
1393
1394        ret = ioctl(vm->fd, cmd, arg);
1395        TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1396                cmd, ret, errno, strerror(errno));
1397}
1398
1399/*
1400 * VM Dump
1401 *
1402 * Input Args:
1403 *   vm - Virtual Machine
1404 *   indent - Left margin indent amount
1405 *
1406 * Output Args:
1407 *   stream - Output FILE stream
1408 *
1409 * Return: None
1410 *
1411 * Dumps the current state of the VM given by vm, to the FILE stream
1412 * given by stream.
1413 */
1414void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1415{
1416        struct userspace_mem_region *region;
1417        struct vcpu *vcpu;
1418
1419        fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1420        fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1421        fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1422        fprintf(stream, "%*sMem Regions:\n", indent, "");
1423        for (region = vm->userspace_mem_region_head; region;
1424                region = region->next) {
1425                fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1426                        "host_virt: %p\n", indent + 2, "",
1427                        (uint64_t) region->region.guest_phys_addr,
1428                        (uint64_t) region->region.memory_size,
1429                        region->host_mem);
1430                fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1431                sparsebit_dump(stream, region->unused_phy_pages, 0);
1432        }
1433        fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1434        sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1435        fprintf(stream, "%*spgd_created: %u\n", indent, "",
1436                vm->pgd_created);
1437        if (vm->pgd_created) {
1438                fprintf(stream, "%*sVirtual Translation Tables:\n",
1439                        indent + 2, "");
1440                virt_dump(stream, vm, indent + 4);
1441        }
1442        fprintf(stream, "%*sVCPUs:\n", indent, "");
1443        for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
1444                vcpu_dump(stream, vm, vcpu->id, indent + 2);
1445}
1446
1447/* Known KVM exit reasons */
1448static struct exit_reason {
1449        unsigned int reason;
1450        const char *name;
1451} exit_reasons_known[] = {
1452        {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1453        {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1454        {KVM_EXIT_IO, "IO"},
1455        {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1456        {KVM_EXIT_DEBUG, "DEBUG"},
1457        {KVM_EXIT_HLT, "HLT"},
1458        {KVM_EXIT_MMIO, "MMIO"},
1459        {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1460        {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1461        {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1462        {KVM_EXIT_INTR, "INTR"},
1463        {KVM_EXIT_SET_TPR, "SET_TPR"},
1464        {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1465        {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1466        {KVM_EXIT_S390_RESET, "S390_RESET"},
1467        {KVM_EXIT_DCR, "DCR"},
1468        {KVM_EXIT_NMI, "NMI"},
1469        {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1470        {KVM_EXIT_OSI, "OSI"},
1471        {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1472#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1473        {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1474#endif
1475};
1476
1477/*
1478 * Exit Reason String
1479 *
1480 * Input Args:
1481 *   exit_reason - Exit reason
1482 *
1483 * Output Args: None
1484 *
1485 * Return:
1486 *   Constant string pointer describing the exit reason.
1487 *
1488 * Locates and returns a constant string that describes the KVM exit
1489 * reason given by exit_reason.  If no such string is found, a constant
1490 * string of "Unknown" is returned.
1491 */
1492const char *exit_reason_str(unsigned int exit_reason)
1493{
1494        unsigned int n1;
1495
1496        for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1497                if (exit_reason == exit_reasons_known[n1].reason)
1498                        return exit_reasons_known[n1].name;
1499        }
1500
1501        return "Unknown";
1502}
1503
1504/*
1505 * Physical Contiguous Page Allocator
1506 *
1507 * Input Args:
1508 *   vm - Virtual Machine
1509 *   num - number of pages
1510 *   paddr_min - Physical address minimum
1511 *   memslot - Memory region to allocate page from
1512 *
1513 * Output Args: None
1514 *
1515 * Return:
1516 *   Starting physical address
1517 *
1518 * Within the VM specified by vm, locates a range of available physical
1519 * pages at or above paddr_min. If found, the pages are marked as in use
1520 * and their base address is returned. A TEST_ASSERT failure occurs if
1521 * not enough pages are available at or above paddr_min.
1522 */
1523vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1524                              vm_paddr_t paddr_min, uint32_t memslot)
1525{
1526        struct userspace_mem_region *region;
1527        sparsebit_idx_t pg, base;
1528
1529        TEST_ASSERT(num > 0, "Must allocate at least one page");
1530
1531        TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1532                "not divisible by page size.\n"
1533                "  paddr_min: 0x%lx page_size: 0x%x",
1534                paddr_min, vm->page_size);
1535
1536        region = memslot2region(vm, memslot);
1537        base = pg = paddr_min >> vm->page_shift;
1538
1539        do {
1540                for (; pg < base + num; ++pg) {
1541                        if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1542                                base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1543                                break;
1544                        }
1545                }
1546        } while (pg && pg != base + num);
1547
1548        if (pg == 0) {
1549                fprintf(stderr, "No guest physical page available, "
1550                        "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1551                        paddr_min, vm->page_size, memslot);
1552                fputs("---- vm dump ----\n", stderr);
1553                vm_dump(stderr, vm, 2);
1554                abort();
1555        }
1556
1557        for (pg = base; pg < base + num; ++pg)
1558                sparsebit_clear(region->unused_phy_pages, pg);
1559
1560        return base * vm->page_size;
1561}
1562
1563vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1564                             uint32_t memslot)
1565{
1566        return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1567}
1568
1569/*
1570 * Address Guest Virtual to Host Virtual
1571 *
1572 * Input Args:
1573 *   vm - Virtual Machine
1574 *   gva - VM virtual address
1575 *
1576 * Output Args: None
1577 *
1578 * Return:
1579 *   Equivalent host virtual address
1580 */
1581void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1582{
1583        return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1584}
1585
1586/*
1587 * Is Unrestricted Guest
1588 *
1589 * Input Args:
1590 *   vm - Virtual Machine
1591 *
1592 * Output Args: None
1593 *
1594 * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
1595 *
1596 * Check if the unrestricted guest flag is enabled.
1597 */
1598bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1599{
1600        char val = 'N';
1601        size_t count;
1602        FILE *f;
1603
1604        if (vm == NULL) {
1605                /* Ensure that the KVM vendor-specific module is loaded. */
1606                f = fopen(KVM_DEV_PATH, "r");
1607                TEST_ASSERT(f != NULL, "Error in opening KVM dev file: %d",
1608                            errno);
1609                fclose(f);
1610        }
1611
1612        f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
1613        if (f) {
1614                count = fread(&val, sizeof(char), 1, f);
1615                TEST_ASSERT(count == 1, "Unable to read from param file.");
1616                fclose(f);
1617        }
1618
1619        return val == 'Y';
1620}
1621