linux/Documentation/rbtree.txt
<<
>>
Prefs
   1=================================
   2Red-black Trees (rbtree) in Linux
   3=================================
   4
   5
   6:Date: January 18, 2007
   7:Author: Rob Landley <rob@landley.net>
   8
   9What are red-black trees, and what are they for?
  10------------------------------------------------
  11
  12Red-black trees are a type of self-balancing binary search tree, used for
  13storing sortable key/value data pairs.  This differs from radix trees (which
  14are used to efficiently store sparse arrays and thus use long integer indexes
  15to insert/access/delete nodes) and hash tables (which are not kept sorted to
  16be easily traversed in order, and must be tuned for a specific size and
  17hash function where rbtrees scale gracefully storing arbitrary keys).
  18
  19Red-black trees are similar to AVL trees, but provide faster real-time bounded
  20worst case performance for insertion and deletion (at most two rotations and
  21three rotations, respectively, to balance the tree), with slightly slower
  22(but still O(log n)) lookup time.
  23
  24To quote Linux Weekly News:
  25
  26    There are a number of red-black trees in use in the kernel.
  27    The deadline and CFQ I/O schedulers employ rbtrees to
  28    track requests; the packet CD/DVD driver does the same.
  29    The high-resolution timer code uses an rbtree to organize outstanding
  30    timer requests.  The ext3 filesystem tracks directory entries in a
  31    red-black tree.  Virtual memory areas (VMAs) are tracked with red-black
  32    trees, as are epoll file descriptors, cryptographic keys, and network
  33    packets in the "hierarchical token bucket" scheduler.
  34
  35This document covers use of the Linux rbtree implementation.  For more
  36information on the nature and implementation of Red Black Trees,  see:
  37
  38  Linux Weekly News article on red-black trees
  39    http://lwn.net/Articles/184495/
  40
  41  Wikipedia entry on red-black trees
  42    http://en.wikipedia.org/wiki/Red-black_tree
  43
  44Linux implementation of red-black trees
  45---------------------------------------
  46
  47Linux's rbtree implementation lives in the file "lib/rbtree.c".  To use it,
  48"#include <linux/rbtree.h>".
  49
  50The Linux rbtree implementation is optimized for speed, and thus has one
  51less layer of indirection (and better cache locality) than more traditional
  52tree implementations.  Instead of using pointers to separate rb_node and data
  53structures, each instance of struct rb_node is embedded in the data structure
  54it organizes.  And instead of using a comparison callback function pointer,
  55users are expected to write their own tree search and insert functions
  56which call the provided rbtree functions.  Locking is also left up to the
  57user of the rbtree code.
  58
  59Creating a new rbtree
  60---------------------
  61
  62Data nodes in an rbtree tree are structures containing a struct rb_node member::
  63
  64  struct mytype {
  65        struct rb_node node;
  66        char *keystring;
  67  };
  68
  69When dealing with a pointer to the embedded struct rb_node, the containing data
  70structure may be accessed with the standard container_of() macro.  In addition,
  71individual members may be accessed directly via rb_entry(node, type, member).
  72
  73At the root of each rbtree is an rb_root structure, which is initialized to be
  74empty via:
  75
  76  struct rb_root mytree = RB_ROOT;
  77
  78Searching for a value in an rbtree
  79----------------------------------
  80
  81Writing a search function for your tree is fairly straightforward: start at the
  82root, compare each value, and follow the left or right branch as necessary.
  83
  84Example::
  85
  86  struct mytype *my_search(struct rb_root *root, char *string)
  87  {
  88        struct rb_node *node = root->rb_node;
  89
  90        while (node) {
  91                struct mytype *data = container_of(node, struct mytype, node);
  92                int result;
  93
  94                result = strcmp(string, data->keystring);
  95
  96                if (result < 0)
  97                        node = node->rb_left;
  98                else if (result > 0)
  99                        node = node->rb_right;
 100                else
 101                        return data;
 102        }
 103        return NULL;
 104  }
 105
 106Inserting data into an rbtree
 107-----------------------------
 108
 109Inserting data in the tree involves first searching for the place to insert the
 110new node, then inserting the node and rebalancing ("recoloring") the tree.
 111
 112The search for insertion differs from the previous search by finding the
 113location of the pointer on which to graft the new node.  The new node also
 114needs a link to its parent node for rebalancing purposes.
 115
 116Example::
 117
 118  int my_insert(struct rb_root *root, struct mytype *data)
 119  {
 120        struct rb_node **new = &(root->rb_node), *parent = NULL;
 121
 122        /* Figure out where to put new node */
 123        while (*new) {
 124                struct mytype *this = container_of(*new, struct mytype, node);
 125                int result = strcmp(data->keystring, this->keystring);
 126
 127                parent = *new;
 128                if (result < 0)
 129                        new = &((*new)->rb_left);
 130                else if (result > 0)
 131                        new = &((*new)->rb_right);
 132                else
 133                        return FALSE;
 134        }
 135
 136        /* Add new node and rebalance tree. */
 137        rb_link_node(&data->node, parent, new);
 138        rb_insert_color(&data->node, root);
 139
 140        return TRUE;
 141  }
 142
 143Removing or replacing existing data in an rbtree
 144------------------------------------------------
 145
 146To remove an existing node from a tree, call::
 147
 148  void rb_erase(struct rb_node *victim, struct rb_root *tree);
 149
 150Example::
 151
 152  struct mytype *data = mysearch(&mytree, "walrus");
 153
 154  if (data) {
 155        rb_erase(&data->node, &mytree);
 156        myfree(data);
 157  }
 158
 159To replace an existing node in a tree with a new one with the same key, call::
 160
 161  void rb_replace_node(struct rb_node *old, struct rb_node *new,
 162                        struct rb_root *tree);
 163
 164Replacing a node this way does not re-sort the tree: If the new node doesn't
 165have the same key as the old node, the rbtree will probably become corrupted.
 166
 167Iterating through the elements stored in an rbtree (in sort order)
 168------------------------------------------------------------------
 169
 170Four functions are provided for iterating through an rbtree's contents in
 171sorted order.  These work on arbitrary trees, and should not need to be
 172modified or wrapped (except for locking purposes)::
 173
 174  struct rb_node *rb_first(struct rb_root *tree);
 175  struct rb_node *rb_last(struct rb_root *tree);
 176  struct rb_node *rb_next(struct rb_node *node);
 177  struct rb_node *rb_prev(struct rb_node *node);
 178
 179To start iterating, call rb_first() or rb_last() with a pointer to the root
 180of the tree, which will return a pointer to the node structure contained in
 181the first or last element in the tree.  To continue, fetch the next or previous
 182node by calling rb_next() or rb_prev() on the current node.  This will return
 183NULL when there are no more nodes left.
 184
 185The iterator functions return a pointer to the embedded struct rb_node, from
 186which the containing data structure may be accessed with the container_of()
 187macro, and individual members may be accessed directly via
 188rb_entry(node, type, member).
 189
 190Example::
 191
 192  struct rb_node *node;
 193  for (node = rb_first(&mytree); node; node = rb_next(node))
 194        printk("key=%s\n", rb_entry(node, struct mytype, node)->keystring);
 195
 196Cached rbtrees
 197--------------
 198
 199Computing the leftmost (smallest) node is quite a common task for binary
 200search trees, such as for traversals or users relying on a the particular
 201order for their own logic. To this end, users can use 'struct rb_root_cached'
 202to optimize O(logN) rb_first() calls to a simple pointer fetch avoiding
 203potentially expensive tree iterations. This is done at negligible runtime
 204overhead for maintanence; albeit larger memory footprint.
 205
 206Similar to the rb_root structure, cached rbtrees are initialized to be
 207empty via::
 208
 209  struct rb_root_cached mytree = RB_ROOT_CACHED;
 210
 211Cached rbtree is simply a regular rb_root with an extra pointer to cache the
 212leftmost node. This allows rb_root_cached to exist wherever rb_root does,
 213which permits augmented trees to be supported as well as only a few extra
 214interfaces::
 215
 216  struct rb_node *rb_first_cached(struct rb_root_cached *tree);
 217  void rb_insert_color_cached(struct rb_node *, struct rb_root_cached *, bool);
 218  void rb_erase_cached(struct rb_node *node, struct rb_root_cached *);
 219
 220Both insert and erase calls have their respective counterpart of augmented
 221trees::
 222
 223  void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *,
 224                                  bool, struct rb_augment_callbacks *);
 225  void rb_erase_augmented_cached(struct rb_node *, struct rb_root_cached *,
 226                                 struct rb_augment_callbacks *);
 227
 228
 229Support for Augmented rbtrees
 230-----------------------------
 231
 232Augmented rbtree is an rbtree with "some" additional data stored in
 233each node, where the additional data for node N must be a function of
 234the contents of all nodes in the subtree rooted at N. This data can
 235be used to augment some new functionality to rbtree. Augmented rbtree
 236is an optional feature built on top of basic rbtree infrastructure.
 237An rbtree user who wants this feature will have to call the augmentation
 238functions with the user provided augmentation callback when inserting
 239and erasing nodes.
 240
 241C files implementing augmented rbtree manipulation must include
 242<linux/rbtree_augmented.h> instead of <linux/rbtree.h>. Note that
 243linux/rbtree_augmented.h exposes some rbtree implementations details
 244you are not expected to rely on; please stick to the documented APIs
 245there and do not include <linux/rbtree_augmented.h> from header files
 246either so as to minimize chances of your users accidentally relying on
 247such implementation details.
 248
 249On insertion, the user must update the augmented information on the path
 250leading to the inserted node, then call rb_link_node() as usual and
 251rb_augment_inserted() instead of the usual rb_insert_color() call.
 252If rb_augment_inserted() rebalances the rbtree, it will callback into
 253a user provided function to update the augmented information on the
 254affected subtrees.
 255
 256When erasing a node, the user must call rb_erase_augmented() instead of
 257rb_erase(). rb_erase_augmented() calls back into user provided functions
 258to updated the augmented information on affected subtrees.
 259
 260In both cases, the callbacks are provided through struct rb_augment_callbacks.
 2613 callbacks must be defined:
 262
 263- A propagation callback, which updates the augmented value for a given
 264  node and its ancestors, up to a given stop point (or NULL to update
 265  all the way to the root).
 266
 267- A copy callback, which copies the augmented value for a given subtree
 268  to a newly assigned subtree root.
 269
 270- A tree rotation callback, which copies the augmented value for a given
 271  subtree to a newly assigned subtree root AND recomputes the augmented
 272  information for the former subtree root.
 273
 274The compiled code for rb_erase_augmented() may inline the propagation and
 275copy callbacks, which results in a large function, so each augmented rbtree
 276user should have a single rb_erase_augmented() call site in order to limit
 277compiled code size.
 278
 279
 280Sample usage
 281^^^^^^^^^^^^
 282
 283Interval tree is an example of augmented rb tree. Reference -
 284"Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein.
 285More details about interval trees:
 286
 287Classical rbtree has a single key and it cannot be directly used to store
 288interval ranges like [lo:hi] and do a quick lookup for any overlap with a new
 289lo:hi or to find whether there is an exact match for a new lo:hi.
 290
 291However, rbtree can be augmented to store such interval ranges in a structured
 292way making it possible to do efficient lookup and exact match.
 293
 294This "extra information" stored in each node is the maximum hi
 295(max_hi) value among all the nodes that are its descendants. This
 296information can be maintained at each node just be looking at the node
 297and its immediate children. And this will be used in O(log n) lookup
 298for lowest match (lowest start address among all possible matches)
 299with something like::
 300
 301  struct interval_tree_node *
 302  interval_tree_first_match(struct rb_root *root,
 303                            unsigned long start, unsigned long last)
 304  {
 305        struct interval_tree_node *node;
 306
 307        if (!root->rb_node)
 308                return NULL;
 309        node = rb_entry(root->rb_node, struct interval_tree_node, rb);
 310
 311        while (true) {
 312                if (node->rb.rb_left) {
 313                        struct interval_tree_node *left =
 314                                rb_entry(node->rb.rb_left,
 315                                         struct interval_tree_node, rb);
 316                        if (left->__subtree_last >= start) {
 317                                /*
 318                                 * Some nodes in left subtree satisfy Cond2.
 319                                 * Iterate to find the leftmost such node N.
 320                                 * If it also satisfies Cond1, that's the match
 321                                 * we are looking for. Otherwise, there is no
 322                                 * matching interval as nodes to the right of N
 323                                 * can't satisfy Cond1 either.
 324                                 */
 325                                node = left;
 326                                continue;
 327                        }
 328                }
 329                if (node->start <= last) {              /* Cond1 */
 330                        if (node->last >= start)        /* Cond2 */
 331                                return node;    /* node is leftmost match */
 332                        if (node->rb.rb_right) {
 333                                node = rb_entry(node->rb.rb_right,
 334                                        struct interval_tree_node, rb);
 335                                if (node->__subtree_last >= start)
 336                                        continue;
 337                        }
 338                }
 339                return NULL;    /* No match */
 340        }
 341  }
 342
 343Insertion/removal are defined using the following augmented callbacks::
 344
 345  static inline unsigned long
 346  compute_subtree_last(struct interval_tree_node *node)
 347  {
 348        unsigned long max = node->last, subtree_last;
 349        if (node->rb.rb_left) {
 350                subtree_last = rb_entry(node->rb.rb_left,
 351                        struct interval_tree_node, rb)->__subtree_last;
 352                if (max < subtree_last)
 353                        max = subtree_last;
 354        }
 355        if (node->rb.rb_right) {
 356                subtree_last = rb_entry(node->rb.rb_right,
 357                        struct interval_tree_node, rb)->__subtree_last;
 358                if (max < subtree_last)
 359                        max = subtree_last;
 360        }
 361        return max;
 362  }
 363
 364  static void augment_propagate(struct rb_node *rb, struct rb_node *stop)
 365  {
 366        while (rb != stop) {
 367                struct interval_tree_node *node =
 368                        rb_entry(rb, struct interval_tree_node, rb);
 369                unsigned long subtree_last = compute_subtree_last(node);
 370                if (node->__subtree_last == subtree_last)
 371                        break;
 372                node->__subtree_last = subtree_last;
 373                rb = rb_parent(&node->rb);
 374        }
 375  }
 376
 377  static void augment_copy(struct rb_node *rb_old, struct rb_node *rb_new)
 378  {
 379        struct interval_tree_node *old =
 380                rb_entry(rb_old, struct interval_tree_node, rb);
 381        struct interval_tree_node *new =
 382                rb_entry(rb_new, struct interval_tree_node, rb);
 383
 384        new->__subtree_last = old->__subtree_last;
 385  }
 386
 387  static void augment_rotate(struct rb_node *rb_old, struct rb_node *rb_new)
 388  {
 389        struct interval_tree_node *old =
 390                rb_entry(rb_old, struct interval_tree_node, rb);
 391        struct interval_tree_node *new =
 392                rb_entry(rb_new, struct interval_tree_node, rb);
 393
 394        new->__subtree_last = old->__subtree_last;
 395        old->__subtree_last = compute_subtree_last(old);
 396  }
 397
 398  static const struct rb_augment_callbacks augment_callbacks = {
 399        augment_propagate, augment_copy, augment_rotate
 400  };
 401
 402  void interval_tree_insert(struct interval_tree_node *node,
 403                            struct rb_root *root)
 404  {
 405        struct rb_node **link = &root->rb_node, *rb_parent = NULL;
 406        unsigned long start = node->start, last = node->last;
 407        struct interval_tree_node *parent;
 408
 409        while (*link) {
 410                rb_parent = *link;
 411                parent = rb_entry(rb_parent, struct interval_tree_node, rb);
 412                if (parent->__subtree_last < last)
 413                        parent->__subtree_last = last;
 414                if (start < parent->start)
 415                        link = &parent->rb.rb_left;
 416                else
 417                        link = &parent->rb.rb_right;
 418        }
 419
 420        node->__subtree_last = last;
 421        rb_link_node(&node->rb, rb_parent, link);
 422        rb_insert_augmented(&node->rb, root, &augment_callbacks);
 423  }
 424
 425  void interval_tree_remove(struct interval_tree_node *node,
 426                            struct rb_root *root)
 427  {
 428        rb_erase_augmented(&node->rb, root, &augment_callbacks);
 429  }
 430