linux/arch/alpha/include/asm/dma.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * include/asm-alpha/dma.h
   4 *
   5 * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
   6 * use ISA-compatible dma.  The only extension is support for high-page
   7 * registers that allow to set the top 8 bits of a 32-bit DMA address.
   8 * This register should be written last when setting up a DMA address
   9 * as this will also enable DMA across 64 KB boundaries.
  10 */
  11
  12/* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
  13 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
  14 * Written by Hennus Bergman, 1992.
  15 * High DMA channel support & info by Hannu Savolainen
  16 * and John Boyd, Nov. 1992.
  17 */
  18
  19#ifndef _ASM_DMA_H
  20#define _ASM_DMA_H
  21
  22#include <linux/spinlock.h>
  23#include <asm/io.h>
  24
  25#define dma_outb        outb
  26#define dma_inb         inb
  27
  28/*
  29 * NOTES about DMA transfers:
  30 *
  31 *  controller 1: channels 0-3, byte operations, ports 00-1F
  32 *  controller 2: channels 4-7, word operations, ports C0-DF
  33 *
  34 *  - ALL registers are 8 bits only, regardless of transfer size
  35 *  - channel 4 is not used - cascades 1 into 2.
  36 *  - channels 0-3 are byte - addresses/counts are for physical bytes
  37 *  - channels 5-7 are word - addresses/counts are for physical words
  38 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
  39 *  - transfer count loaded to registers is 1 less than actual count
  40 *  - controller 2 offsets are all even (2x offsets for controller 1)
  41 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
  42 *  - page registers for 0-3 use bit 0, represent 64K pages
  43 *
  44 * DMA transfers are limited to the lower 16MB of _physical_ memory.  
  45 * Note that addresses loaded into registers must be _physical_ addresses,
  46 * not logical addresses (which may differ if paging is active).
  47 *
  48 *  Address mapping for channels 0-3:
  49 *
  50 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
  51 *    |  ...  |   |  ... |   |  ... |
  52 *    |  ...  |   |  ... |   |  ... |
  53 *    |  ...  |   |  ... |   |  ... |
  54 *   P7  ...  P0  A7 ... A0  A7 ... A0   
  55 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
  56 *
  57 *  Address mapping for channels 5-7:
  58 *
  59 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
  60 *    |  ...  |   \   \   ... \  \  \  ... \  \
  61 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
  62 *    |  ...  |     \   \   ... \  \  \  ... \
  63 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0   
  64 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
  65 *
  66 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
  67 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
  68 * the hardware level, so odd-byte transfers aren't possible).
  69 *
  70 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
  71 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
  72 * and up to 128K bytes may be transferred on channels 5-7 in one operation. 
  73 *
  74 */
  75
  76#define MAX_DMA_CHANNELS        8
  77
  78/*
  79  ISA DMA limitations on Alpha platforms,
  80
  81  These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
  82  just a wiring limit.
  83*/
  84
  85/* The maximum address for ISA DMA transfer on Alpha XL, due to an
  86   hardware SIO limitation, is 64MB.
  87*/
  88#define ALPHA_XL_MAX_ISA_DMA_ADDRESS            0x04000000UL
  89
  90/* The maximum address for ISA DMA transfer on RUFFIAN,
  91   due to an hardware SIO limitation, is 16MB.
  92*/
  93#define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS       0x01000000UL
  94
  95/* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
  96   due to an hardware SIO chip limitation, is 2GB.
  97*/
  98#define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS         0x80000000UL
  99#define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS         0x80000000UL
 100
 101/*
 102  Maximum address for all the others is the complete 32-bit bus
 103  address space.
 104*/
 105#define ALPHA_MAX_ISA_DMA_ADDRESS               0x100000000UL
 106
 107#ifdef CONFIG_ALPHA_GENERIC
 108# define MAX_ISA_DMA_ADDRESS            (alpha_mv.max_isa_dma_address)
 109#else
 110# if defined(CONFIG_ALPHA_XL)
 111#  define MAX_ISA_DMA_ADDRESS           ALPHA_XL_MAX_ISA_DMA_ADDRESS
 112# elif defined(CONFIG_ALPHA_RUFFIAN)
 113#  define MAX_ISA_DMA_ADDRESS           ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
 114# elif defined(CONFIG_ALPHA_SABLE)
 115#  define MAX_ISA_DMA_ADDRESS           ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
 116# elif defined(CONFIG_ALPHA_ALCOR)
 117#  define MAX_ISA_DMA_ADDRESS           ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
 118# else
 119#  define MAX_ISA_DMA_ADDRESS           ALPHA_MAX_ISA_DMA_ADDRESS
 120# endif
 121#endif
 122
 123/* If we have the iommu, we don't have any address limitations on DMA.
 124   Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
 125   like i386. */
 126#define MAX_DMA_ADDRESS         (alpha_mv.mv_pci_tbi ?  \
 127                                 ~0UL : IDENT_ADDR + 0x01000000)
 128
 129/* 8237 DMA controllers */
 130#define IO_DMA1_BASE    0x00    /* 8 bit slave DMA, channels 0..3 */
 131#define IO_DMA2_BASE    0xC0    /* 16 bit master DMA, ch 4(=slave input)..7 */
 132
 133/* DMA controller registers */
 134#define DMA1_CMD_REG            0x08    /* command register (w) */
 135#define DMA1_STAT_REG           0x08    /* status register (r) */
 136#define DMA1_REQ_REG            0x09    /* request register (w) */
 137#define DMA1_MASK_REG           0x0A    /* single-channel mask (w) */
 138#define DMA1_MODE_REG           0x0B    /* mode register (w) */
 139#define DMA1_CLEAR_FF_REG       0x0C    /* clear pointer flip-flop (w) */
 140#define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
 141#define DMA1_RESET_REG          0x0D    /* Master Clear (w) */
 142#define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
 143#define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
 144#define DMA1_EXT_MODE_REG       (0x400 | DMA1_MODE_REG)
 145
 146#define DMA2_CMD_REG            0xD0    /* command register (w) */
 147#define DMA2_STAT_REG           0xD0    /* status register (r) */
 148#define DMA2_REQ_REG            0xD2    /* request register (w) */
 149#define DMA2_MASK_REG           0xD4    /* single-channel mask (w) */
 150#define DMA2_MODE_REG           0xD6    /* mode register (w) */
 151#define DMA2_CLEAR_FF_REG       0xD8    /* clear pointer flip-flop (w) */
 152#define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
 153#define DMA2_RESET_REG          0xDA    /* Master Clear (w) */
 154#define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
 155#define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
 156#define DMA2_EXT_MODE_REG       (0x400 | DMA2_MODE_REG)
 157
 158#define DMA_ADDR_0              0x00    /* DMA address registers */
 159#define DMA_ADDR_1              0x02
 160#define DMA_ADDR_2              0x04
 161#define DMA_ADDR_3              0x06
 162#define DMA_ADDR_4              0xC0
 163#define DMA_ADDR_5              0xC4
 164#define DMA_ADDR_6              0xC8
 165#define DMA_ADDR_7              0xCC
 166
 167#define DMA_CNT_0               0x01    /* DMA count registers */
 168#define DMA_CNT_1               0x03
 169#define DMA_CNT_2               0x05
 170#define DMA_CNT_3               0x07
 171#define DMA_CNT_4               0xC2
 172#define DMA_CNT_5               0xC6
 173#define DMA_CNT_6               0xCA
 174#define DMA_CNT_7               0xCE
 175
 176#define DMA_PAGE_0              0x87    /* DMA page registers */
 177#define DMA_PAGE_1              0x83
 178#define DMA_PAGE_2              0x81
 179#define DMA_PAGE_3              0x82
 180#define DMA_PAGE_5              0x8B
 181#define DMA_PAGE_6              0x89
 182#define DMA_PAGE_7              0x8A
 183
 184#define DMA_HIPAGE_0            (0x400 | DMA_PAGE_0)
 185#define DMA_HIPAGE_1            (0x400 | DMA_PAGE_1)
 186#define DMA_HIPAGE_2            (0x400 | DMA_PAGE_2)
 187#define DMA_HIPAGE_3            (0x400 | DMA_PAGE_3)
 188#define DMA_HIPAGE_4            (0x400 | DMA_PAGE_4)
 189#define DMA_HIPAGE_5            (0x400 | DMA_PAGE_5)
 190#define DMA_HIPAGE_6            (0x400 | DMA_PAGE_6)
 191#define DMA_HIPAGE_7            (0x400 | DMA_PAGE_7)
 192
 193#define DMA_MODE_READ   0x44    /* I/O to memory, no autoinit, increment, single mode */
 194#define DMA_MODE_WRITE  0x48    /* memory to I/O, no autoinit, increment, single mode */
 195#define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
 196
 197#define DMA_AUTOINIT    0x10
 198
 199extern spinlock_t  dma_spin_lock;
 200
 201static __inline__ unsigned long claim_dma_lock(void)
 202{
 203        unsigned long flags;
 204        spin_lock_irqsave(&dma_spin_lock, flags);
 205        return flags;
 206}
 207
 208static __inline__ void release_dma_lock(unsigned long flags)
 209{
 210        spin_unlock_irqrestore(&dma_spin_lock, flags);
 211}
 212
 213/* enable/disable a specific DMA channel */
 214static __inline__ void enable_dma(unsigned int dmanr)
 215{
 216        if (dmanr<=3)
 217                dma_outb(dmanr,  DMA1_MASK_REG);
 218        else
 219                dma_outb(dmanr & 3,  DMA2_MASK_REG);
 220}
 221
 222static __inline__ void disable_dma(unsigned int dmanr)
 223{
 224        if (dmanr<=3)
 225                dma_outb(dmanr | 4,  DMA1_MASK_REG);
 226        else
 227                dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
 228}
 229
 230/* Clear the 'DMA Pointer Flip Flop'.
 231 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
 232 * Use this once to initialize the FF to a known state.
 233 * After that, keep track of it. :-)
 234 * --- In order to do that, the DMA routines below should ---
 235 * --- only be used while interrupts are disabled! ---
 236 */
 237static __inline__ void clear_dma_ff(unsigned int dmanr)
 238{
 239        if (dmanr<=3)
 240                dma_outb(0,  DMA1_CLEAR_FF_REG);
 241        else
 242                dma_outb(0,  DMA2_CLEAR_FF_REG);
 243}
 244
 245/* set mode (above) for a specific DMA channel */
 246static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
 247{
 248        if (dmanr<=3)
 249                dma_outb(mode | dmanr,  DMA1_MODE_REG);
 250        else
 251                dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
 252}
 253
 254/* set extended mode for a specific DMA channel */
 255static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
 256{
 257        if (dmanr<=3)
 258                dma_outb(ext_mode | dmanr,  DMA1_EXT_MODE_REG);
 259        else
 260                dma_outb(ext_mode | (dmanr&3),  DMA2_EXT_MODE_REG);
 261}
 262
 263/* Set only the page register bits of the transfer address.
 264 * This is used for successive transfers when we know the contents of
 265 * the lower 16 bits of the DMA current address register.
 266 */
 267static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
 268{
 269        switch(dmanr) {
 270                case 0:
 271                        dma_outb(pagenr, DMA_PAGE_0);
 272                        dma_outb((pagenr >> 8), DMA_HIPAGE_0);
 273                        break;
 274                case 1:
 275                        dma_outb(pagenr, DMA_PAGE_1);
 276                        dma_outb((pagenr >> 8), DMA_HIPAGE_1);
 277                        break;
 278                case 2:
 279                        dma_outb(pagenr, DMA_PAGE_2);
 280                        dma_outb((pagenr >> 8), DMA_HIPAGE_2);
 281                        break;
 282                case 3:
 283                        dma_outb(pagenr, DMA_PAGE_3);
 284                        dma_outb((pagenr >> 8), DMA_HIPAGE_3);
 285                        break;
 286                case 5:
 287                        dma_outb(pagenr & 0xfe, DMA_PAGE_5);
 288                        dma_outb((pagenr >> 8), DMA_HIPAGE_5);
 289                        break;
 290                case 6:
 291                        dma_outb(pagenr & 0xfe, DMA_PAGE_6);
 292                        dma_outb((pagenr >> 8), DMA_HIPAGE_6);
 293                        break;
 294                case 7:
 295                        dma_outb(pagenr & 0xfe, DMA_PAGE_7);
 296                        dma_outb((pagenr >> 8), DMA_HIPAGE_7);
 297                        break;
 298        }
 299}
 300
 301
 302/* Set transfer address & page bits for specific DMA channel.
 303 * Assumes dma flipflop is clear.
 304 */
 305static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
 306{
 307        if (dmanr <= 3)  {
 308            dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
 309            dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
 310        }  else  {
 311            dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
 312            dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
 313        }
 314        set_dma_page(dmanr, a>>16);     /* set hipage last to enable 32-bit mode */
 315}
 316
 317
 318/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
 319 * a specific DMA channel.
 320 * You must ensure the parameters are valid.
 321 * NOTE: from a manual: "the number of transfers is one more
 322 * than the initial word count"! This is taken into account.
 323 * Assumes dma flip-flop is clear.
 324 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
 325 */
 326static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
 327{
 328        count--;
 329        if (dmanr <= 3)  {
 330            dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
 331            dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
 332        } else {
 333            dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
 334            dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
 335        }
 336}
 337
 338
 339/* Get DMA residue count. After a DMA transfer, this
 340 * should return zero. Reading this while a DMA transfer is
 341 * still in progress will return unpredictable results.
 342 * If called before the channel has been used, it may return 1.
 343 * Otherwise, it returns the number of _bytes_ left to transfer.
 344 *
 345 * Assumes DMA flip-flop is clear.
 346 */
 347static __inline__ int get_dma_residue(unsigned int dmanr)
 348{
 349        unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
 350                                         : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
 351
 352        /* using short to get 16-bit wrap around */
 353        unsigned short count;
 354
 355        count = 1 + dma_inb(io_port);
 356        count += dma_inb(io_port) << 8;
 357        
 358        return (dmanr<=3)? count : (count<<1);
 359}
 360
 361
 362/* These are in kernel/dma.c: */
 363extern int request_dma(unsigned int dmanr, const char * device_id);     /* reserve a DMA channel */
 364extern void free_dma(unsigned int dmanr);       /* release it again */
 365#define KERNEL_HAVE_CHECK_DMA
 366extern int check_dma(unsigned int dmanr);
 367
 368/* From PCI */
 369
 370#ifdef CONFIG_PCI
 371extern int isa_dma_bridge_buggy;
 372#else
 373#define isa_dma_bridge_buggy    (0)
 374#endif
 375
 376
 377#endif /* _ASM_DMA_H */
 378