linux/arch/arm/include/asm/cacheflush.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 *  arch/arm/include/asm/cacheflush.h
   4 *
   5 *  Copyright (C) 1999-2002 Russell King
   6 */
   7#ifndef _ASMARM_CACHEFLUSH_H
   8#define _ASMARM_CACHEFLUSH_H
   9
  10#include <linux/mm.h>
  11
  12#include <asm/glue-cache.h>
  13#include <asm/shmparam.h>
  14#include <asm/cachetype.h>
  15#include <asm/outercache.h>
  16
  17#define CACHE_COLOUR(vaddr)     ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
  18
  19/*
  20 * This flag is used to indicate that the page pointed to by a pte is clean
  21 * and does not require cleaning before returning it to the user.
  22 */
  23#define PG_dcache_clean PG_arch_1
  24
  25/*
  26 *      MM Cache Management
  27 *      ===================
  28 *
  29 *      The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
  30 *      implement these methods.
  31 *
  32 *      Start addresses are inclusive and end addresses are exclusive;
  33 *      start addresses should be rounded down, end addresses up.
  34 *
  35 *      See Documentation/core-api/cachetlb.rst for more information.
  36 *      Please note that the implementation of these, and the required
  37 *      effects are cache-type (VIVT/VIPT/PIPT) specific.
  38 *
  39 *      flush_icache_all()
  40 *
  41 *              Unconditionally clean and invalidate the entire icache.
  42 *              Currently only needed for cache-v6.S and cache-v7.S, see
  43 *              __flush_icache_all for the generic implementation.
  44 *
  45 *      flush_kern_all()
  46 *
  47 *              Unconditionally clean and invalidate the entire cache.
  48 *
  49 *     flush_kern_louis()
  50 *
  51 *             Flush data cache levels up to the level of unification
  52 *             inner shareable and invalidate the I-cache.
  53 *             Only needed from v7 onwards, falls back to flush_cache_all()
  54 *             for all other processor versions.
  55 *
  56 *      flush_user_all()
  57 *
  58 *              Clean and invalidate all user space cache entries
  59 *              before a change of page tables.
  60 *
  61 *      flush_user_range(start, end, flags)
  62 *
  63 *              Clean and invalidate a range of cache entries in the
  64 *              specified address space before a change of page tables.
  65 *              - start - user start address (inclusive, page aligned)
  66 *              - end   - user end address   (exclusive, page aligned)
  67 *              - flags - vma->vm_flags field
  68 *
  69 *      coherent_kern_range(start, end)
  70 *
  71 *              Ensure coherency between the Icache and the Dcache in the
  72 *              region described by start, end.  If you have non-snooping
  73 *              Harvard caches, you need to implement this function.
  74 *              - start  - virtual start address
  75 *              - end    - virtual end address
  76 *
  77 *      coherent_user_range(start, end)
  78 *
  79 *              Ensure coherency between the Icache and the Dcache in the
  80 *              region described by start, end.  If you have non-snooping
  81 *              Harvard caches, you need to implement this function.
  82 *              - start  - virtual start address
  83 *              - end    - virtual end address
  84 *
  85 *      flush_kern_dcache_area(kaddr, size)
  86 *
  87 *              Ensure that the data held in page is written back.
  88 *              - kaddr  - page address
  89 *              - size   - region size
  90 *
  91 *      DMA Cache Coherency
  92 *      ===================
  93 *
  94 *      dma_flush_range(start, end)
  95 *
  96 *              Clean and invalidate the specified virtual address range.
  97 *              - start  - virtual start address
  98 *              - end    - virtual end address
  99 */
 100
 101struct cpu_cache_fns {
 102        void (*flush_icache_all)(void);
 103        void (*flush_kern_all)(void);
 104        void (*flush_kern_louis)(void);
 105        void (*flush_user_all)(void);
 106        void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
 107
 108        void (*coherent_kern_range)(unsigned long, unsigned long);
 109        int  (*coherent_user_range)(unsigned long, unsigned long);
 110        void (*flush_kern_dcache_area)(void *, size_t);
 111
 112        void (*dma_map_area)(const void *, size_t, int);
 113        void (*dma_unmap_area)(const void *, size_t, int);
 114
 115        void (*dma_flush_range)(const void *, const void *);
 116} __no_randomize_layout;
 117
 118/*
 119 * Select the calling method
 120 */
 121#ifdef MULTI_CACHE
 122
 123extern struct cpu_cache_fns cpu_cache;
 124
 125#define __cpuc_flush_icache_all         cpu_cache.flush_icache_all
 126#define __cpuc_flush_kern_all           cpu_cache.flush_kern_all
 127#define __cpuc_flush_kern_louis         cpu_cache.flush_kern_louis
 128#define __cpuc_flush_user_all           cpu_cache.flush_user_all
 129#define __cpuc_flush_user_range         cpu_cache.flush_user_range
 130#define __cpuc_coherent_kern_range      cpu_cache.coherent_kern_range
 131#define __cpuc_coherent_user_range      cpu_cache.coherent_user_range
 132#define __cpuc_flush_dcache_area        cpu_cache.flush_kern_dcache_area
 133
 134/*
 135 * These are private to the dma-mapping API.  Do not use directly.
 136 * Their sole purpose is to ensure that data held in the cache
 137 * is visible to DMA, or data written by DMA to system memory is
 138 * visible to the CPU.
 139 */
 140#define dmac_flush_range                cpu_cache.dma_flush_range
 141
 142#else
 143
 144extern void __cpuc_flush_icache_all(void);
 145extern void __cpuc_flush_kern_all(void);
 146extern void __cpuc_flush_kern_louis(void);
 147extern void __cpuc_flush_user_all(void);
 148extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
 149extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
 150extern int  __cpuc_coherent_user_range(unsigned long, unsigned long);
 151extern void __cpuc_flush_dcache_area(void *, size_t);
 152
 153/*
 154 * These are private to the dma-mapping API.  Do not use directly.
 155 * Their sole purpose is to ensure that data held in the cache
 156 * is visible to DMA, or data written by DMA to system memory is
 157 * visible to the CPU.
 158 */
 159extern void dmac_flush_range(const void *, const void *);
 160
 161#endif
 162
 163/*
 164 * Copy user data from/to a page which is mapped into a different
 165 * processes address space.  Really, we want to allow our "user
 166 * space" model to handle this.
 167 */
 168extern void copy_to_user_page(struct vm_area_struct *, struct page *,
 169        unsigned long, void *, const void *, unsigned long);
 170#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
 171        do {                                                    \
 172                memcpy(dst, src, len);                          \
 173        } while (0)
 174
 175/*
 176 * Convert calls to our calling convention.
 177 */
 178
 179/* Invalidate I-cache */
 180#define __flush_icache_all_generic()                                    \
 181        asm("mcr        p15, 0, %0, c7, c5, 0"                          \
 182            : : "r" (0));
 183
 184/* Invalidate I-cache inner shareable */
 185#define __flush_icache_all_v7_smp()                                     \
 186        asm("mcr        p15, 0, %0, c7, c1, 0"                          \
 187            : : "r" (0));
 188
 189/*
 190 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
 191 * will fall through to use __flush_icache_all_generic.
 192 */
 193#if (defined(CONFIG_CPU_V7) && \
 194     (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
 195        defined(CONFIG_SMP_ON_UP)
 196#define __flush_icache_preferred        __cpuc_flush_icache_all
 197#elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
 198#define __flush_icache_preferred        __flush_icache_all_v7_smp
 199#elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
 200#define __flush_icache_preferred        __cpuc_flush_icache_all
 201#else
 202#define __flush_icache_preferred        __flush_icache_all_generic
 203#endif
 204
 205static inline void __flush_icache_all(void)
 206{
 207        __flush_icache_preferred();
 208        dsb(ishst);
 209}
 210
 211/*
 212 * Flush caches up to Level of Unification Inner Shareable
 213 */
 214#define flush_cache_louis()             __cpuc_flush_kern_louis()
 215
 216#define flush_cache_all()               __cpuc_flush_kern_all()
 217
 218static inline void vivt_flush_cache_mm(struct mm_struct *mm)
 219{
 220        if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
 221                __cpuc_flush_user_all();
 222}
 223
 224static inline void
 225vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 226{
 227        struct mm_struct *mm = vma->vm_mm;
 228
 229        if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
 230                __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
 231                                        vma->vm_flags);
 232}
 233
 234static inline void
 235vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
 236{
 237        struct mm_struct *mm = vma->vm_mm;
 238
 239        if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
 240                unsigned long addr = user_addr & PAGE_MASK;
 241                __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
 242        }
 243}
 244
 245#ifndef CONFIG_CPU_CACHE_VIPT
 246#define flush_cache_mm(mm) \
 247                vivt_flush_cache_mm(mm)
 248#define flush_cache_range(vma,start,end) \
 249                vivt_flush_cache_range(vma,start,end)
 250#define flush_cache_page(vma,addr,pfn) \
 251                vivt_flush_cache_page(vma,addr,pfn)
 252#else
 253extern void flush_cache_mm(struct mm_struct *mm);
 254extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 255extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
 256#endif
 257
 258#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
 259
 260/*
 261 * flush_cache_user_range is used when we want to ensure that the
 262 * Harvard caches are synchronised for the user space address range.
 263 * This is used for the ARM private sys_cacheflush system call.
 264 */
 265#define flush_cache_user_range(s,e)     __cpuc_coherent_user_range(s,e)
 266
 267/*
 268 * Perform necessary cache operations to ensure that data previously
 269 * stored within this range of addresses can be executed by the CPU.
 270 */
 271#define flush_icache_range(s,e)         __cpuc_coherent_kern_range(s,e)
 272
 273/*
 274 * Perform necessary cache operations to ensure that the TLB will
 275 * see data written in the specified area.
 276 */
 277#define clean_dcache_area(start,size)   cpu_dcache_clean_area(start, size)
 278
 279/*
 280 * flush_dcache_page is used when the kernel has written to the page
 281 * cache page at virtual address page->virtual.
 282 *
 283 * If this page isn't mapped (ie, page_mapping == NULL), or it might
 284 * have userspace mappings, then we _must_ always clean + invalidate
 285 * the dcache entries associated with the kernel mapping.
 286 *
 287 * Otherwise we can defer the operation, and clean the cache when we are
 288 * about to change to user space.  This is the same method as used on SPARC64.
 289 * See update_mmu_cache for the user space part.
 290 */
 291#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
 292extern void flush_dcache_page(struct page *);
 293
 294static inline void flush_kernel_vmap_range(void *addr, int size)
 295{
 296        if ((cache_is_vivt() || cache_is_vipt_aliasing()))
 297          __cpuc_flush_dcache_area(addr, (size_t)size);
 298}
 299static inline void invalidate_kernel_vmap_range(void *addr, int size)
 300{
 301        if ((cache_is_vivt() || cache_is_vipt_aliasing()))
 302          __cpuc_flush_dcache_area(addr, (size_t)size);
 303}
 304
 305#define ARCH_HAS_FLUSH_ANON_PAGE
 306static inline void flush_anon_page(struct vm_area_struct *vma,
 307                         struct page *page, unsigned long vmaddr)
 308{
 309        extern void __flush_anon_page(struct vm_area_struct *vma,
 310                                struct page *, unsigned long);
 311        if (PageAnon(page))
 312                __flush_anon_page(vma, page, vmaddr);
 313}
 314
 315#define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
 316extern void flush_kernel_dcache_page(struct page *);
 317
 318#define flush_dcache_mmap_lock(mapping)         xa_lock_irq(&mapping->i_pages)
 319#define flush_dcache_mmap_unlock(mapping)       xa_unlock_irq(&mapping->i_pages)
 320
 321#define flush_icache_user_range(vma,page,addr,len) \
 322        flush_dcache_page(page)
 323
 324/*
 325 * We don't appear to need to do anything here.  In fact, if we did, we'd
 326 * duplicate cache flushing elsewhere performed by flush_dcache_page().
 327 */
 328#define flush_icache_page(vma,page)     do { } while (0)
 329
 330/*
 331 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
 332 * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
 333 * caches, since the direct-mappings of these pages may contain cached
 334 * data, we need to do a full cache flush to ensure that writebacks
 335 * don't corrupt data placed into these pages via the new mappings.
 336 */
 337static inline void flush_cache_vmap(unsigned long start, unsigned long end)
 338{
 339        if (!cache_is_vipt_nonaliasing())
 340                flush_cache_all();
 341        else
 342                /*
 343                 * set_pte_at() called from vmap_pte_range() does not
 344                 * have a DSB after cleaning the cache line.
 345                 */
 346                dsb(ishst);
 347}
 348
 349static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
 350{
 351        if (!cache_is_vipt_nonaliasing())
 352                flush_cache_all();
 353}
 354
 355/*
 356 * Memory synchronization helpers for mixed cached vs non cached accesses.
 357 *
 358 * Some synchronization algorithms have to set states in memory with the
 359 * cache enabled or disabled depending on the code path.  It is crucial
 360 * to always ensure proper cache maintenance to update main memory right
 361 * away in that case.
 362 *
 363 * Any cached write must be followed by a cache clean operation.
 364 * Any cached read must be preceded by a cache invalidate operation.
 365 * Yet, in the read case, a cache flush i.e. atomic clean+invalidate
 366 * operation is needed to avoid discarding possible concurrent writes to the
 367 * accessed memory.
 368 *
 369 * Also, in order to prevent a cached writer from interfering with an
 370 * adjacent non-cached writer, each state variable must be located to
 371 * a separate cache line.
 372 */
 373
 374/*
 375 * This needs to be >= the max cache writeback size of all
 376 * supported platforms included in the current kernel configuration.
 377 * This is used to align state variables to their own cache lines.
 378 */
 379#define __CACHE_WRITEBACK_ORDER 6  /* guessed from existing platforms */
 380#define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER)
 381
 382/*
 383 * There is no __cpuc_clean_dcache_area but we use it anyway for
 384 * code intent clarity, and alias it to __cpuc_flush_dcache_area.
 385 */
 386#define __cpuc_clean_dcache_area __cpuc_flush_dcache_area
 387
 388/*
 389 * Ensure preceding writes to *p by this CPU are visible to
 390 * subsequent reads by other CPUs:
 391 */
 392static inline void __sync_cache_range_w(volatile void *p, size_t size)
 393{
 394        char *_p = (char *)p;
 395
 396        __cpuc_clean_dcache_area(_p, size);
 397        outer_clean_range(__pa(_p), __pa(_p + size));
 398}
 399
 400/*
 401 * Ensure preceding writes to *p by other CPUs are visible to
 402 * subsequent reads by this CPU.  We must be careful not to
 403 * discard data simultaneously written by another CPU, hence the
 404 * usage of flush rather than invalidate operations.
 405 */
 406static inline void __sync_cache_range_r(volatile void *p, size_t size)
 407{
 408        char *_p = (char *)p;
 409
 410#ifdef CONFIG_OUTER_CACHE
 411        if (outer_cache.flush_range) {
 412                /*
 413                 * Ensure dirty data migrated from other CPUs into our cache
 414                 * are cleaned out safely before the outer cache is cleaned:
 415                 */
 416                __cpuc_clean_dcache_area(_p, size);
 417
 418                /* Clean and invalidate stale data for *p from outer ... */
 419                outer_flush_range(__pa(_p), __pa(_p + size));
 420        }
 421#endif
 422
 423        /* ... and inner cache: */
 424        __cpuc_flush_dcache_area(_p, size);
 425}
 426
 427#define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr))
 428#define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr))
 429
 430/*
 431 * Disabling cache access for one CPU in an ARMv7 SMP system is tricky.
 432 * To do so we must:
 433 *
 434 * - Clear the SCTLR.C bit to prevent further cache allocations
 435 * - Flush the desired level of cache
 436 * - Clear the ACTLR "SMP" bit to disable local coherency
 437 *
 438 * ... and so without any intervening memory access in between those steps,
 439 * not even to the stack.
 440 *
 441 * WARNING -- After this has been called:
 442 *
 443 * - No ldrex/strex (and similar) instructions must be used.
 444 * - The CPU is obviously no longer coherent with the other CPUs.
 445 * - This is unlikely to work as expected if Linux is running non-secure.
 446 *
 447 * Note:
 448 *
 449 * - This is known to apply to several ARMv7 processor implementations,
 450 *   however some exceptions may exist.  Caveat emptor.
 451 *
 452 * - The clobber list is dictated by the call to v7_flush_dcache_*.
 453 *   fp is preserved to the stack explicitly prior disabling the cache
 454 *   since adding it to the clobber list is incompatible with having
 455 *   CONFIG_FRAME_POINTER=y.  ip is saved as well if ever r12-clobbering
 456 *   trampoline are inserted by the linker and to keep sp 64-bit aligned.
 457 */
 458#define v7_exit_coherency_flush(level) \
 459        asm volatile( \
 460        ".arch  armv7-a \n\t" \
 461        "stmfd  sp!, {fp, ip} \n\t" \
 462        "mrc    p15, 0, r0, c1, c0, 0   @ get SCTLR \n\t" \
 463        "bic    r0, r0, #"__stringify(CR_C)" \n\t" \
 464        "mcr    p15, 0, r0, c1, c0, 0   @ set SCTLR \n\t" \
 465        "isb    \n\t" \
 466        "bl     v7_flush_dcache_"__stringify(level)" \n\t" \
 467        "mrc    p15, 0, r0, c1, c0, 1   @ get ACTLR \n\t" \
 468        "bic    r0, r0, #(1 << 6)       @ disable local coherency \n\t" \
 469        "mcr    p15, 0, r0, c1, c0, 1   @ set ACTLR \n\t" \
 470        "isb    \n\t" \
 471        "dsb    \n\t" \
 472        "ldmfd  sp!, {fp, ip}" \
 473        : : : "r0","r1","r2","r3","r4","r5","r6","r7", \
 474              "r9","r10","lr","memory" )
 475
 476void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
 477                             void *kaddr, unsigned long len);
 478
 479
 480#ifdef CONFIG_CPU_ICACHE_MISMATCH_WORKAROUND
 481void check_cpu_icache_size(int cpuid);
 482#else
 483static inline void check_cpu_icache_size(int cpuid) { }
 484#endif
 485
 486#endif
 487