linux/arch/arm/include/asm/pgtable-2level.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 *  arch/arm/include/asm/pgtable-2level.h
   4 *
   5 *  Copyright (C) 1995-2002 Russell King
   6 */
   7#ifndef _ASM_PGTABLE_2LEVEL_H
   8#define _ASM_PGTABLE_2LEVEL_H
   9
  10#define __PAGETABLE_PMD_FOLDED 1
  11
  12/*
  13 * Hardware-wise, we have a two level page table structure, where the first
  14 * level has 4096 entries, and the second level has 256 entries.  Each entry
  15 * is one 32-bit word.  Most of the bits in the second level entry are used
  16 * by hardware, and there aren't any "accessed" and "dirty" bits.
  17 *
  18 * Linux on the other hand has a three level page table structure, which can
  19 * be wrapped to fit a two level page table structure easily - using the PGD
  20 * and PTE only.  However, Linux also expects one "PTE" table per page, and
  21 * at least a "dirty" bit.
  22 *
  23 * Therefore, we tweak the implementation slightly - we tell Linux that we
  24 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
  25 * hardware pointers to the second level.)  The second level contains two
  26 * hardware PTE tables arranged contiguously, preceded by Linux versions
  27 * which contain the state information Linux needs.  We, therefore, end up
  28 * with 512 entries in the "PTE" level.
  29 *
  30 * This leads to the page tables having the following layout:
  31 *
  32 *    pgd             pte
  33 * |        |
  34 * +--------+
  35 * |        |       +------------+ +0
  36 * +- - - - +       | Linux pt 0 |
  37 * |        |       +------------+ +1024
  38 * +--------+ +0    | Linux pt 1 |
  39 * |        |-----> +------------+ +2048
  40 * +- - - - + +4    |  h/w pt 0  |
  41 * |        |-----> +------------+ +3072
  42 * +--------+ +8    |  h/w pt 1  |
  43 * |        |       +------------+ +4096
  44 *
  45 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
  46 * PTE_xxx for definitions of bits appearing in the "h/w pt".
  47 *
  48 * PMD_xxx definitions refer to bits in the first level page table.
  49 *
  50 * The "dirty" bit is emulated by only granting hardware write permission
  51 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
  52 * means that a write to a clean page will cause a permission fault, and
  53 * the Linux MM layer will mark the page dirty via handle_pte_fault().
  54 * For the hardware to notice the permission change, the TLB entry must
  55 * be flushed, and ptep_set_access_flags() does that for us.
  56 *
  57 * The "accessed" or "young" bit is emulated by a similar method; we only
  58 * allow accesses to the page if the "young" bit is set.  Accesses to the
  59 * page will cause a fault, and handle_pte_fault() will set the young bit
  60 * for us as long as the page is marked present in the corresponding Linux
  61 * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
  62 * up to date.
  63 *
  64 * However, when the "young" bit is cleared, we deny access to the page
  65 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
  66 * for us in this case, which means the TLB will retain the transation
  67 * until either the TLB entry is evicted under pressure, or a context
  68 * switch which changes the user space mapping occurs.
  69 */
  70#define PTRS_PER_PTE            512
  71#define PTRS_PER_PMD            1
  72#define PTRS_PER_PGD            2048
  73
  74#define PTE_HWTABLE_PTRS        (PTRS_PER_PTE)
  75#define PTE_HWTABLE_OFF         (PTE_HWTABLE_PTRS * sizeof(pte_t))
  76#define PTE_HWTABLE_SIZE        (PTRS_PER_PTE * sizeof(u32))
  77
  78/*
  79 * PMD_SHIFT determines the size of the area a second-level page table can map
  80 * PGDIR_SHIFT determines what a third-level page table entry can map
  81 */
  82#define PMD_SHIFT               21
  83#define PGDIR_SHIFT             21
  84
  85#define PMD_SIZE                (1UL << PMD_SHIFT)
  86#define PMD_MASK                (~(PMD_SIZE-1))
  87#define PGDIR_SIZE              (1UL << PGDIR_SHIFT)
  88#define PGDIR_MASK              (~(PGDIR_SIZE-1))
  89
  90/*
  91 * section address mask and size definitions.
  92 */
  93#define SECTION_SHIFT           20
  94#define SECTION_SIZE            (1UL << SECTION_SHIFT)
  95#define SECTION_MASK            (~(SECTION_SIZE-1))
  96
  97/*
  98 * ARMv6 supersection address mask and size definitions.
  99 */
 100#define SUPERSECTION_SHIFT      24
 101#define SUPERSECTION_SIZE       (1UL << SUPERSECTION_SHIFT)
 102#define SUPERSECTION_MASK       (~(SUPERSECTION_SIZE-1))
 103
 104#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
 105
 106/*
 107 * "Linux" PTE definitions.
 108 *
 109 * We keep two sets of PTEs - the hardware and the linux version.
 110 * This allows greater flexibility in the way we map the Linux bits
 111 * onto the hardware tables, and allows us to have YOUNG and DIRTY
 112 * bits.
 113 *
 114 * The PTE table pointer refers to the hardware entries; the "Linux"
 115 * entries are stored 1024 bytes below.
 116 */
 117#define L_PTE_VALID             (_AT(pteval_t, 1) << 0)         /* Valid */
 118#define L_PTE_PRESENT           (_AT(pteval_t, 1) << 0)
 119#define L_PTE_YOUNG             (_AT(pteval_t, 1) << 1)
 120#define L_PTE_DIRTY             (_AT(pteval_t, 1) << 6)
 121#define L_PTE_RDONLY            (_AT(pteval_t, 1) << 7)
 122#define L_PTE_USER              (_AT(pteval_t, 1) << 8)
 123#define L_PTE_XN                (_AT(pteval_t, 1) << 9)
 124#define L_PTE_SHARED            (_AT(pteval_t, 1) << 10)        /* shared(v6), coherent(xsc3) */
 125#define L_PTE_NONE              (_AT(pteval_t, 1) << 11)
 126
 127/*
 128 * These are the memory types, defined to be compatible with
 129 * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
 130 * ARMv6+ without TEX remapping, they are a table index.
 131 * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
 132 *
 133 * MT type              Pre-ARMv6       ARMv6+ type / cacheable status
 134 * UNCACHED             Uncached        Strongly ordered
 135 * BUFFERABLE           Bufferable      Normal memory / non-cacheable
 136 * WRITETHROUGH         Writethrough    Normal memory / write through
 137 * WRITEBACK            Writeback       Normal memory / write back, read alloc
 138 * MINICACHE            Minicache       N/A
 139 * WRITEALLOC           Writeback       Normal memory / write back, write alloc
 140 * DEV_SHARED           Uncached        Device memory (shared)
 141 * DEV_NONSHARED        Uncached        Device memory (non-shared)
 142 * DEV_WC               Bufferable      Normal memory / non-cacheable
 143 * DEV_CACHED           Writeback       Normal memory / write back, read alloc
 144 * VECTORS              Variable        Normal memory / variable
 145 *
 146 * All normal memory mappings have the following properties:
 147 * - reads can be repeated with no side effects
 148 * - repeated reads return the last value written
 149 * - reads can fetch additional locations without side effects
 150 * - writes can be repeated (in certain cases) with no side effects
 151 * - writes can be merged before accessing the target
 152 * - unaligned accesses can be supported
 153 *
 154 * All device mappings have the following properties:
 155 * - no access speculation
 156 * - no repetition (eg, on return from an exception)
 157 * - number, order and size of accesses are maintained
 158 * - unaligned accesses are "unpredictable"
 159 */
 160#define L_PTE_MT_UNCACHED       (_AT(pteval_t, 0x00) << 2)      /* 0000 */
 161#define L_PTE_MT_BUFFERABLE     (_AT(pteval_t, 0x01) << 2)      /* 0001 */
 162#define L_PTE_MT_WRITETHROUGH   (_AT(pteval_t, 0x02) << 2)      /* 0010 */
 163#define L_PTE_MT_WRITEBACK      (_AT(pteval_t, 0x03) << 2)      /* 0011 */
 164#define L_PTE_MT_MINICACHE      (_AT(pteval_t, 0x06) << 2)      /* 0110 (sa1100, xscale) */
 165#define L_PTE_MT_WRITEALLOC     (_AT(pteval_t, 0x07) << 2)      /* 0111 */
 166#define L_PTE_MT_DEV_SHARED     (_AT(pteval_t, 0x04) << 2)      /* 0100 */
 167#define L_PTE_MT_DEV_NONSHARED  (_AT(pteval_t, 0x0c) << 2)      /* 1100 */
 168#define L_PTE_MT_DEV_WC         (_AT(pteval_t, 0x09) << 2)      /* 1001 */
 169#define L_PTE_MT_DEV_CACHED     (_AT(pteval_t, 0x0b) << 2)      /* 1011 */
 170#define L_PTE_MT_VECTORS        (_AT(pteval_t, 0x0f) << 2)      /* 1111 */
 171#define L_PTE_MT_MASK           (_AT(pteval_t, 0x0f) << 2)
 172
 173#ifndef __ASSEMBLY__
 174
 175/*
 176 * The "pud_xxx()" functions here are trivial when the pmd is folded into
 177 * the pud: the pud entry is never bad, always exists, and can't be set or
 178 * cleared.
 179 */
 180#define pud_none(pud)           (0)
 181#define pud_bad(pud)            (0)
 182#define pud_present(pud)        (1)
 183#define pud_clear(pudp)         do { } while (0)
 184#define set_pud(pud,pudp)       do { } while (0)
 185
 186static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
 187{
 188        return (pmd_t *)pud;
 189}
 190
 191#define pmd_large(pmd)          (pmd_val(pmd) & 2)
 192#define pmd_bad(pmd)            (pmd_val(pmd) & 2)
 193#define pmd_present(pmd)        (pmd_val(pmd))
 194
 195#define copy_pmd(pmdpd,pmdps)           \
 196        do {                            \
 197                pmdpd[0] = pmdps[0];    \
 198                pmdpd[1] = pmdps[1];    \
 199                flush_pmd_entry(pmdpd); \
 200        } while (0)
 201
 202#define pmd_clear(pmdp)                 \
 203        do {                            \
 204                pmdp[0] = __pmd(0);     \
 205                pmdp[1] = __pmd(0);     \
 206                clean_pmd_entry(pmdp);  \
 207        } while (0)
 208
 209/* we don't need complex calculations here as the pmd is folded into the pgd */
 210#define pmd_addr_end(addr,end) (end)
 211
 212#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
 213#define pte_special(pte)        (0)
 214static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
 215
 216/*
 217 * We don't have huge page support for short descriptors, for the moment
 218 * define empty stubs for use by pin_page_for_write.
 219 */
 220#define pmd_hugewillfault(pmd)  (0)
 221#define pmd_thp_or_huge(pmd)    (0)
 222
 223#endif /* __ASSEMBLY__ */
 224
 225#endif /* _ASM_PGTABLE_2LEVEL_H */
 226