linux/arch/arm/kernel/smp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/smp.c
   4 *
   5 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
   6 */
   7#include <linux/module.h>
   8#include <linux/delay.h>
   9#include <linux/init.h>
  10#include <linux/spinlock.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/hotplug.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/interrupt.h>
  15#include <linux/cache.h>
  16#include <linux/profile.h>
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/err.h>
  20#include <linux/cpu.h>
  21#include <linux/seq_file.h>
  22#include <linux/irq.h>
  23#include <linux/nmi.h>
  24#include <linux/percpu.h>
  25#include <linux/clockchips.h>
  26#include <linux/completion.h>
  27#include <linux/cpufreq.h>
  28#include <linux/irq_work.h>
  29
  30#include <linux/atomic.h>
  31#include <asm/bugs.h>
  32#include <asm/smp.h>
  33#include <asm/cacheflush.h>
  34#include <asm/cpu.h>
  35#include <asm/cputype.h>
  36#include <asm/exception.h>
  37#include <asm/idmap.h>
  38#include <asm/topology.h>
  39#include <asm/mmu_context.h>
  40#include <asm/pgtable.h>
  41#include <asm/pgalloc.h>
  42#include <asm/procinfo.h>
  43#include <asm/processor.h>
  44#include <asm/sections.h>
  45#include <asm/tlbflush.h>
  46#include <asm/ptrace.h>
  47#include <asm/smp_plat.h>
  48#include <asm/virt.h>
  49#include <asm/mach/arch.h>
  50#include <asm/mpu.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/ipi.h>
  54
  55/*
  56 * as from 2.5, kernels no longer have an init_tasks structure
  57 * so we need some other way of telling a new secondary core
  58 * where to place its SVC stack
  59 */
  60struct secondary_data secondary_data;
  61
  62enum ipi_msg_type {
  63        IPI_WAKEUP,
  64        IPI_TIMER,
  65        IPI_RESCHEDULE,
  66        IPI_CALL_FUNC,
  67        IPI_CPU_STOP,
  68        IPI_IRQ_WORK,
  69        IPI_COMPLETION,
  70        /*
  71         * CPU_BACKTRACE is special and not included in NR_IPI
  72         * or tracable with trace_ipi_*
  73         */
  74        IPI_CPU_BACKTRACE,
  75        /*
  76         * SGI8-15 can be reserved by secure firmware, and thus may
  77         * not be usable by the kernel. Please keep the above limited
  78         * to at most 8 entries.
  79         */
  80};
  81
  82static DECLARE_COMPLETION(cpu_running);
  83
  84static struct smp_operations smp_ops __ro_after_init;
  85
  86void __init smp_set_ops(const struct smp_operations *ops)
  87{
  88        if (ops)
  89                smp_ops = *ops;
  90};
  91
  92static unsigned long get_arch_pgd(pgd_t *pgd)
  93{
  94#ifdef CONFIG_ARM_LPAE
  95        return __phys_to_pfn(virt_to_phys(pgd));
  96#else
  97        return virt_to_phys(pgd);
  98#endif
  99}
 100
 101#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 102static int secondary_biglittle_prepare(unsigned int cpu)
 103{
 104        if (!cpu_vtable[cpu])
 105                cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
 106
 107        return cpu_vtable[cpu] ? 0 : -ENOMEM;
 108}
 109
 110static void secondary_biglittle_init(void)
 111{
 112        init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
 113}
 114#else
 115static int secondary_biglittle_prepare(unsigned int cpu)
 116{
 117        return 0;
 118}
 119
 120static void secondary_biglittle_init(void)
 121{
 122}
 123#endif
 124
 125int __cpu_up(unsigned int cpu, struct task_struct *idle)
 126{
 127        int ret;
 128
 129        if (!smp_ops.smp_boot_secondary)
 130                return -ENOSYS;
 131
 132        ret = secondary_biglittle_prepare(cpu);
 133        if (ret)
 134                return ret;
 135
 136        /*
 137         * We need to tell the secondary core where to find
 138         * its stack and the page tables.
 139         */
 140        secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 141#ifdef CONFIG_ARM_MPU
 142        secondary_data.mpu_rgn_info = &mpu_rgn_info;
 143#endif
 144
 145#ifdef CONFIG_MMU
 146        secondary_data.pgdir = virt_to_phys(idmap_pgd);
 147        secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
 148#endif
 149        sync_cache_w(&secondary_data);
 150
 151        /*
 152         * Now bring the CPU into our world.
 153         */
 154        ret = smp_ops.smp_boot_secondary(cpu, idle);
 155        if (ret == 0) {
 156                /*
 157                 * CPU was successfully started, wait for it
 158                 * to come online or time out.
 159                 */
 160                wait_for_completion_timeout(&cpu_running,
 161                                                 msecs_to_jiffies(1000));
 162
 163                if (!cpu_online(cpu)) {
 164                        pr_crit("CPU%u: failed to come online\n", cpu);
 165                        ret = -EIO;
 166                }
 167        } else {
 168                pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 169        }
 170
 171
 172        memset(&secondary_data, 0, sizeof(secondary_data));
 173        return ret;
 174}
 175
 176/* platform specific SMP operations */
 177void __init smp_init_cpus(void)
 178{
 179        if (smp_ops.smp_init_cpus)
 180                smp_ops.smp_init_cpus();
 181}
 182
 183int platform_can_secondary_boot(void)
 184{
 185        return !!smp_ops.smp_boot_secondary;
 186}
 187
 188int platform_can_cpu_hotplug(void)
 189{
 190#ifdef CONFIG_HOTPLUG_CPU
 191        if (smp_ops.cpu_kill)
 192                return 1;
 193#endif
 194
 195        return 0;
 196}
 197
 198#ifdef CONFIG_HOTPLUG_CPU
 199static int platform_cpu_kill(unsigned int cpu)
 200{
 201        if (smp_ops.cpu_kill)
 202                return smp_ops.cpu_kill(cpu);
 203        return 1;
 204}
 205
 206static int platform_cpu_disable(unsigned int cpu)
 207{
 208        if (smp_ops.cpu_disable)
 209                return smp_ops.cpu_disable(cpu);
 210
 211        return 0;
 212}
 213
 214int platform_can_hotplug_cpu(unsigned int cpu)
 215{
 216        /* cpu_die must be specified to support hotplug */
 217        if (!smp_ops.cpu_die)
 218                return 0;
 219
 220        if (smp_ops.cpu_can_disable)
 221                return smp_ops.cpu_can_disable(cpu);
 222
 223        /*
 224         * By default, allow disabling all CPUs except the first one,
 225         * since this is special on a lot of platforms, e.g. because
 226         * of clock tick interrupts.
 227         */
 228        return cpu != 0;
 229}
 230
 231/*
 232 * __cpu_disable runs on the processor to be shutdown.
 233 */
 234int __cpu_disable(void)
 235{
 236        unsigned int cpu = smp_processor_id();
 237        int ret;
 238
 239        ret = platform_cpu_disable(cpu);
 240        if (ret)
 241                return ret;
 242
 243        /*
 244         * Take this CPU offline.  Once we clear this, we can't return,
 245         * and we must not schedule until we're ready to give up the cpu.
 246         */
 247        set_cpu_online(cpu, false);
 248
 249        /*
 250         * OK - migrate IRQs away from this CPU
 251         */
 252        irq_migrate_all_off_this_cpu();
 253
 254        /*
 255         * Flush user cache and TLB mappings, and then remove this CPU
 256         * from the vm mask set of all processes.
 257         *
 258         * Caches are flushed to the Level of Unification Inner Shareable
 259         * to write-back dirty lines to unified caches shared by all CPUs.
 260         */
 261        flush_cache_louis();
 262        local_flush_tlb_all();
 263
 264        return 0;
 265}
 266
 267static DECLARE_COMPLETION(cpu_died);
 268
 269/*
 270 * called on the thread which is asking for a CPU to be shutdown -
 271 * waits until shutdown has completed, or it is timed out.
 272 */
 273void __cpu_die(unsigned int cpu)
 274{
 275        if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
 276                pr_err("CPU%u: cpu didn't die\n", cpu);
 277                return;
 278        }
 279        pr_debug("CPU%u: shutdown\n", cpu);
 280
 281        clear_tasks_mm_cpumask(cpu);
 282        /*
 283         * platform_cpu_kill() is generally expected to do the powering off
 284         * and/or cutting of clocks to the dying CPU.  Optionally, this may
 285         * be done by the CPU which is dying in preference to supporting
 286         * this call, but that means there is _no_ synchronisation between
 287         * the requesting CPU and the dying CPU actually losing power.
 288         */
 289        if (!platform_cpu_kill(cpu))
 290                pr_err("CPU%u: unable to kill\n", cpu);
 291}
 292
 293/*
 294 * Called from the idle thread for the CPU which has been shutdown.
 295 *
 296 * Note that we disable IRQs here, but do not re-enable them
 297 * before returning to the caller. This is also the behaviour
 298 * of the other hotplug-cpu capable cores, so presumably coming
 299 * out of idle fixes this.
 300 */
 301void arch_cpu_idle_dead(void)
 302{
 303        unsigned int cpu = smp_processor_id();
 304
 305        idle_task_exit();
 306
 307        local_irq_disable();
 308
 309        /*
 310         * Flush the data out of the L1 cache for this CPU.  This must be
 311         * before the completion to ensure that data is safely written out
 312         * before platform_cpu_kill() gets called - which may disable
 313         * *this* CPU and power down its cache.
 314         */
 315        flush_cache_louis();
 316
 317        /*
 318         * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
 319         * this returns, power and/or clocks can be removed at any point
 320         * from this CPU and its cache by platform_cpu_kill().
 321         */
 322        complete(&cpu_died);
 323
 324        /*
 325         * Ensure that the cache lines associated with that completion are
 326         * written out.  This covers the case where _this_ CPU is doing the
 327         * powering down, to ensure that the completion is visible to the
 328         * CPU waiting for this one.
 329         */
 330        flush_cache_louis();
 331
 332        /*
 333         * The actual CPU shutdown procedure is at least platform (if not
 334         * CPU) specific.  This may remove power, or it may simply spin.
 335         *
 336         * Platforms are generally expected *NOT* to return from this call,
 337         * although there are some which do because they have no way to
 338         * power down the CPU.  These platforms are the _only_ reason we
 339         * have a return path which uses the fragment of assembly below.
 340         *
 341         * The return path should not be used for platforms which can
 342         * power off the CPU.
 343         */
 344        if (smp_ops.cpu_die)
 345                smp_ops.cpu_die(cpu);
 346
 347        pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
 348                cpu);
 349
 350        /*
 351         * Do not return to the idle loop - jump back to the secondary
 352         * cpu initialisation.  There's some initialisation which needs
 353         * to be repeated to undo the effects of taking the CPU offline.
 354         */
 355        __asm__("mov    sp, %0\n"
 356        "       mov     fp, #0\n"
 357        "       b       secondary_start_kernel"
 358                :
 359                : "r" (task_stack_page(current) + THREAD_SIZE - 8));
 360}
 361#endif /* CONFIG_HOTPLUG_CPU */
 362
 363/*
 364 * Called by both boot and secondaries to move global data into
 365 * per-processor storage.
 366 */
 367static void smp_store_cpu_info(unsigned int cpuid)
 368{
 369        struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
 370
 371        cpu_info->loops_per_jiffy = loops_per_jiffy;
 372        cpu_info->cpuid = read_cpuid_id();
 373
 374        store_cpu_topology(cpuid);
 375        check_cpu_icache_size(cpuid);
 376}
 377
 378/*
 379 * This is the secondary CPU boot entry.  We're using this CPUs
 380 * idle thread stack, but a set of temporary page tables.
 381 */
 382asmlinkage void secondary_start_kernel(void)
 383{
 384        struct mm_struct *mm = &init_mm;
 385        unsigned int cpu;
 386
 387        secondary_biglittle_init();
 388
 389        /*
 390         * The identity mapping is uncached (strongly ordered), so
 391         * switch away from it before attempting any exclusive accesses.
 392         */
 393        cpu_switch_mm(mm->pgd, mm);
 394        local_flush_bp_all();
 395        enter_lazy_tlb(mm, current);
 396        local_flush_tlb_all();
 397
 398        /*
 399         * All kernel threads share the same mm context; grab a
 400         * reference and switch to it.
 401         */
 402        cpu = smp_processor_id();
 403        mmgrab(mm);
 404        current->active_mm = mm;
 405        cpumask_set_cpu(cpu, mm_cpumask(mm));
 406
 407        cpu_init();
 408
 409#ifndef CONFIG_MMU
 410        setup_vectors_base();
 411#endif
 412        pr_debug("CPU%u: Booted secondary processor\n", cpu);
 413
 414        preempt_disable();
 415        trace_hardirqs_off();
 416
 417        /*
 418         * Give the platform a chance to do its own initialisation.
 419         */
 420        if (smp_ops.smp_secondary_init)
 421                smp_ops.smp_secondary_init(cpu);
 422
 423        notify_cpu_starting(cpu);
 424
 425        calibrate_delay();
 426
 427        smp_store_cpu_info(cpu);
 428
 429        /*
 430         * OK, now it's safe to let the boot CPU continue.  Wait for
 431         * the CPU migration code to notice that the CPU is online
 432         * before we continue - which happens after __cpu_up returns.
 433         */
 434        set_cpu_online(cpu, true);
 435
 436        check_other_bugs();
 437
 438        complete(&cpu_running);
 439
 440        local_irq_enable();
 441        local_fiq_enable();
 442        local_abt_enable();
 443
 444        /*
 445         * OK, it's off to the idle thread for us
 446         */
 447        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 448}
 449
 450void __init smp_cpus_done(unsigned int max_cpus)
 451{
 452        int cpu;
 453        unsigned long bogosum = 0;
 454
 455        for_each_online_cpu(cpu)
 456                bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
 457
 458        printk(KERN_INFO "SMP: Total of %d processors activated "
 459               "(%lu.%02lu BogoMIPS).\n",
 460               num_online_cpus(),
 461               bogosum / (500000/HZ),
 462               (bogosum / (5000/HZ)) % 100);
 463
 464        hyp_mode_check();
 465}
 466
 467void __init smp_prepare_boot_cpu(void)
 468{
 469        set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 470}
 471
 472void __init smp_prepare_cpus(unsigned int max_cpus)
 473{
 474        unsigned int ncores = num_possible_cpus();
 475
 476        init_cpu_topology();
 477
 478        smp_store_cpu_info(smp_processor_id());
 479
 480        /*
 481         * are we trying to boot more cores than exist?
 482         */
 483        if (max_cpus > ncores)
 484                max_cpus = ncores;
 485        if (ncores > 1 && max_cpus) {
 486                /*
 487                 * Initialise the present map, which describes the set of CPUs
 488                 * actually populated at the present time. A platform should
 489                 * re-initialize the map in the platforms smp_prepare_cpus()
 490                 * if present != possible (e.g. physical hotplug).
 491                 */
 492                init_cpu_present(cpu_possible_mask);
 493
 494                /*
 495                 * Initialise the SCU if there are more than one CPU
 496                 * and let them know where to start.
 497                 */
 498                if (smp_ops.smp_prepare_cpus)
 499                        smp_ops.smp_prepare_cpus(max_cpus);
 500        }
 501}
 502
 503static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
 504
 505void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 506{
 507        if (!__smp_cross_call)
 508                __smp_cross_call = fn;
 509}
 510
 511static const char *ipi_types[NR_IPI] __tracepoint_string = {
 512#define S(x,s)  [x] = s
 513        S(IPI_WAKEUP, "CPU wakeup interrupts"),
 514        S(IPI_TIMER, "Timer broadcast interrupts"),
 515        S(IPI_RESCHEDULE, "Rescheduling interrupts"),
 516        S(IPI_CALL_FUNC, "Function call interrupts"),
 517        S(IPI_CPU_STOP, "CPU stop interrupts"),
 518        S(IPI_IRQ_WORK, "IRQ work interrupts"),
 519        S(IPI_COMPLETION, "completion interrupts"),
 520};
 521
 522static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
 523{
 524        trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
 525        __smp_cross_call(target, ipinr);
 526}
 527
 528void show_ipi_list(struct seq_file *p, int prec)
 529{
 530        unsigned int cpu, i;
 531
 532        for (i = 0; i < NR_IPI; i++) {
 533                seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
 534
 535                for_each_online_cpu(cpu)
 536                        seq_printf(p, "%10u ",
 537                                   __get_irq_stat(cpu, ipi_irqs[i]));
 538
 539                seq_printf(p, " %s\n", ipi_types[i]);
 540        }
 541}
 542
 543u64 smp_irq_stat_cpu(unsigned int cpu)
 544{
 545        u64 sum = 0;
 546        int i;
 547
 548        for (i = 0; i < NR_IPI; i++)
 549                sum += __get_irq_stat(cpu, ipi_irqs[i]);
 550
 551        return sum;
 552}
 553
 554void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 555{
 556        smp_cross_call(mask, IPI_CALL_FUNC);
 557}
 558
 559void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 560{
 561        smp_cross_call(mask, IPI_WAKEUP);
 562}
 563
 564void arch_send_call_function_single_ipi(int cpu)
 565{
 566        smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
 567}
 568
 569#ifdef CONFIG_IRQ_WORK
 570void arch_irq_work_raise(void)
 571{
 572        if (arch_irq_work_has_interrupt())
 573                smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 574}
 575#endif
 576
 577#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 578void tick_broadcast(const struct cpumask *mask)
 579{
 580        smp_cross_call(mask, IPI_TIMER);
 581}
 582#endif
 583
 584static DEFINE_RAW_SPINLOCK(stop_lock);
 585
 586/*
 587 * ipi_cpu_stop - handle IPI from smp_send_stop()
 588 */
 589static void ipi_cpu_stop(unsigned int cpu)
 590{
 591        if (system_state <= SYSTEM_RUNNING) {
 592                raw_spin_lock(&stop_lock);
 593                pr_crit("CPU%u: stopping\n", cpu);
 594                dump_stack();
 595                raw_spin_unlock(&stop_lock);
 596        }
 597
 598        set_cpu_online(cpu, false);
 599
 600        local_fiq_disable();
 601        local_irq_disable();
 602
 603        while (1) {
 604                cpu_relax();
 605                wfe();
 606        }
 607}
 608
 609static DEFINE_PER_CPU(struct completion *, cpu_completion);
 610
 611int register_ipi_completion(struct completion *completion, int cpu)
 612{
 613        per_cpu(cpu_completion, cpu) = completion;
 614        return IPI_COMPLETION;
 615}
 616
 617static void ipi_complete(unsigned int cpu)
 618{
 619        complete(per_cpu(cpu_completion, cpu));
 620}
 621
 622/*
 623 * Main handler for inter-processor interrupts
 624 */
 625asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
 626{
 627        handle_IPI(ipinr, regs);
 628}
 629
 630void handle_IPI(int ipinr, struct pt_regs *regs)
 631{
 632        unsigned int cpu = smp_processor_id();
 633        struct pt_regs *old_regs = set_irq_regs(regs);
 634
 635        if ((unsigned)ipinr < NR_IPI) {
 636                trace_ipi_entry_rcuidle(ipi_types[ipinr]);
 637                __inc_irq_stat(cpu, ipi_irqs[ipinr]);
 638        }
 639
 640        switch (ipinr) {
 641        case IPI_WAKEUP:
 642                break;
 643
 644#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 645        case IPI_TIMER:
 646                irq_enter();
 647                tick_receive_broadcast();
 648                irq_exit();
 649                break;
 650#endif
 651
 652        case IPI_RESCHEDULE:
 653                scheduler_ipi();
 654                break;
 655
 656        case IPI_CALL_FUNC:
 657                irq_enter();
 658                generic_smp_call_function_interrupt();
 659                irq_exit();
 660                break;
 661
 662        case IPI_CPU_STOP:
 663                irq_enter();
 664                ipi_cpu_stop(cpu);
 665                irq_exit();
 666                break;
 667
 668#ifdef CONFIG_IRQ_WORK
 669        case IPI_IRQ_WORK:
 670                irq_enter();
 671                irq_work_run();
 672                irq_exit();
 673                break;
 674#endif
 675
 676        case IPI_COMPLETION:
 677                irq_enter();
 678                ipi_complete(cpu);
 679                irq_exit();
 680                break;
 681
 682        case IPI_CPU_BACKTRACE:
 683                printk_nmi_enter();
 684                irq_enter();
 685                nmi_cpu_backtrace(regs);
 686                irq_exit();
 687                printk_nmi_exit();
 688                break;
 689
 690        default:
 691                pr_crit("CPU%u: Unknown IPI message 0x%x\n",
 692                        cpu, ipinr);
 693                break;
 694        }
 695
 696        if ((unsigned)ipinr < NR_IPI)
 697                trace_ipi_exit_rcuidle(ipi_types[ipinr]);
 698        set_irq_regs(old_regs);
 699}
 700
 701void smp_send_reschedule(int cpu)
 702{
 703        smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 704}
 705
 706void smp_send_stop(void)
 707{
 708        unsigned long timeout;
 709        struct cpumask mask;
 710
 711        cpumask_copy(&mask, cpu_online_mask);
 712        cpumask_clear_cpu(smp_processor_id(), &mask);
 713        if (!cpumask_empty(&mask))
 714                smp_cross_call(&mask, IPI_CPU_STOP);
 715
 716        /* Wait up to one second for other CPUs to stop */
 717        timeout = USEC_PER_SEC;
 718        while (num_online_cpus() > 1 && timeout--)
 719                udelay(1);
 720
 721        if (num_online_cpus() > 1)
 722                pr_warn("SMP: failed to stop secondary CPUs\n");
 723}
 724
 725/* In case panic() and panic() called at the same time on CPU1 and CPU2,
 726 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
 727 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
 728 * kdump fails. So split out the panic_smp_self_stop() and add
 729 * set_cpu_online(smp_processor_id(), false).
 730 */
 731void panic_smp_self_stop(void)
 732{
 733        pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
 734                 smp_processor_id());
 735        set_cpu_online(smp_processor_id(), false);
 736        while (1)
 737                cpu_relax();
 738}
 739
 740/*
 741 * not supported here
 742 */
 743int setup_profiling_timer(unsigned int multiplier)
 744{
 745        return -EINVAL;
 746}
 747
 748#ifdef CONFIG_CPU_FREQ
 749
 750static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
 751static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
 752static unsigned long global_l_p_j_ref;
 753static unsigned long global_l_p_j_ref_freq;
 754
 755static int cpufreq_callback(struct notifier_block *nb,
 756                                        unsigned long val, void *data)
 757{
 758        struct cpufreq_freqs *freq = data;
 759        struct cpumask *cpus = freq->policy->cpus;
 760        int cpu, first = cpumask_first(cpus);
 761        unsigned int lpj;
 762
 763        if (freq->flags & CPUFREQ_CONST_LOOPS)
 764                return NOTIFY_OK;
 765
 766        if (!per_cpu(l_p_j_ref, first)) {
 767                for_each_cpu(cpu, cpus) {
 768                        per_cpu(l_p_j_ref, cpu) =
 769                                per_cpu(cpu_data, cpu).loops_per_jiffy;
 770                        per_cpu(l_p_j_ref_freq, cpu) = freq->old;
 771                }
 772
 773                if (!global_l_p_j_ref) {
 774                        global_l_p_j_ref = loops_per_jiffy;
 775                        global_l_p_j_ref_freq = freq->old;
 776                }
 777        }
 778
 779        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 780            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 781                loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
 782                                                global_l_p_j_ref_freq,
 783                                                freq->new);
 784
 785                lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
 786                                    per_cpu(l_p_j_ref_freq, first), freq->new);
 787                for_each_cpu(cpu, cpus)
 788                        per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
 789        }
 790        return NOTIFY_OK;
 791}
 792
 793static struct notifier_block cpufreq_notifier = {
 794        .notifier_call  = cpufreq_callback,
 795};
 796
 797static int __init register_cpufreq_notifier(void)
 798{
 799        return cpufreq_register_notifier(&cpufreq_notifier,
 800                                                CPUFREQ_TRANSITION_NOTIFIER);
 801}
 802core_initcall(register_cpufreq_notifier);
 803
 804#endif
 805
 806static void raise_nmi(cpumask_t *mask)
 807{
 808        __smp_cross_call(mask, IPI_CPU_BACKTRACE);
 809}
 810
 811void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
 812{
 813        nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
 814}
 815