linux/arch/arm/mm/mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/mmu.c
   4 *
   5 *  Copyright (C) 1995-2005 Russell King
   6 */
   7#include <linux/module.h>
   8#include <linux/kernel.h>
   9#include <linux/errno.h>
  10#include <linux/init.h>
  11#include <linux/mman.h>
  12#include <linux/nodemask.h>
  13#include <linux/memblock.h>
  14#include <linux/fs.h>
  15#include <linux/vmalloc.h>
  16#include <linux/sizes.h>
  17
  18#include <asm/cp15.h>
  19#include <asm/cputype.h>
  20#include <asm/sections.h>
  21#include <asm/cachetype.h>
  22#include <asm/fixmap.h>
  23#include <asm/sections.h>
  24#include <asm/setup.h>
  25#include <asm/smp_plat.h>
  26#include <asm/tlb.h>
  27#include <asm/highmem.h>
  28#include <asm/system_info.h>
  29#include <asm/traps.h>
  30#include <asm/procinfo.h>
  31#include <asm/memory.h>
  32
  33#include <asm/mach/arch.h>
  34#include <asm/mach/map.h>
  35#include <asm/mach/pci.h>
  36#include <asm/fixmap.h>
  37
  38#include "fault.h"
  39#include "mm.h"
  40#include "tcm.h"
  41
  42/*
  43 * empty_zero_page is a special page that is used for
  44 * zero-initialized data and COW.
  45 */
  46struct page *empty_zero_page;
  47EXPORT_SYMBOL(empty_zero_page);
  48
  49/*
  50 * The pmd table for the upper-most set of pages.
  51 */
  52pmd_t *top_pmd;
  53
  54pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  55
  56#define CPOLICY_UNCACHED        0
  57#define CPOLICY_BUFFERED        1
  58#define CPOLICY_WRITETHROUGH    2
  59#define CPOLICY_WRITEBACK       3
  60#define CPOLICY_WRITEALLOC      4
  61
  62static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  63static unsigned int ecc_mask __initdata = 0;
  64pgprot_t pgprot_user;
  65pgprot_t pgprot_kernel;
  66pgprot_t pgprot_hyp_device;
  67pgprot_t pgprot_s2;
  68pgprot_t pgprot_s2_device;
  69
  70EXPORT_SYMBOL(pgprot_user);
  71EXPORT_SYMBOL(pgprot_kernel);
  72
  73struct cachepolicy {
  74        const char      policy[16];
  75        unsigned int    cr_mask;
  76        pmdval_t        pmd;
  77        pteval_t        pte;
  78        pteval_t        pte_s2;
  79};
  80
  81#ifdef CONFIG_ARM_LPAE
  82#define s2_policy(policy)       policy
  83#else
  84#define s2_policy(policy)       0
  85#endif
  86
  87unsigned long kimage_voffset __ro_after_init;
  88
  89static struct cachepolicy cache_policies[] __initdata = {
  90        {
  91                .policy         = "uncached",
  92                .cr_mask        = CR_W|CR_C,
  93                .pmd            = PMD_SECT_UNCACHED,
  94                .pte            = L_PTE_MT_UNCACHED,
  95                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
  96        }, {
  97                .policy         = "buffered",
  98                .cr_mask        = CR_C,
  99                .pmd            = PMD_SECT_BUFFERED,
 100                .pte            = L_PTE_MT_BUFFERABLE,
 101                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
 102        }, {
 103                .policy         = "writethrough",
 104                .cr_mask        = 0,
 105                .pmd            = PMD_SECT_WT,
 106                .pte            = L_PTE_MT_WRITETHROUGH,
 107                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 108        }, {
 109                .policy         = "writeback",
 110                .cr_mask        = 0,
 111                .pmd            = PMD_SECT_WB,
 112                .pte            = L_PTE_MT_WRITEBACK,
 113                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 114        }, {
 115                .policy         = "writealloc",
 116                .cr_mask        = 0,
 117                .pmd            = PMD_SECT_WBWA,
 118                .pte            = L_PTE_MT_WRITEALLOC,
 119                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 120        }
 121};
 122
 123#ifdef CONFIG_CPU_CP15
 124static unsigned long initial_pmd_value __initdata = 0;
 125
 126/*
 127 * Initialise the cache_policy variable with the initial state specified
 128 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 129 * the C code sets the page tables up with the same policy as the head
 130 * assembly code, which avoids an illegal state where the TLBs can get
 131 * confused.  See comments in early_cachepolicy() for more information.
 132 */
 133void __init init_default_cache_policy(unsigned long pmd)
 134{
 135        int i;
 136
 137        initial_pmd_value = pmd;
 138
 139        pmd &= PMD_SECT_CACHE_MASK;
 140
 141        for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 142                if (cache_policies[i].pmd == pmd) {
 143                        cachepolicy = i;
 144                        break;
 145                }
 146
 147        if (i == ARRAY_SIZE(cache_policies))
 148                pr_err("ERROR: could not find cache policy\n");
 149}
 150
 151/*
 152 * These are useful for identifying cache coherency problems by allowing
 153 * the cache or the cache and writebuffer to be turned off.  (Note: the
 154 * write buffer should not be on and the cache off).
 155 */
 156static int __init early_cachepolicy(char *p)
 157{
 158        int i, selected = -1;
 159
 160        for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 161                int len = strlen(cache_policies[i].policy);
 162
 163                if (memcmp(p, cache_policies[i].policy, len) == 0) {
 164                        selected = i;
 165                        break;
 166                }
 167        }
 168
 169        if (selected == -1)
 170                pr_err("ERROR: unknown or unsupported cache policy\n");
 171
 172        /*
 173         * This restriction is partly to do with the way we boot; it is
 174         * unpredictable to have memory mapped using two different sets of
 175         * memory attributes (shared, type, and cache attribs).  We can not
 176         * change these attributes once the initial assembly has setup the
 177         * page tables.
 178         */
 179        if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 180                pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 181                        cache_policies[cachepolicy].policy);
 182                return 0;
 183        }
 184
 185        if (selected != cachepolicy) {
 186                unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 187                cachepolicy = selected;
 188                flush_cache_all();
 189                set_cr(cr);
 190        }
 191        return 0;
 192}
 193early_param("cachepolicy", early_cachepolicy);
 194
 195static int __init early_nocache(char *__unused)
 196{
 197        char *p = "buffered";
 198        pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 199        early_cachepolicy(p);
 200        return 0;
 201}
 202early_param("nocache", early_nocache);
 203
 204static int __init early_nowrite(char *__unused)
 205{
 206        char *p = "uncached";
 207        pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 208        early_cachepolicy(p);
 209        return 0;
 210}
 211early_param("nowb", early_nowrite);
 212
 213#ifndef CONFIG_ARM_LPAE
 214static int __init early_ecc(char *p)
 215{
 216        if (memcmp(p, "on", 2) == 0)
 217                ecc_mask = PMD_PROTECTION;
 218        else if (memcmp(p, "off", 3) == 0)
 219                ecc_mask = 0;
 220        return 0;
 221}
 222early_param("ecc", early_ecc);
 223#endif
 224
 225#else /* ifdef CONFIG_CPU_CP15 */
 226
 227static int __init early_cachepolicy(char *p)
 228{
 229        pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 230}
 231early_param("cachepolicy", early_cachepolicy);
 232
 233static int __init noalign_setup(char *__unused)
 234{
 235        pr_warn("noalign kernel parameter not supported without cp15\n");
 236}
 237__setup("noalign", noalign_setup);
 238
 239#endif /* ifdef CONFIG_CPU_CP15 / else */
 240
 241#define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 242#define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
 243#define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 244
 245static struct mem_type mem_types[] __ro_after_init = {
 246        [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
 247                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 248                                  L_PTE_SHARED,
 249                .prot_pte_s2    = s2_policy(PROT_PTE_S2_DEVICE) |
 250                                  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 251                                  L_PTE_SHARED,
 252                .prot_l1        = PMD_TYPE_TABLE,
 253                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
 254                .domain         = DOMAIN_IO,
 255        },
 256        [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 257                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 258                .prot_l1        = PMD_TYPE_TABLE,
 259                .prot_sect      = PROT_SECT_DEVICE,
 260                .domain         = DOMAIN_IO,
 261        },
 262        [MT_DEVICE_CACHED] = {    /* ioremap_cached */
 263                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 264                .prot_l1        = PMD_TYPE_TABLE,
 265                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
 266                .domain         = DOMAIN_IO,
 267        },
 268        [MT_DEVICE_WC] = {      /* ioremap_wc */
 269                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 270                .prot_l1        = PMD_TYPE_TABLE,
 271                .prot_sect      = PROT_SECT_DEVICE,
 272                .domain         = DOMAIN_IO,
 273        },
 274        [MT_UNCACHED] = {
 275                .prot_pte       = PROT_PTE_DEVICE,
 276                .prot_l1        = PMD_TYPE_TABLE,
 277                .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
 278                .domain         = DOMAIN_IO,
 279        },
 280        [MT_CACHECLEAN] = {
 281                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 282                .domain    = DOMAIN_KERNEL,
 283        },
 284#ifndef CONFIG_ARM_LPAE
 285        [MT_MINICLEAN] = {
 286                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 287                .domain    = DOMAIN_KERNEL,
 288        },
 289#endif
 290        [MT_LOW_VECTORS] = {
 291                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 292                                L_PTE_RDONLY,
 293                .prot_l1   = PMD_TYPE_TABLE,
 294                .domain    = DOMAIN_VECTORS,
 295        },
 296        [MT_HIGH_VECTORS] = {
 297                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 298                                L_PTE_USER | L_PTE_RDONLY,
 299                .prot_l1   = PMD_TYPE_TABLE,
 300                .domain    = DOMAIN_VECTORS,
 301        },
 302        [MT_MEMORY_RWX] = {
 303                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 304                .prot_l1   = PMD_TYPE_TABLE,
 305                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 306                .domain    = DOMAIN_KERNEL,
 307        },
 308        [MT_MEMORY_RW] = {
 309                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 310                             L_PTE_XN,
 311                .prot_l1   = PMD_TYPE_TABLE,
 312                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 313                .domain    = DOMAIN_KERNEL,
 314        },
 315        [MT_ROM] = {
 316                .prot_sect = PMD_TYPE_SECT,
 317                .domain    = DOMAIN_KERNEL,
 318        },
 319        [MT_MEMORY_RWX_NONCACHED] = {
 320                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 321                                L_PTE_MT_BUFFERABLE,
 322                .prot_l1   = PMD_TYPE_TABLE,
 323                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 324                .domain    = DOMAIN_KERNEL,
 325        },
 326        [MT_MEMORY_RW_DTCM] = {
 327                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 328                                L_PTE_XN,
 329                .prot_l1   = PMD_TYPE_TABLE,
 330                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 331                .domain    = DOMAIN_KERNEL,
 332        },
 333        [MT_MEMORY_RWX_ITCM] = {
 334                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 335                .prot_l1   = PMD_TYPE_TABLE,
 336                .domain    = DOMAIN_KERNEL,
 337        },
 338        [MT_MEMORY_RW_SO] = {
 339                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 340                                L_PTE_MT_UNCACHED | L_PTE_XN,
 341                .prot_l1   = PMD_TYPE_TABLE,
 342                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 343                                PMD_SECT_UNCACHED | PMD_SECT_XN,
 344                .domain    = DOMAIN_KERNEL,
 345        },
 346        [MT_MEMORY_DMA_READY] = {
 347                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 348                                L_PTE_XN,
 349                .prot_l1   = PMD_TYPE_TABLE,
 350                .domain    = DOMAIN_KERNEL,
 351        },
 352};
 353
 354const struct mem_type *get_mem_type(unsigned int type)
 355{
 356        return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 357}
 358EXPORT_SYMBOL(get_mem_type);
 359
 360static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 361
 362static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 363        __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 364
 365static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 366{
 367        return &bm_pte[pte_index(addr)];
 368}
 369
 370static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 371{
 372        return pte_offset_kernel(dir, addr);
 373}
 374
 375static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 376{
 377        pgd_t *pgd = pgd_offset_k(addr);
 378        pud_t *pud = pud_offset(pgd, addr);
 379        pmd_t *pmd = pmd_offset(pud, addr);
 380
 381        return pmd;
 382}
 383
 384void __init early_fixmap_init(void)
 385{
 386        pmd_t *pmd;
 387
 388        /*
 389         * The early fixmap range spans multiple pmds, for which
 390         * we are not prepared:
 391         */
 392        BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 393                     != FIXADDR_TOP >> PMD_SHIFT);
 394
 395        pmd = fixmap_pmd(FIXADDR_TOP);
 396        pmd_populate_kernel(&init_mm, pmd, bm_pte);
 397
 398        pte_offset_fixmap = pte_offset_early_fixmap;
 399}
 400
 401/*
 402 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 403 * As a result, this can only be called with preemption disabled, as under
 404 * stop_machine().
 405 */
 406void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 407{
 408        unsigned long vaddr = __fix_to_virt(idx);
 409        pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 410
 411        /* Make sure fixmap region does not exceed available allocation. */
 412        BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 413                     FIXADDR_END);
 414        BUG_ON(idx >= __end_of_fixed_addresses);
 415
 416        /* we only support device mappings until pgprot_kernel has been set */
 417        if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
 418                    pgprot_val(pgprot_kernel) == 0))
 419                return;
 420
 421        if (pgprot_val(prot))
 422                set_pte_at(NULL, vaddr, pte,
 423                        pfn_pte(phys >> PAGE_SHIFT, prot));
 424        else
 425                pte_clear(NULL, vaddr, pte);
 426        local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 427}
 428
 429/*
 430 * Adjust the PMD section entries according to the CPU in use.
 431 */
 432static void __init build_mem_type_table(void)
 433{
 434        struct cachepolicy *cp;
 435        unsigned int cr = get_cr();
 436        pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 437        pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 438        int cpu_arch = cpu_architecture();
 439        int i;
 440
 441        if (cpu_arch < CPU_ARCH_ARMv6) {
 442#if defined(CONFIG_CPU_DCACHE_DISABLE)
 443                if (cachepolicy > CPOLICY_BUFFERED)
 444                        cachepolicy = CPOLICY_BUFFERED;
 445#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 446                if (cachepolicy > CPOLICY_WRITETHROUGH)
 447                        cachepolicy = CPOLICY_WRITETHROUGH;
 448#endif
 449        }
 450        if (cpu_arch < CPU_ARCH_ARMv5) {
 451                if (cachepolicy >= CPOLICY_WRITEALLOC)
 452                        cachepolicy = CPOLICY_WRITEBACK;
 453                ecc_mask = 0;
 454        }
 455
 456        if (is_smp()) {
 457                if (cachepolicy != CPOLICY_WRITEALLOC) {
 458                        pr_warn("Forcing write-allocate cache policy for SMP\n");
 459                        cachepolicy = CPOLICY_WRITEALLOC;
 460                }
 461                if (!(initial_pmd_value & PMD_SECT_S)) {
 462                        pr_warn("Forcing shared mappings for SMP\n");
 463                        initial_pmd_value |= PMD_SECT_S;
 464                }
 465        }
 466
 467        /*
 468         * Strip out features not present on earlier architectures.
 469         * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 470         * without extended page tables don't have the 'Shared' bit.
 471         */
 472        if (cpu_arch < CPU_ARCH_ARMv5)
 473                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 474                        mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 475        if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 476                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 477                        mem_types[i].prot_sect &= ~PMD_SECT_S;
 478
 479        /*
 480         * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 481         * "update-able on write" bit on ARM610).  However, Xscale and
 482         * Xscale3 require this bit to be cleared.
 483         */
 484        if (cpu_is_xscale_family()) {
 485                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 486                        mem_types[i].prot_sect &= ~PMD_BIT4;
 487                        mem_types[i].prot_l1 &= ~PMD_BIT4;
 488                }
 489        } else if (cpu_arch < CPU_ARCH_ARMv6) {
 490                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 491                        if (mem_types[i].prot_l1)
 492                                mem_types[i].prot_l1 |= PMD_BIT4;
 493                        if (mem_types[i].prot_sect)
 494                                mem_types[i].prot_sect |= PMD_BIT4;
 495                }
 496        }
 497
 498        /*
 499         * Mark the device areas according to the CPU/architecture.
 500         */
 501        if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 502                if (!cpu_is_xsc3()) {
 503                        /*
 504                         * Mark device regions on ARMv6+ as execute-never
 505                         * to prevent speculative instruction fetches.
 506                         */
 507                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 508                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 509                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 510                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 511
 512                        /* Also setup NX memory mapping */
 513                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 514                }
 515                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 516                        /*
 517                         * For ARMv7 with TEX remapping,
 518                         * - shared device is SXCB=1100
 519                         * - nonshared device is SXCB=0100
 520                         * - write combine device mem is SXCB=0001
 521                         * (Uncached Normal memory)
 522                         */
 523                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 524                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 525                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 526                } else if (cpu_is_xsc3()) {
 527                        /*
 528                         * For Xscale3,
 529                         * - shared device is TEXCB=00101
 530                         * - nonshared device is TEXCB=01000
 531                         * - write combine device mem is TEXCB=00100
 532                         * (Inner/Outer Uncacheable in xsc3 parlance)
 533                         */
 534                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 535                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 536                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 537                } else {
 538                        /*
 539                         * For ARMv6 and ARMv7 without TEX remapping,
 540                         * - shared device is TEXCB=00001
 541                         * - nonshared device is TEXCB=01000
 542                         * - write combine device mem is TEXCB=00100
 543                         * (Uncached Normal in ARMv6 parlance).
 544                         */
 545                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 546                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 547                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 548                }
 549        } else {
 550                /*
 551                 * On others, write combining is "Uncached/Buffered"
 552                 */
 553                mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 554        }
 555
 556        /*
 557         * Now deal with the memory-type mappings
 558         */
 559        cp = &cache_policies[cachepolicy];
 560        vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 561        s2_pgprot = cp->pte_s2;
 562        hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 563        s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 564
 565#ifndef CONFIG_ARM_LPAE
 566        /*
 567         * We don't use domains on ARMv6 (since this causes problems with
 568         * v6/v7 kernels), so we must use a separate memory type for user
 569         * r/o, kernel r/w to map the vectors page.
 570         */
 571        if (cpu_arch == CPU_ARCH_ARMv6)
 572                vecs_pgprot |= L_PTE_MT_VECTORS;
 573
 574        /*
 575         * Check is it with support for the PXN bit
 576         * in the Short-descriptor translation table format descriptors.
 577         */
 578        if (cpu_arch == CPU_ARCH_ARMv7 &&
 579                (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 580                user_pmd_table |= PMD_PXNTABLE;
 581        }
 582#endif
 583
 584        /*
 585         * ARMv6 and above have extended page tables.
 586         */
 587        if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 588#ifndef CONFIG_ARM_LPAE
 589                /*
 590                 * Mark cache clean areas and XIP ROM read only
 591                 * from SVC mode and no access from userspace.
 592                 */
 593                mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 594                mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 595                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 596#endif
 597
 598                /*
 599                 * If the initial page tables were created with the S bit
 600                 * set, then we need to do the same here for the same
 601                 * reasons given in early_cachepolicy().
 602                 */
 603                if (initial_pmd_value & PMD_SECT_S) {
 604                        user_pgprot |= L_PTE_SHARED;
 605                        kern_pgprot |= L_PTE_SHARED;
 606                        vecs_pgprot |= L_PTE_SHARED;
 607                        s2_pgprot |= L_PTE_SHARED;
 608                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 609                        mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 610                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 611                        mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 612                        mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 613                        mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 614                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 615                        mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 616                        mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 617                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 618                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 619                }
 620        }
 621
 622        /*
 623         * Non-cacheable Normal - intended for memory areas that must
 624         * not cause dirty cache line writebacks when used
 625         */
 626        if (cpu_arch >= CPU_ARCH_ARMv6) {
 627                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 628                        /* Non-cacheable Normal is XCB = 001 */
 629                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 630                                PMD_SECT_BUFFERED;
 631                } else {
 632                        /* For both ARMv6 and non-TEX-remapping ARMv7 */
 633                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 634                                PMD_SECT_TEX(1);
 635                }
 636        } else {
 637                mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 638        }
 639
 640#ifdef CONFIG_ARM_LPAE
 641        /*
 642         * Do not generate access flag faults for the kernel mappings.
 643         */
 644        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 645                mem_types[i].prot_pte |= PTE_EXT_AF;
 646                if (mem_types[i].prot_sect)
 647                        mem_types[i].prot_sect |= PMD_SECT_AF;
 648        }
 649        kern_pgprot |= PTE_EXT_AF;
 650        vecs_pgprot |= PTE_EXT_AF;
 651
 652        /*
 653         * Set PXN for user mappings
 654         */
 655        user_pgprot |= PTE_EXT_PXN;
 656#endif
 657
 658        for (i = 0; i < 16; i++) {
 659                pteval_t v = pgprot_val(protection_map[i]);
 660                protection_map[i] = __pgprot(v | user_pgprot);
 661        }
 662
 663        mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 664        mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 665
 666        pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 667        pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 668                                 L_PTE_DIRTY | kern_pgprot);
 669        pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 670        pgprot_s2_device  = __pgprot(s2_device_pgprot);
 671        pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 672
 673        mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 674        mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 675        mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 676        mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 677        mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 678        mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 679        mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 680        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 681        mem_types[MT_ROM].prot_sect |= cp->pmd;
 682
 683        switch (cp->pmd) {
 684        case PMD_SECT_WT:
 685                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 686                break;
 687        case PMD_SECT_WB:
 688        case PMD_SECT_WBWA:
 689                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 690                break;
 691        }
 692        pr_info("Memory policy: %sData cache %s\n",
 693                ecc_mask ? "ECC enabled, " : "", cp->policy);
 694
 695        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 696                struct mem_type *t = &mem_types[i];
 697                if (t->prot_l1)
 698                        t->prot_l1 |= PMD_DOMAIN(t->domain);
 699                if (t->prot_sect)
 700                        t->prot_sect |= PMD_DOMAIN(t->domain);
 701        }
 702}
 703
 704#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 705pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 706                              unsigned long size, pgprot_t vma_prot)
 707{
 708        if (!pfn_valid(pfn))
 709                return pgprot_noncached(vma_prot);
 710        else if (file->f_flags & O_SYNC)
 711                return pgprot_writecombine(vma_prot);
 712        return vma_prot;
 713}
 714EXPORT_SYMBOL(phys_mem_access_prot);
 715#endif
 716
 717#define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 718
 719static void __init *early_alloc(unsigned long sz)
 720{
 721        void *ptr = memblock_alloc(sz, sz);
 722
 723        if (!ptr)
 724                panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 725                      __func__, sz, sz);
 726
 727        return ptr;
 728}
 729
 730static void *__init late_alloc(unsigned long sz)
 731{
 732        void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
 733
 734        if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
 735                BUG();
 736        return ptr;
 737}
 738
 739static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 740                                unsigned long prot,
 741                                void *(*alloc)(unsigned long sz))
 742{
 743        if (pmd_none(*pmd)) {
 744                pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 745                __pmd_populate(pmd, __pa(pte), prot);
 746        }
 747        BUG_ON(pmd_bad(*pmd));
 748        return pte_offset_kernel(pmd, addr);
 749}
 750
 751static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 752                                      unsigned long prot)
 753{
 754        return arm_pte_alloc(pmd, addr, prot, early_alloc);
 755}
 756
 757static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 758                                  unsigned long end, unsigned long pfn,
 759                                  const struct mem_type *type,
 760                                  void *(*alloc)(unsigned long sz),
 761                                  bool ng)
 762{
 763        pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 764        do {
 765                set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 766                            ng ? PTE_EXT_NG : 0);
 767                pfn++;
 768        } while (pte++, addr += PAGE_SIZE, addr != end);
 769}
 770
 771static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 772                        unsigned long end, phys_addr_t phys,
 773                        const struct mem_type *type, bool ng)
 774{
 775        pmd_t *p = pmd;
 776
 777#ifndef CONFIG_ARM_LPAE
 778        /*
 779         * In classic MMU format, puds and pmds are folded in to
 780         * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 781         * group of L1 entries making up one logical pointer to
 782         * an L2 table (2MB), where as PMDs refer to the individual
 783         * L1 entries (1MB). Hence increment to get the correct
 784         * offset for odd 1MB sections.
 785         * (See arch/arm/include/asm/pgtable-2level.h)
 786         */
 787        if (addr & SECTION_SIZE)
 788                pmd++;
 789#endif
 790        do {
 791                *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 792                phys += SECTION_SIZE;
 793        } while (pmd++, addr += SECTION_SIZE, addr != end);
 794
 795        flush_pmd_entry(p);
 796}
 797
 798static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 799                                      unsigned long end, phys_addr_t phys,
 800                                      const struct mem_type *type,
 801                                      void *(*alloc)(unsigned long sz), bool ng)
 802{
 803        pmd_t *pmd = pmd_offset(pud, addr);
 804        unsigned long next;
 805
 806        do {
 807                /*
 808                 * With LPAE, we must loop over to map
 809                 * all the pmds for the given range.
 810                 */
 811                next = pmd_addr_end(addr, end);
 812
 813                /*
 814                 * Try a section mapping - addr, next and phys must all be
 815                 * aligned to a section boundary.
 816                 */
 817                if (type->prot_sect &&
 818                                ((addr | next | phys) & ~SECTION_MASK) == 0) {
 819                        __map_init_section(pmd, addr, next, phys, type, ng);
 820                } else {
 821                        alloc_init_pte(pmd, addr, next,
 822                                       __phys_to_pfn(phys), type, alloc, ng);
 823                }
 824
 825                phys += next - addr;
 826
 827        } while (pmd++, addr = next, addr != end);
 828}
 829
 830static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 831                                  unsigned long end, phys_addr_t phys,
 832                                  const struct mem_type *type,
 833                                  void *(*alloc)(unsigned long sz), bool ng)
 834{
 835        pud_t *pud = pud_offset(pgd, addr);
 836        unsigned long next;
 837
 838        do {
 839                next = pud_addr_end(addr, end);
 840                alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 841                phys += next - addr;
 842        } while (pud++, addr = next, addr != end);
 843}
 844
 845#ifndef CONFIG_ARM_LPAE
 846static void __init create_36bit_mapping(struct mm_struct *mm,
 847                                        struct map_desc *md,
 848                                        const struct mem_type *type,
 849                                        bool ng)
 850{
 851        unsigned long addr, length, end;
 852        phys_addr_t phys;
 853        pgd_t *pgd;
 854
 855        addr = md->virtual;
 856        phys = __pfn_to_phys(md->pfn);
 857        length = PAGE_ALIGN(md->length);
 858
 859        if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 860                pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 861                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 862                return;
 863        }
 864
 865        /* N.B. ARMv6 supersections are only defined to work with domain 0.
 866         *      Since domain assignments can in fact be arbitrary, the
 867         *      'domain == 0' check below is required to insure that ARMv6
 868         *      supersections are only allocated for domain 0 regardless
 869         *      of the actual domain assignments in use.
 870         */
 871        if (type->domain) {
 872                pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 873                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 874                return;
 875        }
 876
 877        if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 878                pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 879                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 880                return;
 881        }
 882
 883        /*
 884         * Shift bits [35:32] of address into bits [23:20] of PMD
 885         * (See ARMv6 spec).
 886         */
 887        phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 888
 889        pgd = pgd_offset(mm, addr);
 890        end = addr + length;
 891        do {
 892                pud_t *pud = pud_offset(pgd, addr);
 893                pmd_t *pmd = pmd_offset(pud, addr);
 894                int i;
 895
 896                for (i = 0; i < 16; i++)
 897                        *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 898                                       (ng ? PMD_SECT_nG : 0));
 899
 900                addr += SUPERSECTION_SIZE;
 901                phys += SUPERSECTION_SIZE;
 902                pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 903        } while (addr != end);
 904}
 905#endif  /* !CONFIG_ARM_LPAE */
 906
 907static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 908                                    void *(*alloc)(unsigned long sz),
 909                                    bool ng)
 910{
 911        unsigned long addr, length, end;
 912        phys_addr_t phys;
 913        const struct mem_type *type;
 914        pgd_t *pgd;
 915
 916        type = &mem_types[md->type];
 917
 918#ifndef CONFIG_ARM_LPAE
 919        /*
 920         * Catch 36-bit addresses
 921         */
 922        if (md->pfn >= 0x100000) {
 923                create_36bit_mapping(mm, md, type, ng);
 924                return;
 925        }
 926#endif
 927
 928        addr = md->virtual & PAGE_MASK;
 929        phys = __pfn_to_phys(md->pfn);
 930        length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 931
 932        if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 933                pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 934                        (long long)__pfn_to_phys(md->pfn), addr);
 935                return;
 936        }
 937
 938        pgd = pgd_offset(mm, addr);
 939        end = addr + length;
 940        do {
 941                unsigned long next = pgd_addr_end(addr, end);
 942
 943                alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
 944
 945                phys += next - addr;
 946                addr = next;
 947        } while (pgd++, addr != end);
 948}
 949
 950/*
 951 * Create the page directory entries and any necessary
 952 * page tables for the mapping specified by `md'.  We
 953 * are able to cope here with varying sizes and address
 954 * offsets, and we take full advantage of sections and
 955 * supersections.
 956 */
 957static void __init create_mapping(struct map_desc *md)
 958{
 959        if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 960                pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 961                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 962                return;
 963        }
 964
 965        if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 966            md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 967            (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 968                pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 969                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 970        }
 971
 972        __create_mapping(&init_mm, md, early_alloc, false);
 973}
 974
 975void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 976                                bool ng)
 977{
 978#ifdef CONFIG_ARM_LPAE
 979        pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 980        if (WARN_ON(!pud))
 981                return;
 982        pmd_alloc(mm, pud, 0);
 983#endif
 984        __create_mapping(mm, md, late_alloc, ng);
 985}
 986
 987/*
 988 * Create the architecture specific mappings
 989 */
 990void __init iotable_init(struct map_desc *io_desc, int nr)
 991{
 992        struct map_desc *md;
 993        struct vm_struct *vm;
 994        struct static_vm *svm;
 995
 996        if (!nr)
 997                return;
 998
 999        svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1000        if (!svm)
1001                panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1002                      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1003
1004        for (md = io_desc; nr; md++, nr--) {
1005                create_mapping(md);
1006
1007                vm = &svm->vm;
1008                vm->addr = (void *)(md->virtual & PAGE_MASK);
1009                vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1010                vm->phys_addr = __pfn_to_phys(md->pfn);
1011                vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1012                vm->flags |= VM_ARM_MTYPE(md->type);
1013                vm->caller = iotable_init;
1014                add_static_vm_early(svm++);
1015        }
1016}
1017
1018void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1019                                  void *caller)
1020{
1021        struct vm_struct *vm;
1022        struct static_vm *svm;
1023
1024        svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1025        if (!svm)
1026                panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1027                      __func__, sizeof(*svm), __alignof__(*svm));
1028
1029        vm = &svm->vm;
1030        vm->addr = (void *)addr;
1031        vm->size = size;
1032        vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1033        vm->caller = caller;
1034        add_static_vm_early(svm);
1035}
1036
1037#ifndef CONFIG_ARM_LPAE
1038
1039/*
1040 * The Linux PMD is made of two consecutive section entries covering 2MB
1041 * (see definition in include/asm/pgtable-2level.h).  However a call to
1042 * create_mapping() may optimize static mappings by using individual
1043 * 1MB section mappings.  This leaves the actual PMD potentially half
1044 * initialized if the top or bottom section entry isn't used, leaving it
1045 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1046 * the virtual space left free by that unused section entry.
1047 *
1048 * Let's avoid the issue by inserting dummy vm entries covering the unused
1049 * PMD halves once the static mappings are in place.
1050 */
1051
1052static void __init pmd_empty_section_gap(unsigned long addr)
1053{
1054        vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1055}
1056
1057static void __init fill_pmd_gaps(void)
1058{
1059        struct static_vm *svm;
1060        struct vm_struct *vm;
1061        unsigned long addr, next = 0;
1062        pmd_t *pmd;
1063
1064        list_for_each_entry(svm, &static_vmlist, list) {
1065                vm = &svm->vm;
1066                addr = (unsigned long)vm->addr;
1067                if (addr < next)
1068                        continue;
1069
1070                /*
1071                 * Check if this vm starts on an odd section boundary.
1072                 * If so and the first section entry for this PMD is free
1073                 * then we block the corresponding virtual address.
1074                 */
1075                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1076                        pmd = pmd_off_k(addr);
1077                        if (pmd_none(*pmd))
1078                                pmd_empty_section_gap(addr & PMD_MASK);
1079                }
1080
1081                /*
1082                 * Then check if this vm ends on an odd section boundary.
1083                 * If so and the second section entry for this PMD is empty
1084                 * then we block the corresponding virtual address.
1085                 */
1086                addr += vm->size;
1087                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1088                        pmd = pmd_off_k(addr) + 1;
1089                        if (pmd_none(*pmd))
1090                                pmd_empty_section_gap(addr);
1091                }
1092
1093                /* no need to look at any vm entry until we hit the next PMD */
1094                next = (addr + PMD_SIZE - 1) & PMD_MASK;
1095        }
1096}
1097
1098#else
1099#define fill_pmd_gaps() do { } while (0)
1100#endif
1101
1102#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1103static void __init pci_reserve_io(void)
1104{
1105        struct static_vm *svm;
1106
1107        svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1108        if (svm)
1109                return;
1110
1111        vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1112}
1113#else
1114#define pci_reserve_io() do { } while (0)
1115#endif
1116
1117#ifdef CONFIG_DEBUG_LL
1118void __init debug_ll_io_init(void)
1119{
1120        struct map_desc map;
1121
1122        debug_ll_addr(&map.pfn, &map.virtual);
1123        if (!map.pfn || !map.virtual)
1124                return;
1125        map.pfn = __phys_to_pfn(map.pfn);
1126        map.virtual &= PAGE_MASK;
1127        map.length = PAGE_SIZE;
1128        map.type = MT_DEVICE;
1129        iotable_init(&map, 1);
1130}
1131#endif
1132
1133static void * __initdata vmalloc_min =
1134        (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1135
1136/*
1137 * vmalloc=size forces the vmalloc area to be exactly 'size'
1138 * bytes. This can be used to increase (or decrease) the vmalloc
1139 * area - the default is 240m.
1140 */
1141static int __init early_vmalloc(char *arg)
1142{
1143        unsigned long vmalloc_reserve = memparse(arg, NULL);
1144
1145        if (vmalloc_reserve < SZ_16M) {
1146                vmalloc_reserve = SZ_16M;
1147                pr_warn("vmalloc area too small, limiting to %luMB\n",
1148                        vmalloc_reserve >> 20);
1149        }
1150
1151        if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1152                vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1153                pr_warn("vmalloc area is too big, limiting to %luMB\n",
1154                        vmalloc_reserve >> 20);
1155        }
1156
1157        vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1158        return 0;
1159}
1160early_param("vmalloc", early_vmalloc);
1161
1162phys_addr_t arm_lowmem_limit __initdata = 0;
1163
1164void __init adjust_lowmem_bounds(void)
1165{
1166        phys_addr_t memblock_limit = 0;
1167        u64 vmalloc_limit;
1168        struct memblock_region *reg;
1169        phys_addr_t lowmem_limit = 0;
1170
1171        /*
1172         * Let's use our own (unoptimized) equivalent of __pa() that is
1173         * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1174         * The result is used as the upper bound on physical memory address
1175         * and may itself be outside the valid range for which phys_addr_t
1176         * and therefore __pa() is defined.
1177         */
1178        vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1179
1180        for_each_memblock(memory, reg) {
1181                phys_addr_t block_start = reg->base;
1182                phys_addr_t block_end = reg->base + reg->size;
1183
1184                if (reg->base < vmalloc_limit) {
1185                        if (block_end > lowmem_limit)
1186                                /*
1187                                 * Compare as u64 to ensure vmalloc_limit does
1188                                 * not get truncated. block_end should always
1189                                 * fit in phys_addr_t so there should be no
1190                                 * issue with assignment.
1191                                 */
1192                                lowmem_limit = min_t(u64,
1193                                                         vmalloc_limit,
1194                                                         block_end);
1195
1196                        /*
1197                         * Find the first non-pmd-aligned page, and point
1198                         * memblock_limit at it. This relies on rounding the
1199                         * limit down to be pmd-aligned, which happens at the
1200                         * end of this function.
1201                         *
1202                         * With this algorithm, the start or end of almost any
1203                         * bank can be non-pmd-aligned. The only exception is
1204                         * that the start of the bank 0 must be section-
1205                         * aligned, since otherwise memory would need to be
1206                         * allocated when mapping the start of bank 0, which
1207                         * occurs before any free memory is mapped.
1208                         */
1209                        if (!memblock_limit) {
1210                                if (!IS_ALIGNED(block_start, PMD_SIZE))
1211                                        memblock_limit = block_start;
1212                                else if (!IS_ALIGNED(block_end, PMD_SIZE))
1213                                        memblock_limit = lowmem_limit;
1214                        }
1215
1216                }
1217        }
1218
1219        arm_lowmem_limit = lowmem_limit;
1220
1221        high_memory = __va(arm_lowmem_limit - 1) + 1;
1222
1223        if (!memblock_limit)
1224                memblock_limit = arm_lowmem_limit;
1225
1226        /*
1227         * Round the memblock limit down to a pmd size.  This
1228         * helps to ensure that we will allocate memory from the
1229         * last full pmd, which should be mapped.
1230         */
1231        memblock_limit = round_down(memblock_limit, PMD_SIZE);
1232
1233        if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1234                if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1235                        phys_addr_t end = memblock_end_of_DRAM();
1236
1237                        pr_notice("Ignoring RAM at %pa-%pa\n",
1238                                  &memblock_limit, &end);
1239                        pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1240
1241                        memblock_remove(memblock_limit, end - memblock_limit);
1242                }
1243        }
1244
1245        memblock_set_current_limit(memblock_limit);
1246}
1247
1248static inline void prepare_page_table(void)
1249{
1250        unsigned long addr;
1251        phys_addr_t end;
1252
1253        /*
1254         * Clear out all the mappings below the kernel image.
1255         */
1256        for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1257                pmd_clear(pmd_off_k(addr));
1258
1259#ifdef CONFIG_XIP_KERNEL
1260        /* The XIP kernel is mapped in the module area -- skip over it */
1261        addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1262#endif
1263        for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1264                pmd_clear(pmd_off_k(addr));
1265
1266        /*
1267         * Find the end of the first block of lowmem.
1268         */
1269        end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1270        if (end >= arm_lowmem_limit)
1271                end = arm_lowmem_limit;
1272
1273        /*
1274         * Clear out all the kernel space mappings, except for the first
1275         * memory bank, up to the vmalloc region.
1276         */
1277        for (addr = __phys_to_virt(end);
1278             addr < VMALLOC_START; addr += PMD_SIZE)
1279                pmd_clear(pmd_off_k(addr));
1280}
1281
1282#ifdef CONFIG_ARM_LPAE
1283/* the first page is reserved for pgd */
1284#define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1285                                 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1286#else
1287#define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1288#endif
1289
1290/*
1291 * Reserve the special regions of memory
1292 */
1293void __init arm_mm_memblock_reserve(void)
1294{
1295        /*
1296         * Reserve the page tables.  These are already in use,
1297         * and can only be in node 0.
1298         */
1299        memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1300
1301#ifdef CONFIG_SA1111
1302        /*
1303         * Because of the SA1111 DMA bug, we want to preserve our
1304         * precious DMA-able memory...
1305         */
1306        memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1307#endif
1308}
1309
1310/*
1311 * Set up the device mappings.  Since we clear out the page tables for all
1312 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1313 * device mappings.  This means earlycon can be used to debug this function
1314 * Any other function or debugging method which may touch any device _will_
1315 * crash the kernel.
1316 */
1317static void __init devicemaps_init(const struct machine_desc *mdesc)
1318{
1319        struct map_desc map;
1320        unsigned long addr;
1321        void *vectors;
1322
1323        /*
1324         * Allocate the vector page early.
1325         */
1326        vectors = early_alloc(PAGE_SIZE * 2);
1327
1328        early_trap_init(vectors);
1329
1330        /*
1331         * Clear page table except top pmd used by early fixmaps
1332         */
1333        for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1334                pmd_clear(pmd_off_k(addr));
1335
1336        /*
1337         * Map the kernel if it is XIP.
1338         * It is always first in the modulearea.
1339         */
1340#ifdef CONFIG_XIP_KERNEL
1341        map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1342        map.virtual = MODULES_VADDR;
1343        map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1344        map.type = MT_ROM;
1345        create_mapping(&map);
1346#endif
1347
1348        /*
1349         * Map the cache flushing regions.
1350         */
1351#ifdef FLUSH_BASE
1352        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1353        map.virtual = FLUSH_BASE;
1354        map.length = SZ_1M;
1355        map.type = MT_CACHECLEAN;
1356        create_mapping(&map);
1357#endif
1358#ifdef FLUSH_BASE_MINICACHE
1359        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1360        map.virtual = FLUSH_BASE_MINICACHE;
1361        map.length = SZ_1M;
1362        map.type = MT_MINICLEAN;
1363        create_mapping(&map);
1364#endif
1365
1366        /*
1367         * Create a mapping for the machine vectors at the high-vectors
1368         * location (0xffff0000).  If we aren't using high-vectors, also
1369         * create a mapping at the low-vectors virtual address.
1370         */
1371        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1372        map.virtual = 0xffff0000;
1373        map.length = PAGE_SIZE;
1374#ifdef CONFIG_KUSER_HELPERS
1375        map.type = MT_HIGH_VECTORS;
1376#else
1377        map.type = MT_LOW_VECTORS;
1378#endif
1379        create_mapping(&map);
1380
1381        if (!vectors_high()) {
1382                map.virtual = 0;
1383                map.length = PAGE_SIZE * 2;
1384                map.type = MT_LOW_VECTORS;
1385                create_mapping(&map);
1386        }
1387
1388        /* Now create a kernel read-only mapping */
1389        map.pfn += 1;
1390        map.virtual = 0xffff0000 + PAGE_SIZE;
1391        map.length = PAGE_SIZE;
1392        map.type = MT_LOW_VECTORS;
1393        create_mapping(&map);
1394
1395        /*
1396         * Ask the machine support to map in the statically mapped devices.
1397         */
1398        if (mdesc->map_io)
1399                mdesc->map_io();
1400        else
1401                debug_ll_io_init();
1402        fill_pmd_gaps();
1403
1404        /* Reserve fixed i/o space in VMALLOC region */
1405        pci_reserve_io();
1406
1407        /*
1408         * Finally flush the caches and tlb to ensure that we're in a
1409         * consistent state wrt the writebuffer.  This also ensures that
1410         * any write-allocated cache lines in the vector page are written
1411         * back.  After this point, we can start to touch devices again.
1412         */
1413        local_flush_tlb_all();
1414        flush_cache_all();
1415
1416        /* Enable asynchronous aborts */
1417        early_abt_enable();
1418}
1419
1420static void __init kmap_init(void)
1421{
1422#ifdef CONFIG_HIGHMEM
1423        pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1424                PKMAP_BASE, _PAGE_KERNEL_TABLE);
1425#endif
1426
1427        early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1428                        _PAGE_KERNEL_TABLE);
1429}
1430
1431static void __init map_lowmem(void)
1432{
1433        struct memblock_region *reg;
1434        phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1435        phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1436
1437        /* Map all the lowmem memory banks. */
1438        for_each_memblock(memory, reg) {
1439                phys_addr_t start = reg->base;
1440                phys_addr_t end = start + reg->size;
1441                struct map_desc map;
1442
1443                if (memblock_is_nomap(reg))
1444                        continue;
1445
1446                if (end > arm_lowmem_limit)
1447                        end = arm_lowmem_limit;
1448                if (start >= end)
1449                        break;
1450
1451                if (end < kernel_x_start) {
1452                        map.pfn = __phys_to_pfn(start);
1453                        map.virtual = __phys_to_virt(start);
1454                        map.length = end - start;
1455                        map.type = MT_MEMORY_RWX;
1456
1457                        create_mapping(&map);
1458                } else if (start >= kernel_x_end) {
1459                        map.pfn = __phys_to_pfn(start);
1460                        map.virtual = __phys_to_virt(start);
1461                        map.length = end - start;
1462                        map.type = MT_MEMORY_RW;
1463
1464                        create_mapping(&map);
1465                } else {
1466                        /* This better cover the entire kernel */
1467                        if (start < kernel_x_start) {
1468                                map.pfn = __phys_to_pfn(start);
1469                                map.virtual = __phys_to_virt(start);
1470                                map.length = kernel_x_start - start;
1471                                map.type = MT_MEMORY_RW;
1472
1473                                create_mapping(&map);
1474                        }
1475
1476                        map.pfn = __phys_to_pfn(kernel_x_start);
1477                        map.virtual = __phys_to_virt(kernel_x_start);
1478                        map.length = kernel_x_end - kernel_x_start;
1479                        map.type = MT_MEMORY_RWX;
1480
1481                        create_mapping(&map);
1482
1483                        if (kernel_x_end < end) {
1484                                map.pfn = __phys_to_pfn(kernel_x_end);
1485                                map.virtual = __phys_to_virt(kernel_x_end);
1486                                map.length = end - kernel_x_end;
1487                                map.type = MT_MEMORY_RW;
1488
1489                                create_mapping(&map);
1490                        }
1491                }
1492        }
1493}
1494
1495#ifdef CONFIG_ARM_PV_FIXUP
1496extern unsigned long __atags_pointer;
1497typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1498pgtables_remap lpae_pgtables_remap_asm;
1499
1500/*
1501 * early_paging_init() recreates boot time page table setup, allowing machines
1502 * to switch over to a high (>4G) address space on LPAE systems
1503 */
1504static void __init early_paging_init(const struct machine_desc *mdesc)
1505{
1506        pgtables_remap *lpae_pgtables_remap;
1507        unsigned long pa_pgd;
1508        unsigned int cr, ttbcr;
1509        long long offset;
1510        void *boot_data;
1511
1512        if (!mdesc->pv_fixup)
1513                return;
1514
1515        offset = mdesc->pv_fixup();
1516        if (offset == 0)
1517                return;
1518
1519        /*
1520         * Get the address of the remap function in the 1:1 identity
1521         * mapping setup by the early page table assembly code.  We
1522         * must get this prior to the pv update.  The following barrier
1523         * ensures that this is complete before we fixup any P:V offsets.
1524         */
1525        lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1526        pa_pgd = __pa(swapper_pg_dir);
1527        boot_data = __va(__atags_pointer);
1528        barrier();
1529
1530        pr_info("Switching physical address space to 0x%08llx\n",
1531                (u64)PHYS_OFFSET + offset);
1532
1533        /* Re-set the phys pfn offset, and the pv offset */
1534        __pv_offset += offset;
1535        __pv_phys_pfn_offset += PFN_DOWN(offset);
1536
1537        /* Run the patch stub to update the constants */
1538        fixup_pv_table(&__pv_table_begin,
1539                (&__pv_table_end - &__pv_table_begin) << 2);
1540
1541        /*
1542         * We changing not only the virtual to physical mapping, but also
1543         * the physical addresses used to access memory.  We need to flush
1544         * all levels of cache in the system with caching disabled to
1545         * ensure that all data is written back, and nothing is prefetched
1546         * into the caches.  We also need to prevent the TLB walkers
1547         * allocating into the caches too.  Note that this is ARMv7 LPAE
1548         * specific.
1549         */
1550        cr = get_cr();
1551        set_cr(cr & ~(CR_I | CR_C));
1552        asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1553        asm volatile("mcr p15, 0, %0, c2, c0, 2"
1554                : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1555        flush_cache_all();
1556
1557        /*
1558         * Fixup the page tables - this must be in the idmap region as
1559         * we need to disable the MMU to do this safely, and hence it
1560         * needs to be assembly.  It's fairly simple, as we're using the
1561         * temporary tables setup by the initial assembly code.
1562         */
1563        lpae_pgtables_remap(offset, pa_pgd, boot_data);
1564
1565        /* Re-enable the caches and cacheable TLB walks */
1566        asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1567        set_cr(cr);
1568}
1569
1570#else
1571
1572static void __init early_paging_init(const struct machine_desc *mdesc)
1573{
1574        long long offset;
1575
1576        if (!mdesc->pv_fixup)
1577                return;
1578
1579        offset = mdesc->pv_fixup();
1580        if (offset == 0)
1581                return;
1582
1583        pr_crit("Physical address space modification is only to support Keystone2.\n");
1584        pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1585        pr_crit("feature. Your kernel may crash now, have a good day.\n");
1586        add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1587}
1588
1589#endif
1590
1591static void __init early_fixmap_shutdown(void)
1592{
1593        int i;
1594        unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1595
1596        pte_offset_fixmap = pte_offset_late_fixmap;
1597        pmd_clear(fixmap_pmd(va));
1598        local_flush_tlb_kernel_page(va);
1599
1600        for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1601                pte_t *pte;
1602                struct map_desc map;
1603
1604                map.virtual = fix_to_virt(i);
1605                pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1606
1607                /* Only i/o device mappings are supported ATM */
1608                if (pte_none(*pte) ||
1609                    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1610                        continue;
1611
1612                map.pfn = pte_pfn(*pte);
1613                map.type = MT_DEVICE;
1614                map.length = PAGE_SIZE;
1615
1616                create_mapping(&map);
1617        }
1618}
1619
1620/*
1621 * paging_init() sets up the page tables, initialises the zone memory
1622 * maps, and sets up the zero page, bad page and bad page tables.
1623 */
1624void __init paging_init(const struct machine_desc *mdesc)
1625{
1626        void *zero_page;
1627
1628        prepare_page_table();
1629        map_lowmem();
1630        memblock_set_current_limit(arm_lowmem_limit);
1631        dma_contiguous_remap();
1632        early_fixmap_shutdown();
1633        devicemaps_init(mdesc);
1634        kmap_init();
1635        tcm_init();
1636
1637        top_pmd = pmd_off_k(0xffff0000);
1638
1639        /* allocate the zero page. */
1640        zero_page = early_alloc(PAGE_SIZE);
1641
1642        bootmem_init();
1643
1644        empty_zero_page = virt_to_page(zero_page);
1645        __flush_dcache_page(NULL, empty_zero_page);
1646
1647        /* Compute the virt/idmap offset, mostly for the sake of KVM */
1648        kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1649}
1650
1651void __init early_mm_init(const struct machine_desc *mdesc)
1652{
1653        build_mem_type_table();
1654        early_paging_init(mdesc);
1655}
1656