linux/arch/arm/probes/kprobes/test-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * arch/arm/kernel/kprobes-test.c
   4 *
   5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
   6 */
   7
   8/*
   9 * This file contains test code for ARM kprobes.
  10 *
  11 * The top level function run_all_tests() executes tests for all of the
  12 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
  13 * fall into two categories; run_api_tests() checks basic functionality of the
  14 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
  15 * instruction decoding and simulation.
  16 *
  17 * run_test_cases() first checks the kprobes decoding table for self consistency
  18 * (using table_test()) then executes a series of test cases for each of the CPU
  19 * instruction forms. coverage_start() and coverage_end() are used to verify
  20 * that these test cases cover all of the possible combinations of instructions
  21 * described by the kprobes decoding tables.
  22 *
  23 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
  24 * which use the macros defined in kprobes-test.h. The rest of this
  25 * documentation will describe the operation of the framework used by these
  26 * test cases.
  27 */
  28
  29/*
  30 * TESTING METHODOLOGY
  31 * -------------------
  32 *
  33 * The methodology used to test an ARM instruction 'test_insn' is to use
  34 * inline assembler like:
  35 *
  36 * test_before: nop
  37 * test_case:   test_insn
  38 * test_after:  nop
  39 *
  40 * When the test case is run a kprobe is placed of each nop. The
  41 * post-handler of the test_before probe is used to modify the saved CPU
  42 * register context to that which we require for the test case. The
  43 * pre-handler of the of the test_after probe saves a copy of the CPU
  44 * register context. In this way we can execute test_insn with a specific
  45 * register context and see the results afterwards.
  46 *
  47 * To actually test the kprobes instruction emulation we perform the above
  48 * step a second time but with an additional kprobe on the test_case
  49 * instruction itself. If the emulation is accurate then the results seen
  50 * by the test_after probe will be identical to the first run which didn't
  51 * have a probe on test_case.
  52 *
  53 * Each test case is run several times with a variety of variations in the
  54 * flags value of stored in CPSR, and for Thumb code, different ITState.
  55 *
  56 * For instructions which can modify PC, a second test_after probe is used
  57 * like this:
  58 *
  59 * test_before: nop
  60 * test_case:   test_insn
  61 * test_after:  nop
  62 *              b test_done
  63 * test_after2: nop
  64 * test_done:
  65 *
  66 * The test case is constructed such that test_insn branches to
  67 * test_after2, or, if testing a conditional instruction, it may just
  68 * continue to test_after. The probes inserted at both locations let us
  69 * determine which happened. A similar approach is used for testing
  70 * backwards branches...
  71 *
  72 *              b test_before
  73 *              b test_done  @ helps to cope with off by 1 branches
  74 * test_after2: nop
  75 *              b test_done
  76 * test_before: nop
  77 * test_case:   test_insn
  78 * test_after:  nop
  79 * test_done:
  80 *
  81 * The macros used to generate the assembler instructions describe above
  82 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
  83 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
  84 * 99 represent: test_before, test_case, test_after2 and test_done.
  85 *
  86 * FRAMEWORK
  87 * ---------
  88 *
  89 * Each test case is wrapped between the pair of macros TESTCASE_START and
  90 * TESTCASE_END. As well as performing the inline assembler boilerplate,
  91 * these call out to the kprobes_test_case_start() and
  92 * kprobes_test_case_end() functions which drive the execution of the test
  93 * case. The specific arguments to use for each test case are stored as
  94 * inline data constructed using the various TEST_ARG_* macros. Putting
  95 * this all together, a simple test case may look like:
  96 *
  97 *      TESTCASE_START("Testing mov r0, r7")
  98 *      TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
  99 *      TEST_ARG_END("")
 100 *      TEST_INSTRUCTION("mov r0, r7")
 101 *      TESTCASE_END
 102 *
 103 * Note, in practice the single convenience macro TEST_R would be used for this
 104 * instead.
 105 *
 106 * The above would expand to assembler looking something like:
 107 *
 108 *      @ TESTCASE_START
 109 *      bl      __kprobes_test_case_start
 110 *      .pushsection .rodata
 111 *      "10:
 112 *      .ascii "mov r0, r7"     @ text title for test case
 113 *      .byte   0
 114 *      .popsection
 115 *      @ start of inline data...
 116 *      .word   10b             @ pointer to title in .rodata section
 117 *
 118 *      @ TEST_ARG_REG
 119 *      .byte   ARG_TYPE_REG
 120 *      .byte   7
 121 *      .short  0
 122 *      .word   0x1234567
 123 *
 124 *      @ TEST_ARG_END
 125 *      .byte   ARG_TYPE_END
 126 *      .byte   TEST_ISA        @ flags, including ISA being tested
 127 *      .short  50f-0f          @ offset of 'test_before'
 128 *      .short  2f-0f           @ offset of 'test_after2' (if relevent)
 129 *      .short  99f-0f          @ offset of 'test_done'
 130 *      @ start of test case code...
 131 *      0:
 132 *      .code   TEST_ISA        @ switch to ISA being tested
 133 *
 134 *      @ TEST_INSTRUCTION
 135 *      50:     nop             @ location for 'test_before' probe
 136 *      1:      mov r0, r7      @ the test case instruction 'test_insn'
 137 *              nop             @ location for 'test_after' probe
 138 *
 139 *      // TESTCASE_END
 140 *      2:
 141 *      99:     bl __kprobes_test_case_end_##TEST_ISA
 142 *      .code   NONMAL_ISA
 143 *
 144 * When the above is execute the following happens...
 145 *
 146 * __kprobes_test_case_start() is an assembler wrapper which sets up space
 147 * for a stack buffer and calls the C function kprobes_test_case_start().
 148 * This C function will do some initial processing of the inline data and
 149 * setup some global state. It then inserts the test_before and test_after
 150 * kprobes and returns a value which causes the assembler wrapper to jump
 151 * to the start of the test case code, (local label '0').
 152 *
 153 * When the test case code executes, the test_before probe will be hit and
 154 * test_before_post_handler will call setup_test_context(). This fills the
 155 * stack buffer and CPU registers with a test pattern and then processes
 156 * the test case arguments. In our example there is one TEST_ARG_REG which
 157 * indicates that R7 should be loaded with the value 0x12345678.
 158 *
 159 * When the test_before probe ends, the test case continues and executes
 160 * the "mov r0, r7" instruction. It then hits the test_after probe and the
 161 * pre-handler for this (test_after_pre_handler) will save a copy of the
 162 * CPU register context. This should now have R0 holding the same value as
 163 * R7.
 164 *
 165 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
 166 * an assembler wrapper which switches back to the ISA used by the test
 167 * code and calls the C function kprobes_test_case_end().
 168 *
 169 * For each run through the test case, test_case_run_count is incremented
 170 * by one. For even runs, kprobes_test_case_end() saves a copy of the
 171 * register and stack buffer contents from the test case just run. It then
 172 * inserts a kprobe on the test case instruction 'test_insn' and returns a
 173 * value to cause the test case code to be re-run.
 174 *
 175 * For odd numbered runs, kprobes_test_case_end() compares the register and
 176 * stack buffer contents to those that were saved on the previous even
 177 * numbered run (the one without the kprobe on test_insn). These should be
 178 * the same if the kprobe instruction simulation routine is correct.
 179 *
 180 * The pair of test case runs is repeated with different combinations of
 181 * flag values in CPSR and, for Thumb, different ITState. This is
 182 * controlled by test_context_cpsr().
 183 *
 184 * BUILDING TEST CASES
 185 * -------------------
 186 *
 187 *
 188 * As an aid to building test cases, the stack buffer is initialised with
 189 * some special values:
 190 *
 191 *   [SP+13*4]  Contains SP+120. This can be used to test instructions
 192 *              which load a value into SP.
 193 *
 194 *   [SP+15*4]  When testing branching instructions using TEST_BRANCH_{F,B},
 195 *              this holds the target address of the branch, 'test_after2'.
 196 *              This can be used to test instructions which load a PC value
 197 *              from memory.
 198 */
 199
 200#include <linux/kernel.h>
 201#include <linux/module.h>
 202#include <linux/slab.h>
 203#include <linux/sched/clock.h>
 204#include <linux/kprobes.h>
 205#include <linux/errno.h>
 206#include <linux/stddef.h>
 207#include <linux/bug.h>
 208#include <asm/opcodes.h>
 209
 210#include "core.h"
 211#include "test-core.h"
 212#include "../decode-arm.h"
 213#include "../decode-thumb.h"
 214
 215
 216#define BENCHMARKING    1
 217
 218
 219/*
 220 * Test basic API
 221 */
 222
 223static bool test_regs_ok;
 224static int test_func_instance;
 225static int pre_handler_called;
 226static int post_handler_called;
 227static int kretprobe_handler_called;
 228static int tests_failed;
 229
 230#define FUNC_ARG1 0x12345678
 231#define FUNC_ARG2 0xabcdef
 232
 233
 234#ifndef CONFIG_THUMB2_KERNEL
 235
 236#define RET(reg)        "mov    pc, "#reg
 237
 238long arm_func(long r0, long r1);
 239
 240static void __used __naked __arm_kprobes_test_func(void)
 241{
 242        __asm__ __volatile__ (
 243                ".arm                                   \n\t"
 244                ".type arm_func, %%function             \n\t"
 245                "arm_func:                              \n\t"
 246                "adds   r0, r0, r1                      \n\t"
 247                "mov    pc, lr                          \n\t"
 248                ".code "NORMAL_ISA       /* Back to Thumb if necessary */
 249                : : : "r0", "r1", "cc"
 250        );
 251}
 252
 253#else /* CONFIG_THUMB2_KERNEL */
 254
 255#define RET(reg)        "bx     "#reg
 256
 257long thumb16_func(long r0, long r1);
 258long thumb32even_func(long r0, long r1);
 259long thumb32odd_func(long r0, long r1);
 260
 261static void __used __naked __thumb_kprobes_test_funcs(void)
 262{
 263        __asm__ __volatile__ (
 264                ".type thumb16_func, %%function         \n\t"
 265                "thumb16_func:                          \n\t"
 266                "adds.n r0, r0, r1                      \n\t"
 267                "bx     lr                              \n\t"
 268
 269                ".align                                 \n\t"
 270                ".type thumb32even_func, %%function     \n\t"
 271                "thumb32even_func:                      \n\t"
 272                "adds.w r0, r0, r1                      \n\t"
 273                "bx     lr                              \n\t"
 274
 275                ".align                                 \n\t"
 276                "nop.n                                  \n\t"
 277                ".type thumb32odd_func, %%function      \n\t"
 278                "thumb32odd_func:                       \n\t"
 279                "adds.w r0, r0, r1                      \n\t"
 280                "bx     lr                              \n\t"
 281
 282                : : : "r0", "r1", "cc"
 283        );
 284}
 285
 286#endif /* CONFIG_THUMB2_KERNEL */
 287
 288
 289static int call_test_func(long (*func)(long, long), bool check_test_regs)
 290{
 291        long ret;
 292
 293        ++test_func_instance;
 294        test_regs_ok = false;
 295
 296        ret = (*func)(FUNC_ARG1, FUNC_ARG2);
 297        if (ret != FUNC_ARG1 + FUNC_ARG2) {
 298                pr_err("FAIL: call_test_func: func returned %lx\n", ret);
 299                return false;
 300        }
 301
 302        if (check_test_regs && !test_regs_ok) {
 303                pr_err("FAIL: test regs not OK\n");
 304                return false;
 305        }
 306
 307        return true;
 308}
 309
 310static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
 311{
 312        pre_handler_called = test_func_instance;
 313        if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
 314                test_regs_ok = true;
 315        return 0;
 316}
 317
 318static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
 319                                unsigned long flags)
 320{
 321        post_handler_called = test_func_instance;
 322        if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
 323                test_regs_ok = false;
 324}
 325
 326static struct kprobe the_kprobe = {
 327        .addr           = 0,
 328        .pre_handler    = pre_handler,
 329        .post_handler   = post_handler
 330};
 331
 332static int test_kprobe(long (*func)(long, long))
 333{
 334        int ret;
 335
 336        the_kprobe.addr = (kprobe_opcode_t *)func;
 337        ret = register_kprobe(&the_kprobe);
 338        if (ret < 0) {
 339                pr_err("FAIL: register_kprobe failed with %d\n", ret);
 340                return ret;
 341        }
 342
 343        ret = call_test_func(func, true);
 344
 345        unregister_kprobe(&the_kprobe);
 346        the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
 347
 348        if (!ret)
 349                return -EINVAL;
 350        if (pre_handler_called != test_func_instance) {
 351                pr_err("FAIL: kprobe pre_handler not called\n");
 352                return -EINVAL;
 353        }
 354        if (post_handler_called != test_func_instance) {
 355                pr_err("FAIL: kprobe post_handler not called\n");
 356                return -EINVAL;
 357        }
 358        if (!call_test_func(func, false))
 359                return -EINVAL;
 360        if (pre_handler_called == test_func_instance ||
 361                                post_handler_called == test_func_instance) {
 362                pr_err("FAIL: probe called after unregistering\n");
 363                return -EINVAL;
 364        }
 365
 366        return 0;
 367}
 368
 369static int __kprobes
 370kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
 371{
 372        kretprobe_handler_called = test_func_instance;
 373        if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
 374                test_regs_ok = true;
 375        return 0;
 376}
 377
 378static struct kretprobe the_kretprobe = {
 379        .handler        = kretprobe_handler,
 380};
 381
 382static int test_kretprobe(long (*func)(long, long))
 383{
 384        int ret;
 385
 386        the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
 387        ret = register_kretprobe(&the_kretprobe);
 388        if (ret < 0) {
 389                pr_err("FAIL: register_kretprobe failed with %d\n", ret);
 390                return ret;
 391        }
 392
 393        ret = call_test_func(func, true);
 394
 395        unregister_kretprobe(&the_kretprobe);
 396        the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 397
 398        if (!ret)
 399                return -EINVAL;
 400        if (kretprobe_handler_called != test_func_instance) {
 401                pr_err("FAIL: kretprobe handler not called\n");
 402                return -EINVAL;
 403        }
 404        if (!call_test_func(func, false))
 405                return -EINVAL;
 406        if (kretprobe_handler_called == test_func_instance) {
 407                pr_err("FAIL: kretprobe called after unregistering\n");
 408                return -EINVAL;
 409        }
 410
 411        return 0;
 412}
 413
 414static int run_api_tests(long (*func)(long, long))
 415{
 416        int ret;
 417
 418        pr_info("    kprobe\n");
 419        ret = test_kprobe(func);
 420        if (ret < 0)
 421                return ret;
 422
 423        pr_info("    kretprobe\n");
 424        ret = test_kretprobe(func);
 425        if (ret < 0)
 426                return ret;
 427
 428        return 0;
 429}
 430
 431
 432/*
 433 * Benchmarking
 434 */
 435
 436#if BENCHMARKING
 437
 438static void __naked benchmark_nop(void)
 439{
 440        __asm__ __volatile__ (
 441                "nop            \n\t"
 442                RET(lr)"        \n\t"
 443        );
 444}
 445
 446#ifdef CONFIG_THUMB2_KERNEL
 447#define wide ".w"
 448#else
 449#define wide
 450#endif
 451
 452static void __naked benchmark_pushpop1(void)
 453{
 454        __asm__ __volatile__ (
 455                "stmdb"wide"    sp!, {r3-r11,lr}  \n\t"
 456                "ldmia"wide"    sp!, {r3-r11,pc}"
 457        );
 458}
 459
 460static void __naked benchmark_pushpop2(void)
 461{
 462        __asm__ __volatile__ (
 463                "stmdb"wide"    sp!, {r0-r8,lr}  \n\t"
 464                "ldmia"wide"    sp!, {r0-r8,pc}"
 465        );
 466}
 467
 468static void __naked benchmark_pushpop3(void)
 469{
 470        __asm__ __volatile__ (
 471                "stmdb"wide"    sp!, {r4,lr}  \n\t"
 472                "ldmia"wide"    sp!, {r4,pc}"
 473        );
 474}
 475
 476static void __naked benchmark_pushpop4(void)
 477{
 478        __asm__ __volatile__ (
 479                "stmdb"wide"    sp!, {r0,lr}  \n\t"
 480                "ldmia"wide"    sp!, {r0,pc}"
 481        );
 482}
 483
 484
 485#ifdef CONFIG_THUMB2_KERNEL
 486
 487static void __naked benchmark_pushpop_thumb(void)
 488{
 489        __asm__ __volatile__ (
 490                "push.n {r0-r7,lr}  \n\t"
 491                "pop.n  {r0-r7,pc}"
 492        );
 493}
 494
 495#endif
 496
 497static int __kprobes
 498benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
 499{
 500        return 0;
 501}
 502
 503static int benchmark(void(*fn)(void))
 504{
 505        unsigned n, i, t, t0;
 506
 507        for (n = 1000; ; n *= 2) {
 508                t0 = sched_clock();
 509                for (i = n; i > 0; --i)
 510                        fn();
 511                t = sched_clock() - t0;
 512                if (t >= 250000000)
 513                        break; /* Stop once we took more than 0.25 seconds */
 514        }
 515        return t / n; /* Time for one iteration in nanoseconds */
 516};
 517
 518static int kprobe_benchmark(void(*fn)(void), unsigned offset)
 519{
 520        struct kprobe k = {
 521                .addr           = (kprobe_opcode_t *)((uintptr_t)fn + offset),
 522                .pre_handler    = benchmark_pre_handler,
 523        };
 524
 525        int ret = register_kprobe(&k);
 526        if (ret < 0) {
 527                pr_err("FAIL: register_kprobe failed with %d\n", ret);
 528                return ret;
 529        }
 530
 531        ret = benchmark(fn);
 532
 533        unregister_kprobe(&k);
 534        return ret;
 535};
 536
 537struct benchmarks {
 538        void            (*fn)(void);
 539        unsigned        offset;
 540        const char      *title;
 541};
 542
 543static int run_benchmarks(void)
 544{
 545        int ret;
 546        struct benchmarks list[] = {
 547                {&benchmark_nop, 0, "nop"},
 548                /*
 549                 * benchmark_pushpop{1,3} will have the optimised
 550                 * instruction emulation, whilst benchmark_pushpop{2,4} will
 551                 * be the equivalent unoptimised instructions.
 552                 */
 553                {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
 554                {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
 555                {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
 556                {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
 557                {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
 558                {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
 559                {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
 560                {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
 561#ifdef CONFIG_THUMB2_KERNEL
 562                {&benchmark_pushpop_thumb, 0, "push.n   {r0-r7,lr}"},
 563                {&benchmark_pushpop_thumb, 2, "pop.n    {r0-r7,pc}"},
 564#endif
 565                {0}
 566        };
 567
 568        struct benchmarks *b;
 569        for (b = list; b->fn; ++b) {
 570                ret = kprobe_benchmark(b->fn, b->offset);
 571                if (ret < 0)
 572                        return ret;
 573                pr_info("    %dns for kprobe %s\n", ret, b->title);
 574        }
 575
 576        pr_info("\n");
 577        return 0;
 578}
 579
 580#endif /* BENCHMARKING */
 581
 582
 583/*
 584 * Decoding table self-consistency tests
 585 */
 586
 587static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
 588        [DECODE_TYPE_TABLE]     = sizeof(struct decode_table),
 589        [DECODE_TYPE_CUSTOM]    = sizeof(struct decode_custom),
 590        [DECODE_TYPE_SIMULATE]  = sizeof(struct decode_simulate),
 591        [DECODE_TYPE_EMULATE]   = sizeof(struct decode_emulate),
 592        [DECODE_TYPE_OR]        = sizeof(struct decode_or),
 593        [DECODE_TYPE_REJECT]    = sizeof(struct decode_reject)
 594};
 595
 596static int table_iter(const union decode_item *table,
 597                        int (*fn)(const struct decode_header *, void *),
 598                        void *args)
 599{
 600        const struct decode_header *h = (struct decode_header *)table;
 601        int result;
 602
 603        for (;;) {
 604                enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 605
 606                if (type == DECODE_TYPE_END)
 607                        return 0;
 608
 609                result = fn(h, args);
 610                if (result)
 611                        return result;
 612
 613                h = (struct decode_header *)
 614                        ((uintptr_t)h + decode_struct_sizes[type]);
 615
 616        }
 617}
 618
 619static int table_test_fail(const struct decode_header *h, const char* message)
 620{
 621
 622        pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
 623                                        message, h->mask.bits, h->value.bits);
 624        return -EINVAL;
 625}
 626
 627struct table_test_args {
 628        const union decode_item *root_table;
 629        u32                     parent_mask;
 630        u32                     parent_value;
 631};
 632
 633static int table_test_fn(const struct decode_header *h, void *args)
 634{
 635        struct table_test_args *a = (struct table_test_args *)args;
 636        enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 637
 638        if (h->value.bits & ~h->mask.bits)
 639                return table_test_fail(h, "Match value has bits not in mask");
 640
 641        if ((h->mask.bits & a->parent_mask) != a->parent_mask)
 642                return table_test_fail(h, "Mask has bits not in parent mask");
 643
 644        if ((h->value.bits ^ a->parent_value) & a->parent_mask)
 645                return table_test_fail(h, "Value is inconsistent with parent");
 646
 647        if (type == DECODE_TYPE_TABLE) {
 648                struct decode_table *d = (struct decode_table *)h;
 649                struct table_test_args args2 = *a;
 650                args2.parent_mask = h->mask.bits;
 651                args2.parent_value = h->value.bits;
 652                return table_iter(d->table.table, table_test_fn, &args2);
 653        }
 654
 655        return 0;
 656}
 657
 658static int table_test(const union decode_item *table)
 659{
 660        struct table_test_args args = {
 661                .root_table     = table,
 662                .parent_mask    = 0,
 663                .parent_value   = 0
 664        };
 665        return table_iter(args.root_table, table_test_fn, &args);
 666}
 667
 668
 669/*
 670 * Decoding table test coverage analysis
 671 *
 672 * coverage_start() builds a coverage_table which contains a list of
 673 * coverage_entry's to match each entry in the specified kprobes instruction
 674 * decoding table.
 675 *
 676 * When test cases are run, coverage_add() is called to process each case.
 677 * This looks up the corresponding entry in the coverage_table and sets it as
 678 * being matched, as well as clearing the regs flag appropriate for the test.
 679 *
 680 * After all test cases have been run, coverage_end() is called to check that
 681 * all entries in coverage_table have been matched and that all regs flags are
 682 * cleared. I.e. that all possible combinations of instructions described by
 683 * the kprobes decoding tables have had a test case executed for them.
 684 */
 685
 686bool coverage_fail;
 687
 688#define MAX_COVERAGE_ENTRIES 256
 689
 690struct coverage_entry {
 691        const struct decode_header      *header;
 692        unsigned                        regs;
 693        unsigned                        nesting;
 694        char                            matched;
 695};
 696
 697struct coverage_table {
 698        struct coverage_entry   *base;
 699        unsigned                num_entries;
 700        unsigned                nesting;
 701};
 702
 703struct coverage_table coverage;
 704
 705#define COVERAGE_ANY_REG        (1<<0)
 706#define COVERAGE_SP             (1<<1)
 707#define COVERAGE_PC             (1<<2)
 708#define COVERAGE_PCWB           (1<<3)
 709
 710static const char coverage_register_lookup[16] = {
 711        [REG_TYPE_ANY]          = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 712        [REG_TYPE_SAMEAS16]     = COVERAGE_ANY_REG,
 713        [REG_TYPE_SP]           = COVERAGE_SP,
 714        [REG_TYPE_PC]           = COVERAGE_PC,
 715        [REG_TYPE_NOSP]         = COVERAGE_ANY_REG | COVERAGE_SP,
 716        [REG_TYPE_NOSPPC]       = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 717        [REG_TYPE_NOPC]         = COVERAGE_ANY_REG | COVERAGE_PC,
 718        [REG_TYPE_NOPCWB]       = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
 719        [REG_TYPE_NOPCX]        = COVERAGE_ANY_REG,
 720        [REG_TYPE_NOSPPCX]      = COVERAGE_ANY_REG | COVERAGE_SP,
 721};
 722
 723unsigned coverage_start_registers(const struct decode_header *h)
 724{
 725        unsigned regs = 0;
 726        int i;
 727        for (i = 0; i < 20; i += 4) {
 728                int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
 729                regs |= coverage_register_lookup[r] << i;
 730        }
 731        return regs;
 732}
 733
 734static int coverage_start_fn(const struct decode_header *h, void *args)
 735{
 736        struct coverage_table *coverage = (struct coverage_table *)args;
 737        enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 738        struct coverage_entry *entry = coverage->base + coverage->num_entries;
 739
 740        if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
 741                pr_err("FAIL: Out of space for test coverage data");
 742                return -ENOMEM;
 743        }
 744
 745        ++coverage->num_entries;
 746
 747        entry->header = h;
 748        entry->regs = coverage_start_registers(h);
 749        entry->nesting = coverage->nesting;
 750        entry->matched = false;
 751
 752        if (type == DECODE_TYPE_TABLE) {
 753                struct decode_table *d = (struct decode_table *)h;
 754                int ret;
 755                ++coverage->nesting;
 756                ret = table_iter(d->table.table, coverage_start_fn, coverage);
 757                --coverage->nesting;
 758                return ret;
 759        }
 760
 761        return 0;
 762}
 763
 764static int coverage_start(const union decode_item *table)
 765{
 766        coverage.base = kmalloc_array(MAX_COVERAGE_ENTRIES,
 767                                      sizeof(struct coverage_entry),
 768                                      GFP_KERNEL);
 769        coverage.num_entries = 0;
 770        coverage.nesting = 0;
 771        return table_iter(table, coverage_start_fn, &coverage);
 772}
 773
 774static void
 775coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
 776{
 777        int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
 778        int i;
 779        for (i = 0; i < 20; i += 4) {
 780                enum decode_reg_type reg_type = (regs >> i) & 0xf;
 781                int reg = (insn >> i) & 0xf;
 782                int flag;
 783
 784                if (!reg_type)
 785                        continue;
 786
 787                if (reg == 13)
 788                        flag = COVERAGE_SP;
 789                else if (reg == 15)
 790                        flag = COVERAGE_PC;
 791                else
 792                        flag = COVERAGE_ANY_REG;
 793                entry->regs &= ~(flag << i);
 794
 795                switch (reg_type) {
 796
 797                case REG_TYPE_NONE:
 798                case REG_TYPE_ANY:
 799                case REG_TYPE_SAMEAS16:
 800                        break;
 801
 802                case REG_TYPE_SP:
 803                        if (reg != 13)
 804                                return;
 805                        break;
 806
 807                case REG_TYPE_PC:
 808                        if (reg != 15)
 809                                return;
 810                        break;
 811
 812                case REG_TYPE_NOSP:
 813                        if (reg == 13)
 814                                return;
 815                        break;
 816
 817                case REG_TYPE_NOSPPC:
 818                case REG_TYPE_NOSPPCX:
 819                        if (reg == 13 || reg == 15)
 820                                return;
 821                        break;
 822
 823                case REG_TYPE_NOPCWB:
 824                        if (!is_writeback(insn))
 825                                break;
 826                        if (reg == 15) {
 827                                entry->regs &= ~(COVERAGE_PCWB << i);
 828                                return;
 829                        }
 830                        break;
 831
 832                case REG_TYPE_NOPC:
 833                case REG_TYPE_NOPCX:
 834                        if (reg == 15)
 835                                return;
 836                        break;
 837                }
 838
 839        }
 840}
 841
 842static void coverage_add(kprobe_opcode_t insn)
 843{
 844        struct coverage_entry *entry = coverage.base;
 845        struct coverage_entry *end = coverage.base + coverage.num_entries;
 846        bool matched = false;
 847        unsigned nesting = 0;
 848
 849        for (; entry < end; ++entry) {
 850                const struct decode_header *h = entry->header;
 851                enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 852
 853                if (entry->nesting > nesting)
 854                        continue; /* Skip sub-table we didn't match */
 855
 856                if (entry->nesting < nesting)
 857                        break; /* End of sub-table we were scanning */
 858
 859                if (!matched) {
 860                        if ((insn & h->mask.bits) != h->value.bits)
 861                                continue;
 862                        entry->matched = true;
 863                }
 864
 865                switch (type) {
 866
 867                case DECODE_TYPE_TABLE:
 868                        ++nesting;
 869                        break;
 870
 871                case DECODE_TYPE_CUSTOM:
 872                case DECODE_TYPE_SIMULATE:
 873                case DECODE_TYPE_EMULATE:
 874                        coverage_add_registers(entry, insn);
 875                        return;
 876
 877                case DECODE_TYPE_OR:
 878                        matched = true;
 879                        break;
 880
 881                case DECODE_TYPE_REJECT:
 882                default:
 883                        return;
 884                }
 885
 886        }
 887}
 888
 889static void coverage_end(void)
 890{
 891        struct coverage_entry *entry = coverage.base;
 892        struct coverage_entry *end = coverage.base + coverage.num_entries;
 893
 894        for (; entry < end; ++entry) {
 895                u32 mask = entry->header->mask.bits;
 896                u32 value = entry->header->value.bits;
 897
 898                if (entry->regs) {
 899                        pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
 900                                mask, value, entry->regs);
 901                        coverage_fail = true;
 902                }
 903                if (!entry->matched) {
 904                        pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
 905                                mask, value);
 906                        coverage_fail = true;
 907                }
 908        }
 909
 910        kfree(coverage.base);
 911}
 912
 913
 914/*
 915 * Framework for instruction set test cases
 916 */
 917
 918void __naked __kprobes_test_case_start(void)
 919{
 920        __asm__ __volatile__ (
 921                "mov    r2, sp                                  \n\t"
 922                "bic    r3, r2, #7                              \n\t"
 923                "mov    sp, r3                                  \n\t"
 924                "stmdb  sp!, {r2-r11}                           \n\t"
 925                "sub    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 926                "bic    r0, lr, #1  @ r0 = inline data          \n\t"
 927                "mov    r1, sp                                  \n\t"
 928                "bl     kprobes_test_case_start                 \n\t"
 929                RET(r0)"                                        \n\t"
 930        );
 931}
 932
 933#ifndef CONFIG_THUMB2_KERNEL
 934
 935void __naked __kprobes_test_case_end_32(void)
 936{
 937        __asm__ __volatile__ (
 938                "mov    r4, lr                                  \n\t"
 939                "bl     kprobes_test_case_end                   \n\t"
 940                "cmp    r0, #0                                  \n\t"
 941                "movne  pc, r0                                  \n\t"
 942                "mov    r0, r4                                  \n\t"
 943                "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 944                "ldmia  sp!, {r2-r11}                           \n\t"
 945                "mov    sp, r2                                  \n\t"
 946                "mov    pc, r0                                  \n\t"
 947        );
 948}
 949
 950#else /* CONFIG_THUMB2_KERNEL */
 951
 952void __naked __kprobes_test_case_end_16(void)
 953{
 954        __asm__ __volatile__ (
 955                "mov    r4, lr                                  \n\t"
 956                "bl     kprobes_test_case_end                   \n\t"
 957                "cmp    r0, #0                                  \n\t"
 958                "bxne   r0                                      \n\t"
 959                "mov    r0, r4                                  \n\t"
 960                "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 961                "ldmia  sp!, {r2-r11}                           \n\t"
 962                "mov    sp, r2                                  \n\t"
 963                "bx     r0                                      \n\t"
 964        );
 965}
 966
 967void __naked __kprobes_test_case_end_32(void)
 968{
 969        __asm__ __volatile__ (
 970                ".arm                                           \n\t"
 971                "orr    lr, lr, #1  @ will return to Thumb code \n\t"
 972                "ldr    pc, 1f                                  \n\t"
 973                "1:                                             \n\t"
 974                ".word  __kprobes_test_case_end_16              \n\t"
 975        );
 976}
 977
 978#endif
 979
 980
 981int kprobe_test_flags;
 982int kprobe_test_cc_position;
 983
 984static int test_try_count;
 985static int test_pass_count;
 986static int test_fail_count;
 987
 988static struct pt_regs initial_regs;
 989static struct pt_regs expected_regs;
 990static struct pt_regs result_regs;
 991
 992static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
 993
 994static const char *current_title;
 995static struct test_arg *current_args;
 996static u32 *current_stack;
 997static uintptr_t current_branch_target;
 998
 999static uintptr_t current_code_start;
1000static kprobe_opcode_t current_instruction;
1001
1002
1003#define TEST_CASE_PASSED -1
1004#define TEST_CASE_FAILED -2
1005
1006static int test_case_run_count;
1007static bool test_case_is_thumb;
1008static int test_instance;
1009
1010static unsigned long test_check_cc(int cc, unsigned long cpsr)
1011{
1012        int ret = arm_check_condition(cc << 28, cpsr);
1013
1014        return (ret != ARM_OPCODE_CONDTEST_FAIL);
1015}
1016
1017static int is_last_scenario;
1018static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1019static int memory_needs_checking;
1020
1021static unsigned long test_context_cpsr(int scenario)
1022{
1023        unsigned long cpsr;
1024
1025        probe_should_run = 1;
1026
1027        /* Default case is that we cycle through 16 combinations of flags */
1028        cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1029        cpsr |= (scenario & 0xf) << 16; /* GE flags */
1030        cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1031
1032        if (!test_case_is_thumb) {
1033                /* Testing ARM code */
1034                int cc = current_instruction >> 28;
1035
1036                probe_should_run = test_check_cc(cc, cpsr) != 0;
1037                if (scenario == 15)
1038                        is_last_scenario = true;
1039
1040        } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1041                /* Testing Thumb code without setting ITSTATE */
1042                if (kprobe_test_cc_position) {
1043                        int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1044                        probe_should_run = test_check_cc(cc, cpsr) != 0;
1045                }
1046
1047                if (scenario == 15)
1048                        is_last_scenario = true;
1049
1050        } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1051                /* Testing Thumb code with all combinations of ITSTATE */
1052                unsigned x = (scenario >> 4);
1053                unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1054                unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1055
1056                if (mask > 0x1f) {
1057                        /* Finish by testing state from instruction 'itt al' */
1058                        cond_base = 7;
1059                        mask = 0x4;
1060                        if ((scenario & 0xf) == 0xf)
1061                                is_last_scenario = true;
1062                }
1063
1064                cpsr |= cond_base << 13;        /* ITSTATE<7:5> */
1065                cpsr |= (mask & 0x1) << 12;     /* ITSTATE<4> */
1066                cpsr |= (mask & 0x2) << 10;     /* ITSTATE<3> */
1067                cpsr |= (mask & 0x4) << 8;      /* ITSTATE<2> */
1068                cpsr |= (mask & 0x8) << 23;     /* ITSTATE<1> */
1069                cpsr |= (mask & 0x10) << 21;    /* ITSTATE<0> */
1070
1071                probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1072
1073        } else {
1074                /* Testing Thumb code with several combinations of ITSTATE */
1075                switch (scenario) {
1076                case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1077                        cpsr = 0x00000800;
1078                        probe_should_run = 0;
1079                        break;
1080                case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1081                        cpsr = 0xf0007800;
1082                        probe_should_run = 0;
1083                        break;
1084                case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1085                        cpsr = 0x00009800;
1086                        break;
1087                case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1088                        cpsr = 0xf0002800;
1089                        is_last_scenario = true;
1090                        break;
1091                }
1092        }
1093
1094        return cpsr;
1095}
1096
1097static void setup_test_context(struct pt_regs *regs)
1098{
1099        int scenario = test_case_run_count>>1;
1100        unsigned long val;
1101        struct test_arg *args;
1102        int i;
1103
1104        is_last_scenario = false;
1105        memory_needs_checking = false;
1106
1107        /* Initialise test memory on stack */
1108        val = (scenario & 1) ? VALM : ~VALM;
1109        for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1110                current_stack[i] = val + (i << 8);
1111        /* Put target of branch on stack for tests which load PC from memory */
1112        if (current_branch_target)
1113                current_stack[15] = current_branch_target;
1114        /* Put a value for SP on stack for tests which load SP from memory */
1115        current_stack[13] = (u32)current_stack + 120;
1116
1117        /* Initialise register values to their default state */
1118        val = (scenario & 2) ? VALR : ~VALR;
1119        for (i = 0; i < 13; ++i)
1120                regs->uregs[i] = val ^ (i << 8);
1121        regs->ARM_lr = val ^ (14 << 8);
1122        regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1123        regs->ARM_cpsr |= test_context_cpsr(scenario);
1124
1125        /* Perform testcase specific register setup  */
1126        args = current_args;
1127        for (; args[0].type != ARG_TYPE_END; ++args)
1128                switch (args[0].type) {
1129                case ARG_TYPE_REG: {
1130                        struct test_arg_regptr *arg =
1131                                (struct test_arg_regptr *)args;
1132                        regs->uregs[arg->reg] = arg->val;
1133                        break;
1134                }
1135                case ARG_TYPE_PTR: {
1136                        struct test_arg_regptr *arg =
1137                                (struct test_arg_regptr *)args;
1138                        regs->uregs[arg->reg] =
1139                                (unsigned long)current_stack + arg->val;
1140                        memory_needs_checking = true;
1141                        /*
1142                         * Test memory at an address below SP is in danger of
1143                         * being altered by an interrupt occurring and pushing
1144                         * data onto the stack. Disable interrupts to stop this.
1145                         */
1146                        if (arg->reg == 13)
1147                                regs->ARM_cpsr |= PSR_I_BIT;
1148                        break;
1149                }
1150                case ARG_TYPE_MEM: {
1151                        struct test_arg_mem *arg = (struct test_arg_mem *)args;
1152                        current_stack[arg->index] = arg->val;
1153                        break;
1154                }
1155                default:
1156                        break;
1157                }
1158}
1159
1160struct test_probe {
1161        struct kprobe   kprobe;
1162        bool            registered;
1163        int             hit;
1164};
1165
1166static void unregister_test_probe(struct test_probe *probe)
1167{
1168        if (probe->registered) {
1169                unregister_kprobe(&probe->kprobe);
1170                probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1171        }
1172        probe->registered = false;
1173}
1174
1175static int register_test_probe(struct test_probe *probe)
1176{
1177        int ret;
1178
1179        if (probe->registered)
1180                BUG();
1181
1182        ret = register_kprobe(&probe->kprobe);
1183        if (ret >= 0) {
1184                probe->registered = true;
1185                probe->hit = -1;
1186        }
1187        return ret;
1188}
1189
1190static int __kprobes
1191test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1192{
1193        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1194        return 0;
1195}
1196
1197static void __kprobes
1198test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1199                                                        unsigned long flags)
1200{
1201        setup_test_context(regs);
1202        initial_regs = *regs;
1203        initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1204}
1205
1206static int __kprobes
1207test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1208{
1209        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1210        return 0;
1211}
1212
1213static int __kprobes
1214test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1215{
1216        struct test_arg *args;
1217
1218        if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1219                return 0; /* Already run for this test instance */
1220
1221        result_regs = *regs;
1222
1223        /* Mask out results which are indeterminate */
1224        result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1225        for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
1226                if (args[0].type == ARG_TYPE_REG_MASKED) {
1227                        struct test_arg_regptr *arg =
1228                                (struct test_arg_regptr *)args;
1229                        result_regs.uregs[arg->reg] &= arg->val;
1230                }
1231
1232        /* Undo any changes done to SP by the test case */
1233        regs->ARM_sp = (unsigned long)current_stack;
1234        /* Enable interrupts in case setup_test_context disabled them */
1235        regs->ARM_cpsr &= ~PSR_I_BIT;
1236
1237        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1238        return 0;
1239}
1240
1241static struct test_probe test_before_probe = {
1242        .kprobe.pre_handler     = test_before_pre_handler,
1243        .kprobe.post_handler    = test_before_post_handler,
1244};
1245
1246static struct test_probe test_case_probe = {
1247        .kprobe.pre_handler     = test_case_pre_handler,
1248};
1249
1250static struct test_probe test_after_probe = {
1251        .kprobe.pre_handler     = test_after_pre_handler,
1252};
1253
1254static struct test_probe test_after2_probe = {
1255        .kprobe.pre_handler     = test_after_pre_handler,
1256};
1257
1258static void test_case_cleanup(void)
1259{
1260        unregister_test_probe(&test_before_probe);
1261        unregister_test_probe(&test_case_probe);
1262        unregister_test_probe(&test_after_probe);
1263        unregister_test_probe(&test_after2_probe);
1264}
1265
1266static void print_registers(struct pt_regs *regs)
1267{
1268        pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1269                regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1270        pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1271                regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1272        pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1273                regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1274        pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1275                regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1276        pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1277}
1278
1279static void print_memory(u32 *mem, size_t size)
1280{
1281        int i;
1282        for (i = 0; i < size / sizeof(u32); i += 4)
1283                pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1284                                                mem[i+2], mem[i+3]);
1285}
1286
1287static size_t expected_memory_size(u32 *sp)
1288{
1289        size_t size = sizeof(expected_memory);
1290        int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1291        if (offset > 0)
1292                size -= offset;
1293        return size;
1294}
1295
1296static void test_case_failed(const char *message)
1297{
1298        test_case_cleanup();
1299
1300        pr_err("FAIL: %s\n", message);
1301        pr_err("FAIL: Test %s\n", current_title);
1302        pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1303}
1304
1305static unsigned long next_instruction(unsigned long pc)
1306{
1307#ifdef CONFIG_THUMB2_KERNEL
1308        if ((pc & 1) &&
1309            !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1310                return pc + 2;
1311        else
1312#endif
1313        return pc + 4;
1314}
1315
1316static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
1317{
1318        struct test_arg *args;
1319        struct test_arg_end *end_arg;
1320        unsigned long test_code;
1321
1322        current_title = *title++;
1323        args = (struct test_arg *)title;
1324        current_args = args;
1325        current_stack = stack;
1326
1327        ++test_try_count;
1328
1329        while (args->type != ARG_TYPE_END)
1330                ++args;
1331        end_arg = (struct test_arg_end *)args;
1332
1333        test_code = (unsigned long)(args + 1); /* Code starts after args */
1334
1335        test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1336        if (test_case_is_thumb)
1337                test_code |= 1;
1338
1339        current_code_start = test_code;
1340
1341        current_branch_target = 0;
1342        if (end_arg->branch_offset != end_arg->end_offset)
1343                current_branch_target = test_code + end_arg->branch_offset;
1344
1345        test_code += end_arg->code_offset;
1346        test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1347
1348        test_code = next_instruction(test_code);
1349        test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1350
1351        if (test_case_is_thumb) {
1352                u16 *p = (u16 *)(test_code & ~1);
1353                current_instruction = __mem_to_opcode_thumb16(p[0]);
1354                if (is_wide_instruction(current_instruction)) {
1355                        u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1356                        current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1357                }
1358        } else {
1359                current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1360        }
1361
1362        if (current_title[0] == '.')
1363                verbose("%s\n", current_title);
1364        else
1365                verbose("%s\t@ %0*x\n", current_title,
1366                                        test_case_is_thumb ? 4 : 8,
1367                                        current_instruction);
1368
1369        test_code = next_instruction(test_code);
1370        test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1371
1372        if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1373                if (!test_case_is_thumb ||
1374                        is_wide_instruction(current_instruction)) {
1375                                test_case_failed("expected 16-bit instruction");
1376                                goto fail;
1377                }
1378        } else {
1379                if (test_case_is_thumb &&
1380                        !is_wide_instruction(current_instruction)) {
1381                                test_case_failed("expected 32-bit instruction");
1382                                goto fail;
1383                }
1384        }
1385
1386        coverage_add(current_instruction);
1387
1388        if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1389                if (register_test_probe(&test_case_probe) < 0)
1390                        goto pass;
1391                test_case_failed("registered probe for unsupported instruction");
1392                goto fail;
1393        }
1394
1395        if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1396                if (register_test_probe(&test_case_probe) >= 0)
1397                        goto pass;
1398                test_case_failed("couldn't register probe for supported instruction");
1399                goto fail;
1400        }
1401
1402        if (register_test_probe(&test_before_probe) < 0) {
1403                test_case_failed("register test_before_probe failed");
1404                goto fail;
1405        }
1406        if (register_test_probe(&test_after_probe) < 0) {
1407                test_case_failed("register test_after_probe failed");
1408                goto fail;
1409        }
1410        if (current_branch_target) {
1411                test_after2_probe.kprobe.addr =
1412                                (kprobe_opcode_t *)current_branch_target;
1413                if (register_test_probe(&test_after2_probe) < 0) {
1414                        test_case_failed("register test_after2_probe failed");
1415                        goto fail;
1416                }
1417        }
1418
1419        /* Start first run of test case */
1420        test_case_run_count = 0;
1421        ++test_instance;
1422        return current_code_start;
1423pass:
1424        test_case_run_count = TEST_CASE_PASSED;
1425        return (uintptr_t)test_after_probe.kprobe.addr;
1426fail:
1427        test_case_run_count = TEST_CASE_FAILED;
1428        return (uintptr_t)test_after_probe.kprobe.addr;
1429}
1430
1431static bool check_test_results(void)
1432{
1433        size_t mem_size = 0;
1434        u32 *mem = 0;
1435
1436        if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1437                test_case_failed("registers differ");
1438                goto fail;
1439        }
1440
1441        if (memory_needs_checking) {
1442                mem = (u32 *)result_regs.ARM_sp;
1443                mem_size = expected_memory_size(mem);
1444                if (memcmp(expected_memory, mem, mem_size)) {
1445                        test_case_failed("test memory differs");
1446                        goto fail;
1447                }
1448        }
1449
1450        return true;
1451
1452fail:
1453        pr_err("initial_regs:\n");
1454        print_registers(&initial_regs);
1455        pr_err("expected_regs:\n");
1456        print_registers(&expected_regs);
1457        pr_err("result_regs:\n");
1458        print_registers(&result_regs);
1459
1460        if (mem) {
1461                pr_err("expected_memory:\n");
1462                print_memory(expected_memory, mem_size);
1463                pr_err("result_memory:\n");
1464                print_memory(mem, mem_size);
1465        }
1466
1467        return false;
1468}
1469
1470static uintptr_t __used kprobes_test_case_end(void)
1471{
1472        if (test_case_run_count < 0) {
1473                if (test_case_run_count == TEST_CASE_PASSED)
1474                        /* kprobes_test_case_start did all the needed testing */
1475                        goto pass;
1476                else
1477                        /* kprobes_test_case_start failed */
1478                        goto fail;
1479        }
1480
1481        if (test_before_probe.hit != test_instance) {
1482                test_case_failed("test_before_handler not run");
1483                goto fail;
1484        }
1485
1486        if (test_after_probe.hit != test_instance &&
1487                                test_after2_probe.hit != test_instance) {
1488                test_case_failed("test_after_handler not run");
1489                goto fail;
1490        }
1491
1492        /*
1493         * Even numbered test runs ran without a probe on the test case so
1494         * we can gather reference results. The subsequent odd numbered run
1495         * will have the probe inserted.
1496        */
1497        if ((test_case_run_count & 1) == 0) {
1498                /* Save results from run without probe */
1499                u32 *mem = (u32 *)result_regs.ARM_sp;
1500                expected_regs = result_regs;
1501                memcpy(expected_memory, mem, expected_memory_size(mem));
1502
1503                /* Insert probe onto test case instruction */
1504                if (register_test_probe(&test_case_probe) < 0) {
1505                        test_case_failed("register test_case_probe failed");
1506                        goto fail;
1507                }
1508        } else {
1509                /* Check probe ran as expected */
1510                if (probe_should_run == 1) {
1511                        if (test_case_probe.hit != test_instance) {
1512                                test_case_failed("test_case_handler not run");
1513                                goto fail;
1514                        }
1515                } else if (probe_should_run == 0) {
1516                        if (test_case_probe.hit == test_instance) {
1517                                test_case_failed("test_case_handler ran");
1518                                goto fail;
1519                        }
1520                }
1521
1522                /* Remove probe for any subsequent reference run */
1523                unregister_test_probe(&test_case_probe);
1524
1525                if (!check_test_results())
1526                        goto fail;
1527
1528                if (is_last_scenario)
1529                        goto pass;
1530        }
1531
1532        /* Do next test run */
1533        ++test_case_run_count;
1534        ++test_instance;
1535        return current_code_start;
1536fail:
1537        ++test_fail_count;
1538        goto end;
1539pass:
1540        ++test_pass_count;
1541end:
1542        test_case_cleanup();
1543        return 0;
1544}
1545
1546
1547/*
1548 * Top level test functions
1549 */
1550
1551static int run_test_cases(void (*tests)(void), const union decode_item *table)
1552{
1553        int ret;
1554
1555        pr_info("    Check decoding tables\n");
1556        ret = table_test(table);
1557        if (ret)
1558                return ret;
1559
1560        pr_info("    Run test cases\n");
1561        ret = coverage_start(table);
1562        if (ret)
1563                return ret;
1564
1565        tests();
1566
1567        coverage_end();
1568        return 0;
1569}
1570
1571
1572static int __init run_all_tests(void)
1573{
1574        int ret = 0;
1575
1576        pr_info("Beginning kprobe tests...\n");
1577
1578#ifndef CONFIG_THUMB2_KERNEL
1579
1580        pr_info("Probe ARM code\n");
1581        ret = run_api_tests(arm_func);
1582        if (ret)
1583                goto out;
1584
1585        pr_info("ARM instruction simulation\n");
1586        ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1587        if (ret)
1588                goto out;
1589
1590#else /* CONFIG_THUMB2_KERNEL */
1591
1592        pr_info("Probe 16-bit Thumb code\n");
1593        ret = run_api_tests(thumb16_func);
1594        if (ret)
1595                goto out;
1596
1597        pr_info("Probe 32-bit Thumb code, even halfword\n");
1598        ret = run_api_tests(thumb32even_func);
1599        if (ret)
1600                goto out;
1601
1602        pr_info("Probe 32-bit Thumb code, odd halfword\n");
1603        ret = run_api_tests(thumb32odd_func);
1604        if (ret)
1605                goto out;
1606
1607        pr_info("16-bit Thumb instruction simulation\n");
1608        ret = run_test_cases(kprobe_thumb16_test_cases,
1609                                probes_decode_thumb16_table);
1610        if (ret)
1611                goto out;
1612
1613        pr_info("32-bit Thumb instruction simulation\n");
1614        ret = run_test_cases(kprobe_thumb32_test_cases,
1615                                probes_decode_thumb32_table);
1616        if (ret)
1617                goto out;
1618#endif
1619
1620        pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1621                test_try_count, test_pass_count, test_fail_count);
1622        if (test_fail_count) {
1623                ret = -EINVAL;
1624                goto out;
1625        }
1626
1627#if BENCHMARKING
1628        pr_info("Benchmarks\n");
1629        ret = run_benchmarks();
1630        if (ret)
1631                goto out;
1632#endif
1633
1634#if __LINUX_ARM_ARCH__ >= 7
1635        /* We are able to run all test cases so coverage should be complete */
1636        if (coverage_fail) {
1637                pr_err("FAIL: Test coverage checks failed\n");
1638                ret = -EINVAL;
1639                goto out;
1640        }
1641#endif
1642
1643out:
1644        if (ret == 0)
1645                ret = tests_failed;
1646        if (ret == 0)
1647                pr_info("Finished kprobe tests OK\n");
1648        else
1649                pr_err("kprobe tests failed\n");
1650
1651        return ret;
1652}
1653
1654
1655/*
1656 * Module setup
1657 */
1658
1659#ifdef MODULE
1660
1661static void __exit kprobe_test_exit(void)
1662{
1663}
1664
1665module_init(run_all_tests)
1666module_exit(kprobe_test_exit)
1667MODULE_LICENSE("GPL");
1668
1669#else /* !MODULE */
1670
1671late_initcall(run_all_tests);
1672
1673#endif
1674