linux/arch/arm64/kernel/cpufeature.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Contains CPU feature definitions
   4 *
   5 * Copyright (C) 2015 ARM Ltd.
   6 */
   7
   8#define pr_fmt(fmt) "CPU features: " fmt
   9
  10#include <linux/bsearch.h>
  11#include <linux/cpumask.h>
  12#include <linux/crash_dump.h>
  13#include <linux/sort.h>
  14#include <linux/stop_machine.h>
  15#include <linux/types.h>
  16#include <linux/mm.h>
  17#include <linux/cpu.h>
  18#include <asm/cpu.h>
  19#include <asm/cpufeature.h>
  20#include <asm/cpu_ops.h>
  21#include <asm/fpsimd.h>
  22#include <asm/mmu_context.h>
  23#include <asm/processor.h>
  24#include <asm/sysreg.h>
  25#include <asm/traps.h>
  26#include <asm/virt.h>
  27
  28/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
  29static unsigned long elf_hwcap __read_mostly;
  30
  31#ifdef CONFIG_COMPAT
  32#define COMPAT_ELF_HWCAP_DEFAULT        \
  33                                (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
  34                                 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
  35                                 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
  36                                 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
  37                                 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
  38                                 COMPAT_HWCAP_LPAE)
  39unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
  40unsigned int compat_elf_hwcap2 __read_mostly;
  41#endif
  42
  43DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
  44EXPORT_SYMBOL(cpu_hwcaps);
  45static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
  46
  47/* Need also bit for ARM64_CB_PATCH */
  48DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
  49
  50/*
  51 * Flag to indicate if we have computed the system wide
  52 * capabilities based on the boot time active CPUs. This
  53 * will be used to determine if a new booting CPU should
  54 * go through the verification process to make sure that it
  55 * supports the system capabilities, without using a hotplug
  56 * notifier.
  57 */
  58static bool sys_caps_initialised;
  59
  60static inline void set_sys_caps_initialised(void)
  61{
  62        sys_caps_initialised = true;
  63}
  64
  65static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
  66{
  67        /* file-wide pr_fmt adds "CPU features: " prefix */
  68        pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
  69        return 0;
  70}
  71
  72static struct notifier_block cpu_hwcaps_notifier = {
  73        .notifier_call = dump_cpu_hwcaps
  74};
  75
  76static int __init register_cpu_hwcaps_dumper(void)
  77{
  78        atomic_notifier_chain_register(&panic_notifier_list,
  79                                       &cpu_hwcaps_notifier);
  80        return 0;
  81}
  82__initcall(register_cpu_hwcaps_dumper);
  83
  84DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
  85EXPORT_SYMBOL(cpu_hwcap_keys);
  86
  87#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
  88        {                                               \
  89                .sign = SIGNED,                         \
  90                .visible = VISIBLE,                     \
  91                .strict = STRICT,                       \
  92                .type = TYPE,                           \
  93                .shift = SHIFT,                         \
  94                .width = WIDTH,                         \
  95                .safe_val = SAFE_VAL,                   \
  96        }
  97
  98/* Define a feature with unsigned values */
  99#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
 100        __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
 101
 102/* Define a feature with a signed value */
 103#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
 104        __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
 105
 106#define ARM64_FTR_END                                   \
 107        {                                               \
 108                .width = 0,                             \
 109        }
 110
 111/* meta feature for alternatives */
 112static bool __maybe_unused
 113cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
 114
 115static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
 116
 117/*
 118 * NOTE: Any changes to the visibility of features should be kept in
 119 * sync with the documentation of the CPU feature register ABI.
 120 */
 121static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
 122        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
 123        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
 124        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
 125        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
 126        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
 127        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
 128        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
 129        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
 130        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
 131        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
 132        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
 133        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
 134        ARM64_FTR_END,
 135};
 136
 137static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
 138        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
 139        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 140                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
 141        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 142                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
 143        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
 144        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
 145        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
 146        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 147                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
 148        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 149                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
 150        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
 151        ARM64_FTR_END,
 152};
 153
 154static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
 155        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
 156        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
 157        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
 158        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 159                                   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
 160        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
 161        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
 162        S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
 163        S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
 164        /* Linux doesn't care about the EL3 */
 165        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
 166        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
 167        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
 168        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
 169        ARM64_FTR_END,
 170};
 171
 172static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
 173        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
 174        ARM64_FTR_END,
 175};
 176
 177static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
 178        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
 179        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
 180        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
 181        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
 182        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
 183        ARM64_FTR_END,
 184};
 185
 186static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
 187        /*
 188         * We already refuse to boot CPUs that don't support our configured
 189         * page size, so we can only detect mismatches for a page size other
 190         * than the one we're currently using. Unfortunately, SoCs like this
 191         * exist in the wild so, even though we don't like it, we'll have to go
 192         * along with it and treat them as non-strict.
 193         */
 194        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
 195        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
 196        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
 197
 198        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
 199        /* Linux shouldn't care about secure memory */
 200        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
 201        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
 202        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
 203        /*
 204         * Differing PARange is fine as long as all peripherals and memory are mapped
 205         * within the minimum PARange of all CPUs
 206         */
 207        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
 208        ARM64_FTR_END,
 209};
 210
 211static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
 212        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
 213        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
 214        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
 215        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
 216        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
 217        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
 218        ARM64_FTR_END,
 219};
 220
 221static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
 222        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
 223        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
 224        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
 225        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
 226        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
 227        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
 228        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
 229        ARM64_FTR_END,
 230};
 231
 232static const struct arm64_ftr_bits ftr_ctr[] = {
 233        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
 234        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
 235        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
 236        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
 237        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
 238        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
 239        /*
 240         * Linux can handle differing I-cache policies. Userspace JITs will
 241         * make use of *minLine.
 242         * If we have differing I-cache policies, report it as the weakest - VIPT.
 243         */
 244        ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
 245        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
 246        ARM64_FTR_END,
 247};
 248
 249struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
 250        .name           = "SYS_CTR_EL0",
 251        .ftr_bits       = ftr_ctr
 252};
 253
 254static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
 255        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
 256        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
 257        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
 258        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
 259        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
 260        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
 261        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
 262        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
 263        ARM64_FTR_END,
 264};
 265
 266static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
 267        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
 268        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
 269        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
 270        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
 271        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
 272        /*
 273         * We can instantiate multiple PMU instances with different levels
 274         * of support.
 275         */
 276        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
 277        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
 278        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
 279        ARM64_FTR_END,
 280};
 281
 282static const struct arm64_ftr_bits ftr_mvfr2[] = {
 283        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
 284        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
 285        ARM64_FTR_END,
 286};
 287
 288static const struct arm64_ftr_bits ftr_dczid[] = {
 289        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
 290        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
 291        ARM64_FTR_END,
 292};
 293
 294
 295static const struct arm64_ftr_bits ftr_id_isar5[] = {
 296        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
 297        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
 298        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
 299        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
 300        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
 301        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
 302        ARM64_FTR_END,
 303};
 304
 305static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
 306        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
 307        ARM64_FTR_END,
 308};
 309
 310static const struct arm64_ftr_bits ftr_id_pfr0[] = {
 311        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
 312        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
 313        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
 314        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
 315        ARM64_FTR_END,
 316};
 317
 318static const struct arm64_ftr_bits ftr_id_dfr0[] = {
 319        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
 320        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
 321        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
 322        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
 323        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
 324        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
 325        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
 326        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
 327        ARM64_FTR_END,
 328};
 329
 330static const struct arm64_ftr_bits ftr_zcr[] = {
 331        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
 332                ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
 333        ARM64_FTR_END,
 334};
 335
 336/*
 337 * Common ftr bits for a 32bit register with all hidden, strict
 338 * attributes, with 4bit feature fields and a default safe value of
 339 * 0. Covers the following 32bit registers:
 340 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 341 */
 342static const struct arm64_ftr_bits ftr_generic_32bits[] = {
 343        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
 344        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
 345        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
 346        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
 347        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
 348        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
 349        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
 350        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
 351        ARM64_FTR_END,
 352};
 353
 354/* Table for a single 32bit feature value */
 355static const struct arm64_ftr_bits ftr_single32[] = {
 356        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
 357        ARM64_FTR_END,
 358};
 359
 360static const struct arm64_ftr_bits ftr_raz[] = {
 361        ARM64_FTR_END,
 362};
 363
 364#define ARM64_FTR_REG(id, table) {              \
 365        .sys_id = id,                           \
 366        .reg =  &(struct arm64_ftr_reg){        \
 367                .name = #id,                    \
 368                .ftr_bits = &((table)[0]),      \
 369        }}
 370
 371static const struct __ftr_reg_entry {
 372        u32                     sys_id;
 373        struct arm64_ftr_reg    *reg;
 374} arm64_ftr_regs[] = {
 375
 376        /* Op1 = 0, CRn = 0, CRm = 1 */
 377        ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
 378        ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
 379        ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
 380        ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
 381        ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
 382        ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
 383        ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
 384
 385        /* Op1 = 0, CRn = 0, CRm = 2 */
 386        ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
 387        ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
 388        ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
 389        ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
 390        ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
 391        ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
 392        ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
 393
 394        /* Op1 = 0, CRn = 0, CRm = 3 */
 395        ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
 396        ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
 397        ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
 398
 399        /* Op1 = 0, CRn = 0, CRm = 4 */
 400        ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
 401        ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
 402        ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
 403
 404        /* Op1 = 0, CRn = 0, CRm = 5 */
 405        ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
 406        ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
 407
 408        /* Op1 = 0, CRn = 0, CRm = 6 */
 409        ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
 410        ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
 411
 412        /* Op1 = 0, CRn = 0, CRm = 7 */
 413        ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
 414        ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
 415        ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
 416
 417        /* Op1 = 0, CRn = 1, CRm = 2 */
 418        ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
 419
 420        /* Op1 = 3, CRn = 0, CRm = 0 */
 421        { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
 422        ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
 423
 424        /* Op1 = 3, CRn = 14, CRm = 0 */
 425        ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
 426};
 427
 428static int search_cmp_ftr_reg(const void *id, const void *regp)
 429{
 430        return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
 431}
 432
 433/*
 434 * get_arm64_ftr_reg - Lookup a feature register entry using its
 435 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 436 * ascending order of sys_id , we use binary search to find a matching
 437 * entry.
 438 *
 439 * returns - Upon success,  matching ftr_reg entry for id.
 440 *         - NULL on failure. It is upto the caller to decide
 441 *           the impact of a failure.
 442 */
 443static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
 444{
 445        const struct __ftr_reg_entry *ret;
 446
 447        ret = bsearch((const void *)(unsigned long)sys_id,
 448                        arm64_ftr_regs,
 449                        ARRAY_SIZE(arm64_ftr_regs),
 450                        sizeof(arm64_ftr_regs[0]),
 451                        search_cmp_ftr_reg);
 452        if (ret)
 453                return ret->reg;
 454        return NULL;
 455}
 456
 457static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
 458                               s64 ftr_val)
 459{
 460        u64 mask = arm64_ftr_mask(ftrp);
 461
 462        reg &= ~mask;
 463        reg |= (ftr_val << ftrp->shift) & mask;
 464        return reg;
 465}
 466
 467static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
 468                                s64 cur)
 469{
 470        s64 ret = 0;
 471
 472        switch (ftrp->type) {
 473        case FTR_EXACT:
 474                ret = ftrp->safe_val;
 475                break;
 476        case FTR_LOWER_SAFE:
 477                ret = new < cur ? new : cur;
 478                break;
 479        case FTR_HIGHER_OR_ZERO_SAFE:
 480                if (!cur || !new)
 481                        break;
 482                /* Fallthrough */
 483        case FTR_HIGHER_SAFE:
 484                ret = new > cur ? new : cur;
 485                break;
 486        default:
 487                BUG();
 488        }
 489
 490        return ret;
 491}
 492
 493static void __init sort_ftr_regs(void)
 494{
 495        int i;
 496
 497        /* Check that the array is sorted so that we can do the binary search */
 498        for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
 499                BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
 500}
 501
 502/*
 503 * Initialise the CPU feature register from Boot CPU values.
 504 * Also initiliases the strict_mask for the register.
 505 * Any bits that are not covered by an arm64_ftr_bits entry are considered
 506 * RES0 for the system-wide value, and must strictly match.
 507 */
 508static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
 509{
 510        u64 val = 0;
 511        u64 strict_mask = ~0x0ULL;
 512        u64 user_mask = 0;
 513        u64 valid_mask = 0;
 514
 515        const struct arm64_ftr_bits *ftrp;
 516        struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
 517
 518        BUG_ON(!reg);
 519
 520        for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
 521                u64 ftr_mask = arm64_ftr_mask(ftrp);
 522                s64 ftr_new = arm64_ftr_value(ftrp, new);
 523
 524                val = arm64_ftr_set_value(ftrp, val, ftr_new);
 525
 526                valid_mask |= ftr_mask;
 527                if (!ftrp->strict)
 528                        strict_mask &= ~ftr_mask;
 529                if (ftrp->visible)
 530                        user_mask |= ftr_mask;
 531                else
 532                        reg->user_val = arm64_ftr_set_value(ftrp,
 533                                                            reg->user_val,
 534                                                            ftrp->safe_val);
 535        }
 536
 537        val &= valid_mask;
 538
 539        reg->sys_val = val;
 540        reg->strict_mask = strict_mask;
 541        reg->user_mask = user_mask;
 542}
 543
 544extern const struct arm64_cpu_capabilities arm64_errata[];
 545static const struct arm64_cpu_capabilities arm64_features[];
 546
 547static void __init
 548init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
 549{
 550        for (; caps->matches; caps++) {
 551                if (WARN(caps->capability >= ARM64_NCAPS,
 552                        "Invalid capability %d\n", caps->capability))
 553                        continue;
 554                if (WARN(cpu_hwcaps_ptrs[caps->capability],
 555                        "Duplicate entry for capability %d\n",
 556                        caps->capability))
 557                        continue;
 558                cpu_hwcaps_ptrs[caps->capability] = caps;
 559        }
 560}
 561
 562static void __init init_cpu_hwcaps_indirect_list(void)
 563{
 564        init_cpu_hwcaps_indirect_list_from_array(arm64_features);
 565        init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
 566}
 567
 568static void __init setup_boot_cpu_capabilities(void);
 569
 570void __init init_cpu_features(struct cpuinfo_arm64 *info)
 571{
 572        /* Before we start using the tables, make sure it is sorted */
 573        sort_ftr_regs();
 574
 575        init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
 576        init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
 577        init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
 578        init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
 579        init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
 580        init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
 581        init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
 582        init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
 583        init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
 584        init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
 585        init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
 586        init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
 587        init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
 588
 589        if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
 590                init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
 591                init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
 592                init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
 593                init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
 594                init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
 595                init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
 596                init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
 597                init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
 598                init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
 599                init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
 600                init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
 601                init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
 602                init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
 603                init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
 604                init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
 605                init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
 606        }
 607
 608        if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
 609                init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
 610                sve_init_vq_map();
 611        }
 612
 613        /*
 614         * Initialize the indirect array of CPU hwcaps capabilities pointers
 615         * before we handle the boot CPU below.
 616         */
 617        init_cpu_hwcaps_indirect_list();
 618
 619        /*
 620         * Detect and enable early CPU capabilities based on the boot CPU,
 621         * after we have initialised the CPU feature infrastructure.
 622         */
 623        setup_boot_cpu_capabilities();
 624}
 625
 626static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
 627{
 628        const struct arm64_ftr_bits *ftrp;
 629
 630        for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
 631                s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
 632                s64 ftr_new = arm64_ftr_value(ftrp, new);
 633
 634                if (ftr_cur == ftr_new)
 635                        continue;
 636                /* Find a safe value */
 637                ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
 638                reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
 639        }
 640
 641}
 642
 643static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
 644{
 645        struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
 646
 647        BUG_ON(!regp);
 648        update_cpu_ftr_reg(regp, val);
 649        if ((boot & regp->strict_mask) == (val & regp->strict_mask))
 650                return 0;
 651        pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
 652                        regp->name, boot, cpu, val);
 653        return 1;
 654}
 655
 656/*
 657 * Update system wide CPU feature registers with the values from a
 658 * non-boot CPU. Also performs SANITY checks to make sure that there
 659 * aren't any insane variations from that of the boot CPU.
 660 */
 661void update_cpu_features(int cpu,
 662                         struct cpuinfo_arm64 *info,
 663                         struct cpuinfo_arm64 *boot)
 664{
 665        int taint = 0;
 666
 667        /*
 668         * The kernel can handle differing I-cache policies, but otherwise
 669         * caches should look identical. Userspace JITs will make use of
 670         * *minLine.
 671         */
 672        taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
 673                                      info->reg_ctr, boot->reg_ctr);
 674
 675        /*
 676         * Userspace may perform DC ZVA instructions. Mismatched block sizes
 677         * could result in too much or too little memory being zeroed if a
 678         * process is preempted and migrated between CPUs.
 679         */
 680        taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
 681                                      info->reg_dczid, boot->reg_dczid);
 682
 683        /* If different, timekeeping will be broken (especially with KVM) */
 684        taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
 685                                      info->reg_cntfrq, boot->reg_cntfrq);
 686
 687        /*
 688         * The kernel uses self-hosted debug features and expects CPUs to
 689         * support identical debug features. We presently need CTX_CMPs, WRPs,
 690         * and BRPs to be identical.
 691         * ID_AA64DFR1 is currently RES0.
 692         */
 693        taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
 694                                      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
 695        taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
 696                                      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
 697        /*
 698         * Even in big.LITTLE, processors should be identical instruction-set
 699         * wise.
 700         */
 701        taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
 702                                      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
 703        taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
 704                                      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
 705
 706        /*
 707         * Differing PARange support is fine as long as all peripherals and
 708         * memory are mapped within the minimum PARange of all CPUs.
 709         * Linux should not care about secure memory.
 710         */
 711        taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
 712                                      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
 713        taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
 714                                      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
 715        taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
 716                                      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
 717
 718        /*
 719         * EL3 is not our concern.
 720         */
 721        taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
 722                                      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
 723        taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
 724                                      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
 725
 726        taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
 727                                      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
 728
 729        /*
 730         * If we have AArch32, we care about 32-bit features for compat.
 731         * If the system doesn't support AArch32, don't update them.
 732         */
 733        if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
 734                id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
 735
 736                taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
 737                                        info->reg_id_dfr0, boot->reg_id_dfr0);
 738                taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
 739                                        info->reg_id_isar0, boot->reg_id_isar0);
 740                taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
 741                                        info->reg_id_isar1, boot->reg_id_isar1);
 742                taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
 743                                        info->reg_id_isar2, boot->reg_id_isar2);
 744                taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
 745                                        info->reg_id_isar3, boot->reg_id_isar3);
 746                taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
 747                                        info->reg_id_isar4, boot->reg_id_isar4);
 748                taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
 749                                        info->reg_id_isar5, boot->reg_id_isar5);
 750
 751                /*
 752                 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
 753                 * ACTLR formats could differ across CPUs and therefore would have to
 754                 * be trapped for virtualization anyway.
 755                 */
 756                taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
 757                                        info->reg_id_mmfr0, boot->reg_id_mmfr0);
 758                taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
 759                                        info->reg_id_mmfr1, boot->reg_id_mmfr1);
 760                taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
 761                                        info->reg_id_mmfr2, boot->reg_id_mmfr2);
 762                taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
 763                                        info->reg_id_mmfr3, boot->reg_id_mmfr3);
 764                taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
 765                                        info->reg_id_pfr0, boot->reg_id_pfr0);
 766                taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
 767                                        info->reg_id_pfr1, boot->reg_id_pfr1);
 768                taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
 769                                        info->reg_mvfr0, boot->reg_mvfr0);
 770                taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
 771                                        info->reg_mvfr1, boot->reg_mvfr1);
 772                taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
 773                                        info->reg_mvfr2, boot->reg_mvfr2);
 774        }
 775
 776        if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
 777                taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
 778                                        info->reg_zcr, boot->reg_zcr);
 779
 780                /* Probe vector lengths, unless we already gave up on SVE */
 781                if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
 782                    !sys_caps_initialised)
 783                        sve_update_vq_map();
 784        }
 785
 786        /*
 787         * Mismatched CPU features are a recipe for disaster. Don't even
 788         * pretend to support them.
 789         */
 790        if (taint) {
 791                pr_warn_once("Unsupported CPU feature variation detected.\n");
 792                add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
 793        }
 794}
 795
 796u64 read_sanitised_ftr_reg(u32 id)
 797{
 798        struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
 799
 800        /* We shouldn't get a request for an unsupported register */
 801        BUG_ON(!regp);
 802        return regp->sys_val;
 803}
 804
 805#define read_sysreg_case(r)     \
 806        case r:         return read_sysreg_s(r)
 807
 808/*
 809 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
 810 * Read the system register on the current CPU
 811 */
 812static u64 __read_sysreg_by_encoding(u32 sys_id)
 813{
 814        switch (sys_id) {
 815        read_sysreg_case(SYS_ID_PFR0_EL1);
 816        read_sysreg_case(SYS_ID_PFR1_EL1);
 817        read_sysreg_case(SYS_ID_DFR0_EL1);
 818        read_sysreg_case(SYS_ID_MMFR0_EL1);
 819        read_sysreg_case(SYS_ID_MMFR1_EL1);
 820        read_sysreg_case(SYS_ID_MMFR2_EL1);
 821        read_sysreg_case(SYS_ID_MMFR3_EL1);
 822        read_sysreg_case(SYS_ID_ISAR0_EL1);
 823        read_sysreg_case(SYS_ID_ISAR1_EL1);
 824        read_sysreg_case(SYS_ID_ISAR2_EL1);
 825        read_sysreg_case(SYS_ID_ISAR3_EL1);
 826        read_sysreg_case(SYS_ID_ISAR4_EL1);
 827        read_sysreg_case(SYS_ID_ISAR5_EL1);
 828        read_sysreg_case(SYS_MVFR0_EL1);
 829        read_sysreg_case(SYS_MVFR1_EL1);
 830        read_sysreg_case(SYS_MVFR2_EL1);
 831
 832        read_sysreg_case(SYS_ID_AA64PFR0_EL1);
 833        read_sysreg_case(SYS_ID_AA64PFR1_EL1);
 834        read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
 835        read_sysreg_case(SYS_ID_AA64DFR0_EL1);
 836        read_sysreg_case(SYS_ID_AA64DFR1_EL1);
 837        read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
 838        read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
 839        read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
 840        read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
 841        read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
 842
 843        read_sysreg_case(SYS_CNTFRQ_EL0);
 844        read_sysreg_case(SYS_CTR_EL0);
 845        read_sysreg_case(SYS_DCZID_EL0);
 846
 847        default:
 848                BUG();
 849                return 0;
 850        }
 851}
 852
 853#include <linux/irqchip/arm-gic-v3.h>
 854
 855static bool
 856feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
 857{
 858        int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
 859
 860        return val >= entry->min_field_value;
 861}
 862
 863static bool
 864has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
 865{
 866        u64 val;
 867
 868        WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
 869        if (scope == SCOPE_SYSTEM)
 870                val = read_sanitised_ftr_reg(entry->sys_reg);
 871        else
 872                val = __read_sysreg_by_encoding(entry->sys_reg);
 873
 874        return feature_matches(val, entry);
 875}
 876
 877static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
 878{
 879        bool has_sre;
 880
 881        if (!has_cpuid_feature(entry, scope))
 882                return false;
 883
 884        has_sre = gic_enable_sre();
 885        if (!has_sre)
 886                pr_warn_once("%s present but disabled by higher exception level\n",
 887                             entry->desc);
 888
 889        return has_sre;
 890}
 891
 892static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
 893{
 894        u32 midr = read_cpuid_id();
 895
 896        /* Cavium ThunderX pass 1.x and 2.x */
 897        return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
 898                MIDR_CPU_VAR_REV(0, 0),
 899                MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
 900}
 901
 902static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
 903{
 904        u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
 905
 906        return cpuid_feature_extract_signed_field(pfr0,
 907                                        ID_AA64PFR0_FP_SHIFT) < 0;
 908}
 909
 910static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
 911                          int scope)
 912{
 913        u64 ctr;
 914
 915        if (scope == SCOPE_SYSTEM)
 916                ctr = arm64_ftr_reg_ctrel0.sys_val;
 917        else
 918                ctr = read_cpuid_effective_cachetype();
 919
 920        return ctr & BIT(CTR_IDC_SHIFT);
 921}
 922
 923static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
 924{
 925        /*
 926         * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
 927         * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
 928         * to the CTR_EL0 on this CPU and emulate it with the real/safe
 929         * value.
 930         */
 931        if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
 932                sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
 933}
 934
 935static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
 936                          int scope)
 937{
 938        u64 ctr;
 939
 940        if (scope == SCOPE_SYSTEM)
 941                ctr = arm64_ftr_reg_ctrel0.sys_val;
 942        else
 943                ctr = read_cpuid_cachetype();
 944
 945        return ctr & BIT(CTR_DIC_SHIFT);
 946}
 947
 948static bool __maybe_unused
 949has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
 950{
 951        /*
 952         * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
 953         * may share TLB entries with a CPU stuck in the crashed
 954         * kernel.
 955         */
 956         if (is_kdump_kernel())
 957                return false;
 958
 959        return has_cpuid_feature(entry, scope);
 960}
 961
 962static bool __meltdown_safe = true;
 963static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
 964
 965static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
 966                                int scope)
 967{
 968        /* List of CPUs that are not vulnerable and don't need KPTI */
 969        static const struct midr_range kpti_safe_list[] = {
 970                MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
 971                MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
 972                MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
 973                MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
 974                MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
 975                MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
 976                MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
 977                MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
 978                MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
 979                { /* sentinel */ }
 980        };
 981        char const *str = "kpti command line option";
 982        bool meltdown_safe;
 983
 984        meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
 985
 986        /* Defer to CPU feature registers */
 987        if (has_cpuid_feature(entry, scope))
 988                meltdown_safe = true;
 989
 990        if (!meltdown_safe)
 991                __meltdown_safe = false;
 992
 993        /*
 994         * For reasons that aren't entirely clear, enabling KPTI on Cavium
 995         * ThunderX leads to apparent I-cache corruption of kernel text, which
 996         * ends as well as you might imagine. Don't even try.
 997         */
 998        if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
 999                str = "ARM64_WORKAROUND_CAVIUM_27456";
1000                __kpti_forced = -1;
1001        }
1002
1003        /* Useful for KASLR robustness */
1004        if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
1005                if (!__kpti_forced) {
1006                        str = "KASLR";
1007                        __kpti_forced = 1;
1008                }
1009        }
1010
1011        if (cpu_mitigations_off() && !__kpti_forced) {
1012                str = "mitigations=off";
1013                __kpti_forced = -1;
1014        }
1015
1016        if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1017                pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1018                return false;
1019        }
1020
1021        /* Forced? */
1022        if (__kpti_forced) {
1023                pr_info_once("kernel page table isolation forced %s by %s\n",
1024                             __kpti_forced > 0 ? "ON" : "OFF", str);
1025                return __kpti_forced > 0;
1026        }
1027
1028        return !meltdown_safe;
1029}
1030
1031#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1032static void
1033kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1034{
1035        typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1036        extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1037        kpti_remap_fn *remap_fn;
1038
1039        static bool kpti_applied = false;
1040        int cpu = smp_processor_id();
1041
1042        /*
1043         * We don't need to rewrite the page-tables if either we've done
1044         * it already or we have KASLR enabled and therefore have not
1045         * created any global mappings at all.
1046         */
1047        if (kpti_applied || kaslr_offset() > 0)
1048                return;
1049
1050        remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1051
1052        cpu_install_idmap();
1053        remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1054        cpu_uninstall_idmap();
1055
1056        if (!cpu)
1057                kpti_applied = true;
1058
1059        return;
1060}
1061#else
1062static void
1063kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1064{
1065}
1066#endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1067
1068static int __init parse_kpti(char *str)
1069{
1070        bool enabled;
1071        int ret = strtobool(str, &enabled);
1072
1073        if (ret)
1074                return ret;
1075
1076        __kpti_forced = enabled ? 1 : -1;
1077        return 0;
1078}
1079early_param("kpti", parse_kpti);
1080
1081#ifdef CONFIG_ARM64_HW_AFDBM
1082static inline void __cpu_enable_hw_dbm(void)
1083{
1084        u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1085
1086        write_sysreg(tcr, tcr_el1);
1087        isb();
1088}
1089
1090static bool cpu_has_broken_dbm(void)
1091{
1092        /* List of CPUs which have broken DBM support. */
1093        static const struct midr_range cpus[] = {
1094#ifdef CONFIG_ARM64_ERRATUM_1024718
1095                MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1096#endif
1097                {},
1098        };
1099
1100        return is_midr_in_range_list(read_cpuid_id(), cpus);
1101}
1102
1103static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1104{
1105        return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1106               !cpu_has_broken_dbm();
1107}
1108
1109static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1110{
1111        if (cpu_can_use_dbm(cap))
1112                __cpu_enable_hw_dbm();
1113}
1114
1115static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1116                       int __unused)
1117{
1118        static bool detected = false;
1119        /*
1120         * DBM is a non-conflicting feature. i.e, the kernel can safely
1121         * run a mix of CPUs with and without the feature. So, we
1122         * unconditionally enable the capability to allow any late CPU
1123         * to use the feature. We only enable the control bits on the
1124         * CPU, if it actually supports.
1125         *
1126         * We have to make sure we print the "feature" detection only
1127         * when at least one CPU actually uses it. So check if this CPU
1128         * can actually use it and print the message exactly once.
1129         *
1130         * This is safe as all CPUs (including secondary CPUs - due to the
1131         * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1132         * goes through the "matches" check exactly once. Also if a CPU
1133         * matches the criteria, it is guaranteed that the CPU will turn
1134         * the DBM on, as the capability is unconditionally enabled.
1135         */
1136        if (!detected && cpu_can_use_dbm(cap)) {
1137                detected = true;
1138                pr_info("detected: Hardware dirty bit management\n");
1139        }
1140
1141        return true;
1142}
1143
1144#endif
1145
1146#ifdef CONFIG_ARM64_VHE
1147static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1148{
1149        return is_kernel_in_hyp_mode();
1150}
1151
1152static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1153{
1154        /*
1155         * Copy register values that aren't redirected by hardware.
1156         *
1157         * Before code patching, we only set tpidr_el1, all CPUs need to copy
1158         * this value to tpidr_el2 before we patch the code. Once we've done
1159         * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1160         * do anything here.
1161         */
1162        if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1163                write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1164}
1165#endif
1166
1167static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1168{
1169        u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1170
1171        /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1172        WARN_ON(val & (7 << 27 | 7 << 21));
1173}
1174
1175#ifdef CONFIG_ARM64_SSBD
1176static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1177{
1178        if (user_mode(regs))
1179                return 1;
1180
1181        if (instr & BIT(PSTATE_Imm_shift))
1182                regs->pstate |= PSR_SSBS_BIT;
1183        else
1184                regs->pstate &= ~PSR_SSBS_BIT;
1185
1186        arm64_skip_faulting_instruction(regs, 4);
1187        return 0;
1188}
1189
1190static struct undef_hook ssbs_emulation_hook = {
1191        .instr_mask     = ~(1U << PSTATE_Imm_shift),
1192        .instr_val      = 0xd500401f | PSTATE_SSBS,
1193        .fn             = ssbs_emulation_handler,
1194};
1195
1196static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1197{
1198        static bool undef_hook_registered = false;
1199        static DEFINE_RAW_SPINLOCK(hook_lock);
1200
1201        raw_spin_lock(&hook_lock);
1202        if (!undef_hook_registered) {
1203                register_undef_hook(&ssbs_emulation_hook);
1204                undef_hook_registered = true;
1205        }
1206        raw_spin_unlock(&hook_lock);
1207
1208        if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1209                sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1210                arm64_set_ssbd_mitigation(false);
1211        } else {
1212                arm64_set_ssbd_mitigation(true);
1213        }
1214}
1215#endif /* CONFIG_ARM64_SSBD */
1216
1217#ifdef CONFIG_ARM64_PAN
1218static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1219{
1220        /*
1221         * We modify PSTATE. This won't work from irq context as the PSTATE
1222         * is discarded once we return from the exception.
1223         */
1224        WARN_ON_ONCE(in_interrupt());
1225
1226        sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1227        asm(SET_PSTATE_PAN(1));
1228}
1229#endif /* CONFIG_ARM64_PAN */
1230
1231#ifdef CONFIG_ARM64_RAS_EXTN
1232static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1233{
1234        /* Firmware may have left a deferred SError in this register. */
1235        write_sysreg_s(0, SYS_DISR_EL1);
1236}
1237#endif /* CONFIG_ARM64_RAS_EXTN */
1238
1239#ifdef CONFIG_ARM64_PTR_AUTH
1240static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1241{
1242        sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1243                                       SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1244}
1245#endif /* CONFIG_ARM64_PTR_AUTH */
1246
1247#ifdef CONFIG_ARM64_PSEUDO_NMI
1248static bool enable_pseudo_nmi;
1249
1250static int __init early_enable_pseudo_nmi(char *p)
1251{
1252        return strtobool(p, &enable_pseudo_nmi);
1253}
1254early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1255
1256static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1257                                   int scope)
1258{
1259        return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1260}
1261#endif
1262
1263static const struct arm64_cpu_capabilities arm64_features[] = {
1264        {
1265                .desc = "GIC system register CPU interface",
1266                .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1267                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1268                .matches = has_useable_gicv3_cpuif,
1269                .sys_reg = SYS_ID_AA64PFR0_EL1,
1270                .field_pos = ID_AA64PFR0_GIC_SHIFT,
1271                .sign = FTR_UNSIGNED,
1272                .min_field_value = 1,
1273        },
1274#ifdef CONFIG_ARM64_PAN
1275        {
1276                .desc = "Privileged Access Never",
1277                .capability = ARM64_HAS_PAN,
1278                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1279                .matches = has_cpuid_feature,
1280                .sys_reg = SYS_ID_AA64MMFR1_EL1,
1281                .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1282                .sign = FTR_UNSIGNED,
1283                .min_field_value = 1,
1284                .cpu_enable = cpu_enable_pan,
1285        },
1286#endif /* CONFIG_ARM64_PAN */
1287#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1288        {
1289                .desc = "LSE atomic instructions",
1290                .capability = ARM64_HAS_LSE_ATOMICS,
1291                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1292                .matches = has_cpuid_feature,
1293                .sys_reg = SYS_ID_AA64ISAR0_EL1,
1294                .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1295                .sign = FTR_UNSIGNED,
1296                .min_field_value = 2,
1297        },
1298#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1299        {
1300                .desc = "Software prefetching using PRFM",
1301                .capability = ARM64_HAS_NO_HW_PREFETCH,
1302                .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1303                .matches = has_no_hw_prefetch,
1304        },
1305#ifdef CONFIG_ARM64_UAO
1306        {
1307                .desc = "User Access Override",
1308                .capability = ARM64_HAS_UAO,
1309                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1310                .matches = has_cpuid_feature,
1311                .sys_reg = SYS_ID_AA64MMFR2_EL1,
1312                .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1313                .min_field_value = 1,
1314                /*
1315                 * We rely on stop_machine() calling uao_thread_switch() to set
1316                 * UAO immediately after patching.
1317                 */
1318        },
1319#endif /* CONFIG_ARM64_UAO */
1320#ifdef CONFIG_ARM64_PAN
1321        {
1322                .capability = ARM64_ALT_PAN_NOT_UAO,
1323                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1324                .matches = cpufeature_pan_not_uao,
1325        },
1326#endif /* CONFIG_ARM64_PAN */
1327#ifdef CONFIG_ARM64_VHE
1328        {
1329                .desc = "Virtualization Host Extensions",
1330                .capability = ARM64_HAS_VIRT_HOST_EXTN,
1331                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1332                .matches = runs_at_el2,
1333                .cpu_enable = cpu_copy_el2regs,
1334        },
1335#endif  /* CONFIG_ARM64_VHE */
1336        {
1337                .desc = "32-bit EL0 Support",
1338                .capability = ARM64_HAS_32BIT_EL0,
1339                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1340                .matches = has_cpuid_feature,
1341                .sys_reg = SYS_ID_AA64PFR0_EL1,
1342                .sign = FTR_UNSIGNED,
1343                .field_pos = ID_AA64PFR0_EL0_SHIFT,
1344                .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1345        },
1346        {
1347                .desc = "Kernel page table isolation (KPTI)",
1348                .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1349                .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1350                /*
1351                 * The ID feature fields below are used to indicate that
1352                 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1353                 * more details.
1354                 */
1355                .sys_reg = SYS_ID_AA64PFR0_EL1,
1356                .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1357                .min_field_value = 1,
1358                .matches = unmap_kernel_at_el0,
1359                .cpu_enable = kpti_install_ng_mappings,
1360        },
1361        {
1362                /* FP/SIMD is not implemented */
1363                .capability = ARM64_HAS_NO_FPSIMD,
1364                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1365                .min_field_value = 0,
1366                .matches = has_no_fpsimd,
1367        },
1368#ifdef CONFIG_ARM64_PMEM
1369        {
1370                .desc = "Data cache clean to Point of Persistence",
1371                .capability = ARM64_HAS_DCPOP,
1372                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1373                .matches = has_cpuid_feature,
1374                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1375                .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1376                .min_field_value = 1,
1377        },
1378        {
1379                .desc = "Data cache clean to Point of Deep Persistence",
1380                .capability = ARM64_HAS_DCPODP,
1381                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1382                .matches = has_cpuid_feature,
1383                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1384                .sign = FTR_UNSIGNED,
1385                .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1386                .min_field_value = 2,
1387        },
1388#endif
1389#ifdef CONFIG_ARM64_SVE
1390        {
1391                .desc = "Scalable Vector Extension",
1392                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1393                .capability = ARM64_SVE,
1394                .sys_reg = SYS_ID_AA64PFR0_EL1,
1395                .sign = FTR_UNSIGNED,
1396                .field_pos = ID_AA64PFR0_SVE_SHIFT,
1397                .min_field_value = ID_AA64PFR0_SVE,
1398                .matches = has_cpuid_feature,
1399                .cpu_enable = sve_kernel_enable,
1400        },
1401#endif /* CONFIG_ARM64_SVE */
1402#ifdef CONFIG_ARM64_RAS_EXTN
1403        {
1404                .desc = "RAS Extension Support",
1405                .capability = ARM64_HAS_RAS_EXTN,
1406                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1407                .matches = has_cpuid_feature,
1408                .sys_reg = SYS_ID_AA64PFR0_EL1,
1409                .sign = FTR_UNSIGNED,
1410                .field_pos = ID_AA64PFR0_RAS_SHIFT,
1411                .min_field_value = ID_AA64PFR0_RAS_V1,
1412                .cpu_enable = cpu_clear_disr,
1413        },
1414#endif /* CONFIG_ARM64_RAS_EXTN */
1415        {
1416                .desc = "Data cache clean to the PoU not required for I/D coherence",
1417                .capability = ARM64_HAS_CACHE_IDC,
1418                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1419                .matches = has_cache_idc,
1420                .cpu_enable = cpu_emulate_effective_ctr,
1421        },
1422        {
1423                .desc = "Instruction cache invalidation not required for I/D coherence",
1424                .capability = ARM64_HAS_CACHE_DIC,
1425                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1426                .matches = has_cache_dic,
1427        },
1428        {
1429                .desc = "Stage-2 Force Write-Back",
1430                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1431                .capability = ARM64_HAS_STAGE2_FWB,
1432                .sys_reg = SYS_ID_AA64MMFR2_EL1,
1433                .sign = FTR_UNSIGNED,
1434                .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1435                .min_field_value = 1,
1436                .matches = has_cpuid_feature,
1437                .cpu_enable = cpu_has_fwb,
1438        },
1439#ifdef CONFIG_ARM64_HW_AFDBM
1440        {
1441                /*
1442                 * Since we turn this on always, we don't want the user to
1443                 * think that the feature is available when it may not be.
1444                 * So hide the description.
1445                 *
1446                 * .desc = "Hardware pagetable Dirty Bit Management",
1447                 *
1448                 */
1449                .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1450                .capability = ARM64_HW_DBM,
1451                .sys_reg = SYS_ID_AA64MMFR1_EL1,
1452                .sign = FTR_UNSIGNED,
1453                .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1454                .min_field_value = 2,
1455                .matches = has_hw_dbm,
1456                .cpu_enable = cpu_enable_hw_dbm,
1457        },
1458#endif
1459        {
1460                .desc = "CRC32 instructions",
1461                .capability = ARM64_HAS_CRC32,
1462                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1463                .matches = has_cpuid_feature,
1464                .sys_reg = SYS_ID_AA64ISAR0_EL1,
1465                .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1466                .min_field_value = 1,
1467        },
1468#ifdef CONFIG_ARM64_SSBD
1469        {
1470                .desc = "Speculative Store Bypassing Safe (SSBS)",
1471                .capability = ARM64_SSBS,
1472                .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1473                .matches = has_cpuid_feature,
1474                .sys_reg = SYS_ID_AA64PFR1_EL1,
1475                .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1476                .sign = FTR_UNSIGNED,
1477                .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1478                .cpu_enable = cpu_enable_ssbs,
1479        },
1480#endif
1481#ifdef CONFIG_ARM64_CNP
1482        {
1483                .desc = "Common not Private translations",
1484                .capability = ARM64_HAS_CNP,
1485                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1486                .matches = has_useable_cnp,
1487                .sys_reg = SYS_ID_AA64MMFR2_EL1,
1488                .sign = FTR_UNSIGNED,
1489                .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1490                .min_field_value = 1,
1491                .cpu_enable = cpu_enable_cnp,
1492        },
1493#endif
1494        {
1495                .desc = "Speculation barrier (SB)",
1496                .capability = ARM64_HAS_SB,
1497                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1498                .matches = has_cpuid_feature,
1499                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1500                .field_pos = ID_AA64ISAR1_SB_SHIFT,
1501                .sign = FTR_UNSIGNED,
1502                .min_field_value = 1,
1503        },
1504#ifdef CONFIG_ARM64_PTR_AUTH
1505        {
1506                .desc = "Address authentication (architected algorithm)",
1507                .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1508                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1509                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1510                .sign = FTR_UNSIGNED,
1511                .field_pos = ID_AA64ISAR1_APA_SHIFT,
1512                .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1513                .matches = has_cpuid_feature,
1514                .cpu_enable = cpu_enable_address_auth,
1515        },
1516        {
1517                .desc = "Address authentication (IMP DEF algorithm)",
1518                .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1519                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1520                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1521                .sign = FTR_UNSIGNED,
1522                .field_pos = ID_AA64ISAR1_API_SHIFT,
1523                .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1524                .matches = has_cpuid_feature,
1525                .cpu_enable = cpu_enable_address_auth,
1526        },
1527        {
1528                .desc = "Generic authentication (architected algorithm)",
1529                .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1530                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1531                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1532                .sign = FTR_UNSIGNED,
1533                .field_pos = ID_AA64ISAR1_GPA_SHIFT,
1534                .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1535                .matches = has_cpuid_feature,
1536        },
1537        {
1538                .desc = "Generic authentication (IMP DEF algorithm)",
1539                .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1540                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1541                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1542                .sign = FTR_UNSIGNED,
1543                .field_pos = ID_AA64ISAR1_GPI_SHIFT,
1544                .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1545                .matches = has_cpuid_feature,
1546        },
1547#endif /* CONFIG_ARM64_PTR_AUTH */
1548#ifdef CONFIG_ARM64_PSEUDO_NMI
1549        {
1550                /*
1551                 * Depends on having GICv3
1552                 */
1553                .desc = "IRQ priority masking",
1554                .capability = ARM64_HAS_IRQ_PRIO_MASKING,
1555                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1556                .matches = can_use_gic_priorities,
1557                .sys_reg = SYS_ID_AA64PFR0_EL1,
1558                .field_pos = ID_AA64PFR0_GIC_SHIFT,
1559                .sign = FTR_UNSIGNED,
1560                .min_field_value = 1,
1561        },
1562#endif
1563        {},
1564};
1565
1566#define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
1567                .matches = has_cpuid_feature,                                   \
1568                .sys_reg = reg,                                                 \
1569                .field_pos = field,                                             \
1570                .sign = s,                                                      \
1571                .min_field_value = min_value,
1572
1573#define __HWCAP_CAP(name, cap_type, cap)                                        \
1574                .desc = name,                                                   \
1575                .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
1576                .hwcap_type = cap_type,                                         \
1577                .hwcap = cap,                                                   \
1578
1579#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
1580        {                                                                       \
1581                __HWCAP_CAP(#cap, cap_type, cap)                                \
1582                HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
1583        }
1584
1585#define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
1586        {                                                                       \
1587                __HWCAP_CAP(#cap, cap_type, cap)                                \
1588                .matches = cpucap_multi_entry_cap_matches,                      \
1589                .match_list = list,                                             \
1590        }
1591
1592#ifdef CONFIG_ARM64_PTR_AUTH
1593static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1594        {
1595                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1596                                  FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1597        },
1598        {
1599                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1600                                  FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1601        },
1602        {},
1603};
1604
1605static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1606        {
1607                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1608                                  FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1609        },
1610        {
1611                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1612                                  FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1613        },
1614        {},
1615};
1616#endif
1617
1618static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1619        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
1620        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
1621        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
1622        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
1623        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
1624        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
1625        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
1626        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
1627        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
1628        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
1629        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
1630        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
1631        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
1632        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
1633        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1634        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
1635        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
1636        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
1637        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
1638        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
1639        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
1640        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
1641        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
1642        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
1643        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
1644        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
1645        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
1646        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
1647        HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
1648#ifdef CONFIG_ARM64_SVE
1649        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
1650        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
1651        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
1652        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
1653        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
1654        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
1655        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
1656#endif
1657        HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
1658#ifdef CONFIG_ARM64_PTR_AUTH
1659        HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
1660        HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
1661#endif
1662        {},
1663};
1664
1665static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1666#ifdef CONFIG_COMPAT
1667        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1668        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1669        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1670        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1671        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1672#endif
1673        {},
1674};
1675
1676static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1677{
1678        switch (cap->hwcap_type) {
1679        case CAP_HWCAP:
1680                cpu_set_feature(cap->hwcap);
1681                break;
1682#ifdef CONFIG_COMPAT
1683        case CAP_COMPAT_HWCAP:
1684                compat_elf_hwcap |= (u32)cap->hwcap;
1685                break;
1686        case CAP_COMPAT_HWCAP2:
1687                compat_elf_hwcap2 |= (u32)cap->hwcap;
1688                break;
1689#endif
1690        default:
1691                WARN_ON(1);
1692                break;
1693        }
1694}
1695
1696/* Check if we have a particular HWCAP enabled */
1697static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1698{
1699        bool rc;
1700
1701        switch (cap->hwcap_type) {
1702        case CAP_HWCAP:
1703                rc = cpu_have_feature(cap->hwcap);
1704                break;
1705#ifdef CONFIG_COMPAT
1706        case CAP_COMPAT_HWCAP:
1707                rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1708                break;
1709        case CAP_COMPAT_HWCAP2:
1710                rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1711                break;
1712#endif
1713        default:
1714                WARN_ON(1);
1715                rc = false;
1716        }
1717
1718        return rc;
1719}
1720
1721static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1722{
1723        /* We support emulation of accesses to CPU ID feature registers */
1724        cpu_set_named_feature(CPUID);
1725        for (; hwcaps->matches; hwcaps++)
1726                if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1727                        cap_set_elf_hwcap(hwcaps);
1728}
1729
1730static void update_cpu_capabilities(u16 scope_mask)
1731{
1732        int i;
1733        const struct arm64_cpu_capabilities *caps;
1734
1735        scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1736        for (i = 0; i < ARM64_NCAPS; i++) {
1737                caps = cpu_hwcaps_ptrs[i];
1738                if (!caps || !(caps->type & scope_mask) ||
1739                    cpus_have_cap(caps->capability) ||
1740                    !caps->matches(caps, cpucap_default_scope(caps)))
1741                        continue;
1742
1743                if (caps->desc)
1744                        pr_info("detected: %s\n", caps->desc);
1745                cpus_set_cap(caps->capability);
1746
1747                if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
1748                        set_bit(caps->capability, boot_capabilities);
1749        }
1750}
1751
1752/*
1753 * Enable all the available capabilities on this CPU. The capabilities
1754 * with BOOT_CPU scope are handled separately and hence skipped here.
1755 */
1756static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1757{
1758        int i;
1759        u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1760
1761        for_each_available_cap(i) {
1762                const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1763
1764                if (WARN_ON(!cap))
1765                        continue;
1766
1767                if (!(cap->type & non_boot_scope))
1768                        continue;
1769
1770                if (cap->cpu_enable)
1771                        cap->cpu_enable(cap);
1772        }
1773        return 0;
1774}
1775
1776/*
1777 * Run through the enabled capabilities and enable() it on all active
1778 * CPUs
1779 */
1780static void __init enable_cpu_capabilities(u16 scope_mask)
1781{
1782        int i;
1783        const struct arm64_cpu_capabilities *caps;
1784        bool boot_scope;
1785
1786        scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1787        boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1788
1789        for (i = 0; i < ARM64_NCAPS; i++) {
1790                unsigned int num;
1791
1792                caps = cpu_hwcaps_ptrs[i];
1793                if (!caps || !(caps->type & scope_mask))
1794                        continue;
1795                num = caps->capability;
1796                if (!cpus_have_cap(num))
1797                        continue;
1798
1799                /* Ensure cpus_have_const_cap(num) works */
1800                static_branch_enable(&cpu_hwcap_keys[num]);
1801
1802                if (boot_scope && caps->cpu_enable)
1803                        /*
1804                         * Capabilities with SCOPE_BOOT_CPU scope are finalised
1805                         * before any secondary CPU boots. Thus, each secondary
1806                         * will enable the capability as appropriate via
1807                         * check_local_cpu_capabilities(). The only exception is
1808                         * the boot CPU, for which the capability must be
1809                         * enabled here. This approach avoids costly
1810                         * stop_machine() calls for this case.
1811                         */
1812                        caps->cpu_enable(caps);
1813        }
1814
1815        /*
1816         * For all non-boot scope capabilities, use stop_machine()
1817         * as it schedules the work allowing us to modify PSTATE,
1818         * instead of on_each_cpu() which uses an IPI, giving us a
1819         * PSTATE that disappears when we return.
1820         */
1821        if (!boot_scope)
1822                stop_machine(cpu_enable_non_boot_scope_capabilities,
1823                             NULL, cpu_online_mask);
1824}
1825
1826/*
1827 * Run through the list of capabilities to check for conflicts.
1828 * If the system has already detected a capability, take necessary
1829 * action on this CPU.
1830 *
1831 * Returns "false" on conflicts.
1832 */
1833static bool verify_local_cpu_caps(u16 scope_mask)
1834{
1835        int i;
1836        bool cpu_has_cap, system_has_cap;
1837        const struct arm64_cpu_capabilities *caps;
1838
1839        scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1840
1841        for (i = 0; i < ARM64_NCAPS; i++) {
1842                caps = cpu_hwcaps_ptrs[i];
1843                if (!caps || !(caps->type & scope_mask))
1844                        continue;
1845
1846                cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1847                system_has_cap = cpus_have_cap(caps->capability);
1848
1849                if (system_has_cap) {
1850                        /*
1851                         * Check if the new CPU misses an advertised feature,
1852                         * which is not safe to miss.
1853                         */
1854                        if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1855                                break;
1856                        /*
1857                         * We have to issue cpu_enable() irrespective of
1858                         * whether the CPU has it or not, as it is enabeld
1859                         * system wide. It is upto the call back to take
1860                         * appropriate action on this CPU.
1861                         */
1862                        if (caps->cpu_enable)
1863                                caps->cpu_enable(caps);
1864                } else {
1865                        /*
1866                         * Check if the CPU has this capability if it isn't
1867                         * safe to have when the system doesn't.
1868                         */
1869                        if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1870                                break;
1871                }
1872        }
1873
1874        if (i < ARM64_NCAPS) {
1875                pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1876                        smp_processor_id(), caps->capability,
1877                        caps->desc, system_has_cap, cpu_has_cap);
1878                return false;
1879        }
1880
1881        return true;
1882}
1883
1884/*
1885 * Check for CPU features that are used in early boot
1886 * based on the Boot CPU value.
1887 */
1888static void check_early_cpu_features(void)
1889{
1890        verify_cpu_asid_bits();
1891        /*
1892         * Early features are used by the kernel already. If there
1893         * is a conflict, we cannot proceed further.
1894         */
1895        if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1896                cpu_panic_kernel();
1897}
1898
1899static void
1900verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1901{
1902
1903        for (; caps->matches; caps++)
1904                if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1905                        pr_crit("CPU%d: missing HWCAP: %s\n",
1906                                        smp_processor_id(), caps->desc);
1907                        cpu_die_early();
1908                }
1909}
1910
1911static void verify_sve_features(void)
1912{
1913        u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1914        u64 zcr = read_zcr_features();
1915
1916        unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1917        unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1918
1919        if (len < safe_len || sve_verify_vq_map()) {
1920                pr_crit("CPU%d: SVE: vector length support mismatch\n",
1921                        smp_processor_id());
1922                cpu_die_early();
1923        }
1924
1925        /* Add checks on other ZCR bits here if necessary */
1926}
1927
1928
1929/*
1930 * Run through the enabled system capabilities and enable() it on this CPU.
1931 * The capabilities were decided based on the available CPUs at the boot time.
1932 * Any new CPU should match the system wide status of the capability. If the
1933 * new CPU doesn't have a capability which the system now has enabled, we
1934 * cannot do anything to fix it up and could cause unexpected failures. So
1935 * we park the CPU.
1936 */
1937static void verify_local_cpu_capabilities(void)
1938{
1939        /*
1940         * The capabilities with SCOPE_BOOT_CPU are checked from
1941         * check_early_cpu_features(), as they need to be verified
1942         * on all secondary CPUs.
1943         */
1944        if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1945                cpu_die_early();
1946
1947        verify_local_elf_hwcaps(arm64_elf_hwcaps);
1948
1949        if (system_supports_32bit_el0())
1950                verify_local_elf_hwcaps(compat_elf_hwcaps);
1951
1952        if (system_supports_sve())
1953                verify_sve_features();
1954}
1955
1956void check_local_cpu_capabilities(void)
1957{
1958        /*
1959         * All secondary CPUs should conform to the early CPU features
1960         * in use by the kernel based on boot CPU.
1961         */
1962        check_early_cpu_features();
1963
1964        /*
1965         * If we haven't finalised the system capabilities, this CPU gets
1966         * a chance to update the errata work arounds and local features.
1967         * Otherwise, this CPU should verify that it has all the system
1968         * advertised capabilities.
1969         */
1970        if (!sys_caps_initialised)
1971                update_cpu_capabilities(SCOPE_LOCAL_CPU);
1972        else
1973                verify_local_cpu_capabilities();
1974}
1975
1976static void __init setup_boot_cpu_capabilities(void)
1977{
1978        /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1979        update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1980        /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1981        enable_cpu_capabilities(SCOPE_BOOT_CPU);
1982}
1983
1984DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1985EXPORT_SYMBOL(arm64_const_caps_ready);
1986
1987static void __init mark_const_caps_ready(void)
1988{
1989        static_branch_enable(&arm64_const_caps_ready);
1990}
1991
1992bool this_cpu_has_cap(unsigned int n)
1993{
1994        if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
1995                const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
1996
1997                if (cap)
1998                        return cap->matches(cap, SCOPE_LOCAL_CPU);
1999        }
2000
2001        return false;
2002}
2003
2004void cpu_set_feature(unsigned int num)
2005{
2006        WARN_ON(num >= MAX_CPU_FEATURES);
2007        elf_hwcap |= BIT(num);
2008}
2009EXPORT_SYMBOL_GPL(cpu_set_feature);
2010
2011bool cpu_have_feature(unsigned int num)
2012{
2013        WARN_ON(num >= MAX_CPU_FEATURES);
2014        return elf_hwcap & BIT(num);
2015}
2016EXPORT_SYMBOL_GPL(cpu_have_feature);
2017
2018unsigned long cpu_get_elf_hwcap(void)
2019{
2020        /*
2021         * We currently only populate the first 32 bits of AT_HWCAP. Please
2022         * note that for userspace compatibility we guarantee that bits 62
2023         * and 63 will always be returned as 0.
2024         */
2025        return lower_32_bits(elf_hwcap);
2026}
2027
2028unsigned long cpu_get_elf_hwcap2(void)
2029{
2030        return upper_32_bits(elf_hwcap);
2031}
2032
2033static void __init setup_system_capabilities(void)
2034{
2035        /*
2036         * We have finalised the system-wide safe feature
2037         * registers, finalise the capabilities that depend
2038         * on it. Also enable all the available capabilities,
2039         * that are not enabled already.
2040         */
2041        update_cpu_capabilities(SCOPE_SYSTEM);
2042        enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2043}
2044
2045void __init setup_cpu_features(void)
2046{
2047        u32 cwg;
2048
2049        setup_system_capabilities();
2050        mark_const_caps_ready();
2051        setup_elf_hwcaps(arm64_elf_hwcaps);
2052
2053        if (system_supports_32bit_el0())
2054                setup_elf_hwcaps(compat_elf_hwcaps);
2055
2056        if (system_uses_ttbr0_pan())
2057                pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2058
2059        sve_setup();
2060        minsigstksz_setup();
2061
2062        /* Advertise that we have computed the system capabilities */
2063        set_sys_caps_initialised();
2064
2065        /*
2066         * Check for sane CTR_EL0.CWG value.
2067         */
2068        cwg = cache_type_cwg();
2069        if (!cwg)
2070                pr_warn("No Cache Writeback Granule information, assuming %d\n",
2071                        ARCH_DMA_MINALIGN);
2072}
2073
2074static bool __maybe_unused
2075cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2076{
2077        return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
2078}
2079
2080static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2081{
2082        cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2083}
2084
2085/*
2086 * We emulate only the following system register space.
2087 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2088 * See Table C5-6 System instruction encodings for System register accesses,
2089 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2090 */
2091static inline bool __attribute_const__ is_emulated(u32 id)
2092{
2093        return (sys_reg_Op0(id) == 0x3 &&
2094                sys_reg_CRn(id) == 0x0 &&
2095                sys_reg_Op1(id) == 0x0 &&
2096                (sys_reg_CRm(id) == 0 ||
2097                 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2098}
2099
2100/*
2101 * With CRm == 0, reg should be one of :
2102 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2103 */
2104static inline int emulate_id_reg(u32 id, u64 *valp)
2105{
2106        switch (id) {
2107        case SYS_MIDR_EL1:
2108                *valp = read_cpuid_id();
2109                break;
2110        case SYS_MPIDR_EL1:
2111                *valp = SYS_MPIDR_SAFE_VAL;
2112                break;
2113        case SYS_REVIDR_EL1:
2114                /* IMPLEMENTATION DEFINED values are emulated with 0 */
2115                *valp = 0;
2116                break;
2117        default:
2118                return -EINVAL;
2119        }
2120
2121        return 0;
2122}
2123
2124static int emulate_sys_reg(u32 id, u64 *valp)
2125{
2126        struct arm64_ftr_reg *regp;
2127
2128        if (!is_emulated(id))
2129                return -EINVAL;
2130
2131        if (sys_reg_CRm(id) == 0)
2132                return emulate_id_reg(id, valp);
2133
2134        regp = get_arm64_ftr_reg(id);
2135        if (regp)
2136                *valp = arm64_ftr_reg_user_value(regp);
2137        else
2138                /*
2139                 * The untracked registers are either IMPLEMENTATION DEFINED
2140                 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2141                 */
2142                *valp = 0;
2143        return 0;
2144}
2145
2146int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2147{
2148        int rc;
2149        u64 val;
2150
2151        rc = emulate_sys_reg(sys_reg, &val);
2152        if (!rc) {
2153                pt_regs_write_reg(regs, rt, val);
2154                arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2155        }
2156        return rc;
2157}
2158
2159static int emulate_mrs(struct pt_regs *regs, u32 insn)
2160{
2161        u32 sys_reg, rt;
2162
2163        /*
2164         * sys_reg values are defined as used in mrs/msr instruction.
2165         * shift the imm value to get the encoding.
2166         */
2167        sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2168        rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2169        return do_emulate_mrs(regs, sys_reg, rt);
2170}
2171
2172static struct undef_hook mrs_hook = {
2173        .instr_mask = 0xfff00000,
2174        .instr_val  = 0xd5300000,
2175        .pstate_mask = PSR_AA32_MODE_MASK,
2176        .pstate_val = PSR_MODE_EL0t,
2177        .fn = emulate_mrs,
2178};
2179
2180static int __init enable_mrs_emulation(void)
2181{
2182        register_undef_hook(&mrs_hook);
2183        return 0;
2184}
2185
2186core_initcall(enable_mrs_emulation);
2187
2188ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2189                          char *buf)
2190{
2191        if (__meltdown_safe)
2192                return sprintf(buf, "Not affected\n");
2193
2194        if (arm64_kernel_unmapped_at_el0())
2195                return sprintf(buf, "Mitigation: PTI\n");
2196
2197        return sprintf(buf, "Vulnerable\n");
2198}
2199