linux/arch/arm64/kernel/sdei.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// Copyright (C) 2017 Arm Ltd.
   3#define pr_fmt(fmt) "sdei: " fmt
   4
   5#include <linux/arm_sdei.h>
   6#include <linux/hardirq.h>
   7#include <linux/irqflags.h>
   8#include <linux/sched/task_stack.h>
   9#include <linux/uaccess.h>
  10
  11#include <asm/alternative.h>
  12#include <asm/kprobes.h>
  13#include <asm/mmu.h>
  14#include <asm/ptrace.h>
  15#include <asm/sections.h>
  16#include <asm/stacktrace.h>
  17#include <asm/sysreg.h>
  18#include <asm/vmap_stack.h>
  19
  20unsigned long sdei_exit_mode;
  21
  22/*
  23 * VMAP'd stacks checking for stack overflow on exception using sp as a scratch
  24 * register, meaning SDEI has to switch to its own stack. We need two stacks as
  25 * a critical event may interrupt a normal event that has just taken a
  26 * synchronous exception, and is using sp as scratch register. For a critical
  27 * event interrupting a normal event, we can't reliably tell if we were on the
  28 * sdei stack.
  29 * For now, we allocate stacks when the driver is probed.
  30 */
  31DECLARE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
  32DECLARE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
  33
  34#ifdef CONFIG_VMAP_STACK
  35DEFINE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
  36DEFINE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
  37#endif
  38
  39static void _free_sdei_stack(unsigned long * __percpu *ptr, int cpu)
  40{
  41        unsigned long *p;
  42
  43        p = per_cpu(*ptr, cpu);
  44        if (p) {
  45                per_cpu(*ptr, cpu) = NULL;
  46                vfree(p);
  47        }
  48}
  49
  50static void free_sdei_stacks(void)
  51{
  52        int cpu;
  53
  54        for_each_possible_cpu(cpu) {
  55                _free_sdei_stack(&sdei_stack_normal_ptr, cpu);
  56                _free_sdei_stack(&sdei_stack_critical_ptr, cpu);
  57        }
  58}
  59
  60static int _init_sdei_stack(unsigned long * __percpu *ptr, int cpu)
  61{
  62        unsigned long *p;
  63
  64        p = arch_alloc_vmap_stack(SDEI_STACK_SIZE, cpu_to_node(cpu));
  65        if (!p)
  66                return -ENOMEM;
  67        per_cpu(*ptr, cpu) = p;
  68
  69        return 0;
  70}
  71
  72static int init_sdei_stacks(void)
  73{
  74        int cpu;
  75        int err = 0;
  76
  77        for_each_possible_cpu(cpu) {
  78                err = _init_sdei_stack(&sdei_stack_normal_ptr, cpu);
  79                if (err)
  80                        break;
  81                err = _init_sdei_stack(&sdei_stack_critical_ptr, cpu);
  82                if (err)
  83                        break;
  84        }
  85
  86        if (err)
  87                free_sdei_stacks();
  88
  89        return err;
  90}
  91
  92static bool on_sdei_normal_stack(unsigned long sp, struct stack_info *info)
  93{
  94        unsigned long low = (unsigned long)raw_cpu_read(sdei_stack_normal_ptr);
  95        unsigned long high = low + SDEI_STACK_SIZE;
  96
  97        if (!low)
  98                return false;
  99
 100        if (sp < low || sp >= high)
 101                return false;
 102
 103        if (info) {
 104                info->low = low;
 105                info->high = high;
 106                info->type = STACK_TYPE_SDEI_NORMAL;
 107        }
 108
 109        return true;
 110}
 111
 112static bool on_sdei_critical_stack(unsigned long sp, struct stack_info *info)
 113{
 114        unsigned long low = (unsigned long)raw_cpu_read(sdei_stack_critical_ptr);
 115        unsigned long high = low + SDEI_STACK_SIZE;
 116
 117        if (!low)
 118                return false;
 119
 120        if (sp < low || sp >= high)
 121                return false;
 122
 123        if (info) {
 124                info->low = low;
 125                info->high = high;
 126                info->type = STACK_TYPE_SDEI_CRITICAL;
 127        }
 128
 129        return true;
 130}
 131
 132bool _on_sdei_stack(unsigned long sp, struct stack_info *info)
 133{
 134        if (!IS_ENABLED(CONFIG_VMAP_STACK))
 135                return false;
 136
 137        if (on_sdei_critical_stack(sp, info))
 138                return true;
 139
 140        if (on_sdei_normal_stack(sp, info))
 141                return true;
 142
 143        return false;
 144}
 145
 146unsigned long sdei_arch_get_entry_point(int conduit)
 147{
 148        /*
 149         * SDEI works between adjacent exception levels. If we booted at EL1 we
 150         * assume a hypervisor is marshalling events. If we booted at EL2 and
 151         * dropped to EL1 because we don't support VHE, then we can't support
 152         * SDEI.
 153         */
 154        if (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
 155                pr_err("Not supported on this hardware/boot configuration\n");
 156                return 0;
 157        }
 158
 159        if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 160                if (init_sdei_stacks())
 161                        return 0;
 162        }
 163
 164        sdei_exit_mode = (conduit == CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC;
 165
 166#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
 167        if (arm64_kernel_unmapped_at_el0()) {
 168                unsigned long offset;
 169
 170                offset = (unsigned long)__sdei_asm_entry_trampoline -
 171                         (unsigned long)__entry_tramp_text_start;
 172                return TRAMP_VALIAS + offset;
 173        } else
 174#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
 175                return (unsigned long)__sdei_asm_handler;
 176
 177}
 178
 179/*
 180 * __sdei_handler() returns one of:
 181 *  SDEI_EV_HANDLED -  success, return to the interrupted context.
 182 *  SDEI_EV_FAILED  -  failure, return this error code to firmare.
 183 *  virtual-address -  success, return to this address.
 184 */
 185static __kprobes unsigned long _sdei_handler(struct pt_regs *regs,
 186                                             struct sdei_registered_event *arg)
 187{
 188        u32 mode;
 189        int i, err = 0;
 190        int clobbered_registers = 4;
 191        u64 elr = read_sysreg(elr_el1);
 192        u32 kernel_mode = read_sysreg(CurrentEL) | 1;   /* +SPSel */
 193        unsigned long vbar = read_sysreg(vbar_el1);
 194
 195        if (arm64_kernel_unmapped_at_el0())
 196                clobbered_registers++;
 197
 198        /* Retrieve the missing registers values */
 199        for (i = 0; i < clobbered_registers; i++) {
 200                /* from within the handler, this call always succeeds */
 201                sdei_api_event_context(i, &regs->regs[i]);
 202        }
 203
 204        /*
 205         * We didn't take an exception to get here, set PAN. UAO will be cleared
 206         * by sdei_event_handler()s set_fs(USER_DS) call.
 207         */
 208        __uaccess_enable_hw_pan();
 209
 210        err = sdei_event_handler(regs, arg);
 211        if (err)
 212                return SDEI_EV_FAILED;
 213
 214        if (elr != read_sysreg(elr_el1)) {
 215                /*
 216                 * We took a synchronous exception from the SDEI handler.
 217                 * This could deadlock, and if you interrupt KVM it will
 218                 * hyp-panic instead.
 219                 */
 220                pr_warn("unsafe: exception during handler\n");
 221        }
 222
 223        mode = regs->pstate & (PSR_MODE32_BIT | PSR_MODE_MASK);
 224
 225        /*
 226         * If we interrupted the kernel with interrupts masked, we always go
 227         * back to wherever we came from.
 228         */
 229        if (mode == kernel_mode && !interrupts_enabled(regs))
 230                return SDEI_EV_HANDLED;
 231
 232        /*
 233         * Otherwise, we pretend this was an IRQ. This lets user space tasks
 234         * receive signals before we return to them, and KVM to invoke it's
 235         * world switch to do the same.
 236         *
 237         * See DDI0487B.a Table D1-7 'Vector offsets from vector table base
 238         * address'.
 239         */
 240        if (mode == kernel_mode)
 241                return vbar + 0x280;
 242        else if (mode & PSR_MODE32_BIT)
 243                return vbar + 0x680;
 244
 245        return vbar + 0x480;
 246}
 247
 248
 249asmlinkage __kprobes notrace unsigned long
 250__sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
 251{
 252        unsigned long ret;
 253        bool do_nmi_exit = false;
 254
 255        /*
 256         * nmi_enter() deals with printk() re-entrance and use of RCU when
 257         * RCU believed this CPU was idle. Because critical events can
 258         * interrupt normal events, we may already be in_nmi().
 259         */
 260        if (!in_nmi()) {
 261                nmi_enter();
 262                do_nmi_exit = true;
 263        }
 264
 265        ret = _sdei_handler(regs, arg);
 266
 267        if (do_nmi_exit)
 268                nmi_exit();
 269
 270        return ret;
 271}
 272