linux/arch/c6x/kernel/setup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Port on Texas Instruments TMS320C6x architecture
   4 *
   5 *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
   6 *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
   7 */
   8#include <linux/dma-mapping.h>
   9#include <linux/memblock.h>
  10#include <linux/seq_file.h>
  11#include <linux/clkdev.h>
  12#include <linux/initrd.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/of_fdt.h>
  16#include <linux/string.h>
  17#include <linux/errno.h>
  18#include <linux/cache.h>
  19#include <linux/delay.h>
  20#include <linux/sched.h>
  21#include <linux/clk.h>
  22#include <linux/cpu.h>
  23#include <linux/fs.h>
  24#include <linux/of.h>
  25#include <linux/console.h>
  26#include <linux/screen_info.h>
  27
  28#include <asm/sections.h>
  29#include <asm/div64.h>
  30#include <asm/setup.h>
  31#include <asm/dscr.h>
  32#include <asm/clock.h>
  33#include <asm/soc.h>
  34#include <asm/special_insns.h>
  35
  36static const char *c6x_soc_name;
  37
  38struct screen_info screen_info;
  39
  40int c6x_num_cores;
  41EXPORT_SYMBOL_GPL(c6x_num_cores);
  42
  43unsigned int c6x_silicon_rev;
  44EXPORT_SYMBOL_GPL(c6x_silicon_rev);
  45
  46/*
  47 * Device status register. This holds information
  48 * about device configuration needed by some drivers.
  49 */
  50unsigned int c6x_devstat;
  51EXPORT_SYMBOL_GPL(c6x_devstat);
  52
  53/*
  54 * Some SoCs have fuse registers holding a unique MAC
  55 * address. This is parsed out of the device tree with
  56 * the resulting MAC being held here.
  57 */
  58unsigned char c6x_fuse_mac[6];
  59
  60unsigned long memory_start;
  61unsigned long memory_end;
  62EXPORT_SYMBOL(memory_end);
  63
  64unsigned long ram_start;
  65unsigned long ram_end;
  66
  67/* Uncached memory for DMA consistent use (memdma=) */
  68static unsigned long dma_start __initdata;
  69static unsigned long dma_size __initdata;
  70
  71struct cpuinfo_c6x {
  72        const char *cpu_name;
  73        const char *cpu_voltage;
  74        const char *mmu;
  75        const char *fpu;
  76        char *cpu_rev;
  77        unsigned int core_id;
  78        char __cpu_rev[5];
  79};
  80
  81static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
  82
  83unsigned int ticks_per_ns_scaled;
  84EXPORT_SYMBOL(ticks_per_ns_scaled);
  85
  86unsigned int c6x_core_freq;
  87
  88static void __init get_cpuinfo(void)
  89{
  90        unsigned cpu_id, rev_id, csr;
  91        struct clk *coreclk = clk_get_sys(NULL, "core");
  92        unsigned long core_khz;
  93        u64 tmp;
  94        struct cpuinfo_c6x *p;
  95        struct device_node *node;
  96
  97        p = &per_cpu(cpu_data, smp_processor_id());
  98
  99        if (!IS_ERR(coreclk))
 100                c6x_core_freq = clk_get_rate(coreclk);
 101        else {
 102                printk(KERN_WARNING
 103                       "Cannot find core clock frequency. Using 700MHz\n");
 104                c6x_core_freq = 700000000;
 105        }
 106
 107        core_khz = c6x_core_freq / 1000;
 108
 109        tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
 110        do_div(tmp, 1000000);
 111        ticks_per_ns_scaled = tmp;
 112
 113        csr = get_creg(CSR);
 114        cpu_id = csr >> 24;
 115        rev_id = (csr >> 16) & 0xff;
 116
 117        p->mmu = "none";
 118        p->fpu = "none";
 119        p->cpu_voltage = "unknown";
 120
 121        switch (cpu_id) {
 122        case 0:
 123                p->cpu_name = "C67x";
 124                p->fpu = "yes";
 125                break;
 126        case 2:
 127                p->cpu_name = "C62x";
 128                break;
 129        case 8:
 130                p->cpu_name = "C64x";
 131                break;
 132        case 12:
 133                p->cpu_name = "C64x";
 134                break;
 135        case 16:
 136                p->cpu_name = "C64x+";
 137                p->cpu_voltage = "1.2";
 138                break;
 139        case 21:
 140                p->cpu_name = "C66X";
 141                p->cpu_voltage = "1.2";
 142                break;
 143        default:
 144                p->cpu_name = "unknown";
 145                break;
 146        }
 147
 148        if (cpu_id < 16) {
 149                switch (rev_id) {
 150                case 0x1:
 151                        if (cpu_id > 8) {
 152                                p->cpu_rev = "DM640/DM641/DM642/DM643";
 153                                p->cpu_voltage = "1.2 - 1.4";
 154                        } else {
 155                                p->cpu_rev = "C6201";
 156                                p->cpu_voltage = "2.5";
 157                        }
 158                        break;
 159                case 0x2:
 160                        p->cpu_rev = "C6201B/C6202/C6211";
 161                        p->cpu_voltage = "1.8";
 162                        break;
 163                case 0x3:
 164                        p->cpu_rev = "C6202B/C6203/C6204/C6205";
 165                        p->cpu_voltage = "1.5";
 166                        break;
 167                case 0x201:
 168                        p->cpu_rev = "C6701 revision 0 (early CPU)";
 169                        p->cpu_voltage = "1.8";
 170                        break;
 171                case 0x202:
 172                        p->cpu_rev = "C6701/C6711/C6712";
 173                        p->cpu_voltage = "1.8";
 174                        break;
 175                case 0x801:
 176                        p->cpu_rev = "C64x";
 177                        p->cpu_voltage = "1.5";
 178                        break;
 179                default:
 180                        p->cpu_rev = "unknown";
 181                }
 182        } else {
 183                p->cpu_rev = p->__cpu_rev;
 184                snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
 185        }
 186
 187        p->core_id = get_coreid();
 188
 189        for_each_of_cpu_node(node)
 190                ++c6x_num_cores;
 191
 192        node = of_find_node_by_name(NULL, "soc");
 193        if (node) {
 194                if (of_property_read_string(node, "model", &c6x_soc_name))
 195                        c6x_soc_name = "unknown";
 196                of_node_put(node);
 197        } else
 198                c6x_soc_name = "unknown";
 199
 200        printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
 201               p->core_id, p->cpu_name, p->cpu_rev,
 202               p->cpu_voltage, c6x_core_freq / 1000000);
 203}
 204
 205/*
 206 * Early parsing of the command line
 207 */
 208static u32 mem_size __initdata;
 209
 210/* "mem=" parsing. */
 211static int __init early_mem(char *p)
 212{
 213        if (!p)
 214                return -EINVAL;
 215
 216        mem_size = memparse(p, &p);
 217        /* don't remove all of memory when handling "mem={invalid}" */
 218        if (mem_size == 0)
 219                return -EINVAL;
 220
 221        return 0;
 222}
 223early_param("mem", early_mem);
 224
 225/* "memdma=<size>[@<address>]" parsing. */
 226static int __init early_memdma(char *p)
 227{
 228        if (!p)
 229                return -EINVAL;
 230
 231        dma_size = memparse(p, &p);
 232        if (*p == '@')
 233                dma_start = memparse(p, &p);
 234
 235        return 0;
 236}
 237early_param("memdma", early_memdma);
 238
 239int __init c6x_add_memory(phys_addr_t start, unsigned long size)
 240{
 241        static int ram_found __initdata;
 242
 243        /* We only handle one bank (the one with PAGE_OFFSET) for now */
 244        if (ram_found)
 245                return -EINVAL;
 246
 247        if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
 248                return 0;
 249
 250        ram_start = start;
 251        ram_end = start + size;
 252
 253        ram_found = 1;
 254        return 0;
 255}
 256
 257/*
 258 * Do early machine setup and device tree parsing. This is called very
 259 * early on the boot process.
 260 */
 261notrace void __init machine_init(unsigned long dt_ptr)
 262{
 263        void *dtb = __va(dt_ptr);
 264        void *fdt = __dtb_start;
 265
 266        /* interrupts must be masked */
 267        set_creg(IER, 2);
 268
 269        /*
 270         * Set the Interrupt Service Table (IST) to the beginning of the
 271         * vector table.
 272         */
 273        set_ist(_vectors_start);
 274
 275        /*
 276         * dtb is passed in from bootloader.
 277         * fdt is linked in blob.
 278         */
 279        if (dtb && dtb != fdt)
 280                fdt = dtb;
 281
 282        /* Do some early initialization based on the flat device tree */
 283        early_init_dt_scan(fdt);
 284
 285        parse_early_param();
 286}
 287
 288void __init setup_arch(char **cmdline_p)
 289{
 290        struct memblock_region *reg;
 291
 292        printk(KERN_INFO "Initializing kernel\n");
 293
 294        /* Initialize command line */
 295        *cmdline_p = boot_command_line;
 296
 297        memory_end = ram_end;
 298        memory_end &= ~(PAGE_SIZE - 1);
 299
 300        if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
 301                memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
 302
 303        /* add block that this kernel can use */
 304        memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
 305
 306        /* reserve kernel text/data/bss */
 307        memblock_reserve(PAGE_OFFSET,
 308                         PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
 309
 310        if (dma_size) {
 311                /* align to cacheability granularity */
 312                dma_size = CACHE_REGION_END(dma_size);
 313
 314                if (!dma_start)
 315                        dma_start = memory_end - dma_size;
 316
 317                /* align to cacheability granularity */
 318                dma_start = CACHE_REGION_START(dma_start);
 319
 320                /* reserve DMA memory taken from kernel memory */
 321                if (memblock_is_region_memory(dma_start, dma_size))
 322                        memblock_reserve(dma_start, dma_size);
 323        }
 324
 325        memory_start = PAGE_ALIGN((unsigned int) &_end);
 326
 327        printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
 328               memory_start, memory_end);
 329
 330#ifdef CONFIG_BLK_DEV_INITRD
 331        /*
 332         * Reserve initrd memory if in kernel memory.
 333         */
 334        if (initrd_start < initrd_end)
 335                if (memblock_is_region_memory(initrd_start,
 336                                              initrd_end - initrd_start))
 337                        memblock_reserve(initrd_start,
 338                                         initrd_end - initrd_start);
 339#endif
 340
 341        init_mm.start_code = (unsigned long) &_stext;
 342        init_mm.end_code   = (unsigned long) &_etext;
 343        init_mm.end_data   = memory_start;
 344        init_mm.brk        = memory_start;
 345
 346        unflatten_and_copy_device_tree();
 347
 348        c6x_cache_init();
 349
 350        /* Set the whole external memory as non-cacheable */
 351        disable_caching(ram_start, ram_end - 1);
 352
 353        /* Set caching of external RAM used by Linux */
 354        for_each_memblock(memory, reg)
 355                enable_caching(CACHE_REGION_START(reg->base),
 356                               CACHE_REGION_START(reg->base + reg->size - 1));
 357
 358#ifdef CONFIG_BLK_DEV_INITRD
 359        /*
 360         * Enable caching for initrd which falls outside kernel memory.
 361         */
 362        if (initrd_start < initrd_end) {
 363                if (!memblock_is_region_memory(initrd_start,
 364                                               initrd_end - initrd_start))
 365                        enable_caching(CACHE_REGION_START(initrd_start),
 366                                       CACHE_REGION_START(initrd_end - 1));
 367        }
 368#endif
 369
 370        /*
 371         * Disable caching for dma coherent memory taken from kernel memory.
 372         */
 373        if (dma_size && memblock_is_region_memory(dma_start, dma_size))
 374                disable_caching(dma_start,
 375                                CACHE_REGION_START(dma_start + dma_size - 1));
 376
 377        /* Initialize the coherent memory allocator */
 378        coherent_mem_init(dma_start, dma_size);
 379
 380        max_low_pfn = PFN_DOWN(memory_end);
 381        min_low_pfn = PFN_UP(memory_start);
 382        max_pfn = max_low_pfn;
 383        max_mapnr = max_low_pfn - min_low_pfn;
 384
 385        /* Get kmalloc into gear */
 386        paging_init();
 387
 388        /*
 389         * Probe for Device State Configuration Registers.
 390         * We have to do this early in case timer needs to be enabled
 391         * through DSCR.
 392         */
 393        dscr_probe();
 394
 395        /* We do this early for timer and core clock frequency */
 396        c64x_setup_clocks();
 397
 398        /* Get CPU info */
 399        get_cpuinfo();
 400
 401#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
 402        conswitchp = &dummy_con;
 403#endif
 404}
 405
 406#define cpu_to_ptr(n) ((void *)((long)(n)+1))
 407#define ptr_to_cpu(p) ((long)(p) - 1)
 408
 409static int show_cpuinfo(struct seq_file *m, void *v)
 410{
 411        int n = ptr_to_cpu(v);
 412        struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
 413
 414        if (n == 0) {
 415                seq_printf(m,
 416                           "soc\t\t: %s\n"
 417                           "soc revision\t: 0x%x\n"
 418                           "soc cores\t: %d\n",
 419                           c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
 420        }
 421
 422        seq_printf(m,
 423                   "\n"
 424                   "processor\t: %d\n"
 425                   "cpu\t\t: %s\n"
 426                   "core revision\t: %s\n"
 427                   "core voltage\t: %s\n"
 428                   "core id\t\t: %d\n"
 429                   "mmu\t\t: %s\n"
 430                   "fpu\t\t: %s\n"
 431                   "cpu MHz\t\t: %u\n"
 432                   "bogomips\t: %lu.%02lu\n\n",
 433                   n,
 434                   p->cpu_name, p->cpu_rev, p->cpu_voltage,
 435                   p->core_id, p->mmu, p->fpu,
 436                   (c6x_core_freq + 500000) / 1000000,
 437                   (loops_per_jiffy/(500000/HZ)),
 438                   (loops_per_jiffy/(5000/HZ))%100);
 439
 440        return 0;
 441}
 442
 443static void *c_start(struct seq_file *m, loff_t *pos)
 444{
 445        return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
 446}
 447static void *c_next(struct seq_file *m, void *v, loff_t *pos)
 448{
 449        ++*pos;
 450        return NULL;
 451}
 452static void c_stop(struct seq_file *m, void *v)
 453{
 454}
 455
 456const struct seq_operations cpuinfo_op = {
 457        c_start,
 458        c_stop,
 459        c_next,
 460        show_cpuinfo
 461};
 462
 463static struct cpu cpu_devices[NR_CPUS];
 464
 465static int __init topology_init(void)
 466{
 467        int i;
 468
 469        for_each_present_cpu(i)
 470                register_cpu(&cpu_devices[i], i);
 471
 472        return 0;
 473}
 474
 475subsys_initcall(topology_init);
 476