linux/arch/ia64/kernel/mca.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * File:        mca.c
   4 * Purpose:     Generic MCA handling layer
   5 *
   6 * Copyright (C) 2003 Hewlett-Packard Co
   7 *      David Mosberger-Tang <davidm@hpl.hp.com>
   8 *
   9 * Copyright (C) 2002 Dell Inc.
  10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
  11 *
  12 * Copyright (C) 2002 Intel
  13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
  14 *
  15 * Copyright (C) 2001 Intel
  16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
  17 *
  18 * Copyright (C) 2000 Intel
  19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
  20 *
  21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
  22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
  23 *
  24 * Copyright (C) 2006 FUJITSU LIMITED
  25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  26 *
  27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
  28 *            Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
  29 *            added min save state dump, added INIT handler.
  30 *
  31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
  32 *            Added setup of CMCI and CPEI IRQs, logging of corrected platform
  33 *            errors, completed code for logging of corrected & uncorrected
  34 *            machine check errors, and updated for conformance with Nov. 2000
  35 *            revision of the SAL 3.0 spec.
  36 *
  37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
  38 *            Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
  39 *            set SAL default return values, changed error record structure to
  40 *            linked list, added init call to sal_get_state_info_size().
  41 *
  42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
  43 *            GUID cleanups.
  44 *
  45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
  46 *            Added INIT backtrace support.
  47 *
  48 * 2003-12-08 Keith Owens <kaos@sgi.com>
  49 *            smp_call_function() must not be called from interrupt context
  50 *            (can deadlock on tasklist_lock).
  51 *            Use keventd to call smp_call_function().
  52 *
  53 * 2004-02-01 Keith Owens <kaos@sgi.com>
  54 *            Avoid deadlock when using printk() for MCA and INIT records.
  55 *            Delete all record printing code, moved to salinfo_decode in user
  56 *            space.  Mark variables and functions static where possible.
  57 *            Delete dead variables and functions.  Reorder to remove the need
  58 *            for forward declarations and to consolidate related code.
  59 *
  60 * 2005-08-12 Keith Owens <kaos@sgi.com>
  61 *            Convert MCA/INIT handlers to use per event stacks and SAL/OS
  62 *            state.
  63 *
  64 * 2005-10-07 Keith Owens <kaos@sgi.com>
  65 *            Add notify_die() hooks.
  66 *
  67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  68 *            Add printing support for MCA/INIT.
  69 *
  70 * 2007-04-27 Russ Anderson <rja@sgi.com>
  71 *            Support multiple cpus going through OS_MCA in the same event.
  72 */
  73#include <linux/jiffies.h>
  74#include <linux/types.h>
  75#include <linux/init.h>
  76#include <linux/sched/signal.h>
  77#include <linux/sched/debug.h>
  78#include <linux/sched/task.h>
  79#include <linux/interrupt.h>
  80#include <linux/irq.h>
  81#include <linux/memblock.h>
  82#include <linux/acpi.h>
  83#include <linux/timer.h>
  84#include <linux/module.h>
  85#include <linux/kernel.h>
  86#include <linux/smp.h>
  87#include <linux/workqueue.h>
  88#include <linux/cpumask.h>
  89#include <linux/kdebug.h>
  90#include <linux/cpu.h>
  91#include <linux/gfp.h>
  92
  93#include <asm/delay.h>
  94#include <asm/machvec.h>
  95#include <asm/meminit.h>
  96#include <asm/page.h>
  97#include <asm/ptrace.h>
  98#include <asm/sal.h>
  99#include <asm/mca.h>
 100#include <asm/kexec.h>
 101
 102#include <asm/irq.h>
 103#include <asm/hw_irq.h>
 104#include <asm/tlb.h>
 105
 106#include "mca_drv.h"
 107#include "entry.h"
 108
 109#if defined(IA64_MCA_DEBUG_INFO)
 110# define IA64_MCA_DEBUG(fmt...) printk(fmt)
 111#else
 112# define IA64_MCA_DEBUG(fmt...)
 113#endif
 114
 115#define NOTIFY_INIT(event, regs, arg, spin)                             \
 116do {                                                                    \
 117        if ((notify_die((event), "INIT", (regs), (arg), 0, 0)           \
 118                        == NOTIFY_STOP) && ((spin) == 1))               \
 119                ia64_mca_spin(__func__);                                \
 120} while (0)
 121
 122#define NOTIFY_MCA(event, regs, arg, spin)                              \
 123do {                                                                    \
 124        if ((notify_die((event), "MCA", (regs), (arg), 0, 0)            \
 125                        == NOTIFY_STOP) && ((spin) == 1))               \
 126                ia64_mca_spin(__func__);                                \
 127} while (0)
 128
 129/* Used by mca_asm.S */
 130DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
 131DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
 132DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
 133DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
 134DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
 135
 136unsigned long __per_cpu_mca[NR_CPUS];
 137
 138/* In mca_asm.S */
 139extern void                     ia64_os_init_dispatch_monarch (void);
 140extern void                     ia64_os_init_dispatch_slave (void);
 141
 142static int monarch_cpu = -1;
 143
 144static ia64_mc_info_t           ia64_mc_info;
 145
 146#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
 147#define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
 148#define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
 149#define CPE_HISTORY_LENGTH    5
 150#define CMC_HISTORY_LENGTH    5
 151
 152#ifdef CONFIG_ACPI
 153static struct timer_list cpe_poll_timer;
 154#endif
 155static struct timer_list cmc_poll_timer;
 156/*
 157 * This variable tells whether we are currently in polling mode.
 158 * Start with this in the wrong state so we won't play w/ timers
 159 * before the system is ready.
 160 */
 161static int cmc_polling_enabled = 1;
 162
 163/*
 164 * Clearing this variable prevents CPE polling from getting activated
 165 * in mca_late_init.  Use it if your system doesn't provide a CPEI,
 166 * but encounters problems retrieving CPE logs.  This should only be
 167 * necessary for debugging.
 168 */
 169static int cpe_poll_enabled = 1;
 170
 171extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
 172
 173static int mca_init __initdata;
 174
 175/*
 176 * limited & delayed printing support for MCA/INIT handler
 177 */
 178
 179#define mprintk(fmt...) ia64_mca_printk(fmt)
 180
 181#define MLOGBUF_SIZE (512+256*NR_CPUS)
 182#define MLOGBUF_MSGMAX 256
 183static char mlogbuf[MLOGBUF_SIZE];
 184static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
 185static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
 186static unsigned long mlogbuf_start;
 187static unsigned long mlogbuf_end;
 188static unsigned int mlogbuf_finished = 0;
 189static unsigned long mlogbuf_timestamp = 0;
 190
 191static int loglevel_save = -1;
 192#define BREAK_LOGLEVEL(__console_loglevel)              \
 193        oops_in_progress = 1;                           \
 194        if (loglevel_save < 0)                          \
 195                loglevel_save = __console_loglevel;     \
 196        __console_loglevel = 15;
 197
 198#define RESTORE_LOGLEVEL(__console_loglevel)            \
 199        if (loglevel_save >= 0) {                       \
 200                __console_loglevel = loglevel_save;     \
 201                loglevel_save = -1;                     \
 202        }                                               \
 203        mlogbuf_finished = 0;                           \
 204        oops_in_progress = 0;
 205
 206/*
 207 * Push messages into buffer, print them later if not urgent.
 208 */
 209void ia64_mca_printk(const char *fmt, ...)
 210{
 211        va_list args;
 212        int printed_len;
 213        char temp_buf[MLOGBUF_MSGMAX];
 214        char *p;
 215
 216        va_start(args, fmt);
 217        printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
 218        va_end(args);
 219
 220        /* Copy the output into mlogbuf */
 221        if (oops_in_progress) {
 222                /* mlogbuf was abandoned, use printk directly instead. */
 223                printk("%s", temp_buf);
 224        } else {
 225                spin_lock(&mlogbuf_wlock);
 226                for (p = temp_buf; *p; p++) {
 227                        unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
 228                        if (next != mlogbuf_start) {
 229                                mlogbuf[mlogbuf_end] = *p;
 230                                mlogbuf_end = next;
 231                        } else {
 232                                /* buffer full */
 233                                break;
 234                        }
 235                }
 236                mlogbuf[mlogbuf_end] = '\0';
 237                spin_unlock(&mlogbuf_wlock);
 238        }
 239}
 240EXPORT_SYMBOL(ia64_mca_printk);
 241
 242/*
 243 * Print buffered messages.
 244 *  NOTE: call this after returning normal context. (ex. from salinfod)
 245 */
 246void ia64_mlogbuf_dump(void)
 247{
 248        char temp_buf[MLOGBUF_MSGMAX];
 249        char *p;
 250        unsigned long index;
 251        unsigned long flags;
 252        unsigned int printed_len;
 253
 254        /* Get output from mlogbuf */
 255        while (mlogbuf_start != mlogbuf_end) {
 256                temp_buf[0] = '\0';
 257                p = temp_buf;
 258                printed_len = 0;
 259
 260                spin_lock_irqsave(&mlogbuf_rlock, flags);
 261
 262                index = mlogbuf_start;
 263                while (index != mlogbuf_end) {
 264                        *p = mlogbuf[index];
 265                        index = (index + 1) % MLOGBUF_SIZE;
 266                        if (!*p)
 267                                break;
 268                        p++;
 269                        if (++printed_len >= MLOGBUF_MSGMAX - 1)
 270                                break;
 271                }
 272                *p = '\0';
 273                if (temp_buf[0])
 274                        printk("%s", temp_buf);
 275                mlogbuf_start = index;
 276
 277                mlogbuf_timestamp = 0;
 278                spin_unlock_irqrestore(&mlogbuf_rlock, flags);
 279        }
 280}
 281EXPORT_SYMBOL(ia64_mlogbuf_dump);
 282
 283/*
 284 * Call this if system is going to down or if immediate flushing messages to
 285 * console is required. (ex. recovery was failed, crash dump is going to be
 286 * invoked, long-wait rendezvous etc.)
 287 *  NOTE: this should be called from monarch.
 288 */
 289static void ia64_mlogbuf_finish(int wait)
 290{
 291        BREAK_LOGLEVEL(console_loglevel);
 292
 293        spin_lock_init(&mlogbuf_rlock);
 294        ia64_mlogbuf_dump();
 295        printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
 296                "MCA/INIT might be dodgy or fail.\n");
 297
 298        if (!wait)
 299                return;
 300
 301        /* wait for console */
 302        printk("Delaying for 5 seconds...\n");
 303        udelay(5*1000000);
 304
 305        mlogbuf_finished = 1;
 306}
 307
 308/*
 309 * Print buffered messages from INIT context.
 310 */
 311static void ia64_mlogbuf_dump_from_init(void)
 312{
 313        if (mlogbuf_finished)
 314                return;
 315
 316        if (mlogbuf_timestamp &&
 317                        time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
 318                printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
 319                        " and the system seems to be messed up.\n");
 320                ia64_mlogbuf_finish(0);
 321                return;
 322        }
 323
 324        if (!spin_trylock(&mlogbuf_rlock)) {
 325                printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
 326                        "Generated messages other than stack dump will be "
 327                        "buffered to mlogbuf and will be printed later.\n");
 328                printk(KERN_ERR "INIT: If messages would not printed after "
 329                        "this INIT, wait 30sec and assert INIT again.\n");
 330                if (!mlogbuf_timestamp)
 331                        mlogbuf_timestamp = jiffies;
 332                return;
 333        }
 334        spin_unlock(&mlogbuf_rlock);
 335        ia64_mlogbuf_dump();
 336}
 337
 338static inline void
 339ia64_mca_spin(const char *func)
 340{
 341        if (monarch_cpu == smp_processor_id())
 342                ia64_mlogbuf_finish(0);
 343        mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
 344        while (1)
 345                cpu_relax();
 346}
 347/*
 348 * IA64_MCA log support
 349 */
 350#define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
 351#define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
 352
 353typedef struct ia64_state_log_s
 354{
 355        spinlock_t      isl_lock;
 356        int             isl_index;
 357        unsigned long   isl_count;
 358        ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
 359} ia64_state_log_t;
 360
 361static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
 362
 363#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
 364#define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
 365#define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
 366#define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
 367#define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
 368#define IA64_LOG_INDEX_INC(it) \
 369    {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
 370    ia64_state_log[it].isl_count++;}
 371#define IA64_LOG_INDEX_DEC(it) \
 372    ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
 373#define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
 374#define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
 375#define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
 376
 377static inline void ia64_log_allocate(int it, u64 size)
 378{
 379        ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
 380                (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
 381        if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
 382                panic("%s: Failed to allocate %llu bytes\n", __func__, size);
 383
 384        ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
 385                (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
 386        if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
 387                panic("%s: Failed to allocate %llu bytes\n", __func__, size);
 388}
 389
 390/*
 391 * ia64_log_init
 392 *      Reset the OS ia64 log buffer
 393 * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 394 * Outputs      :       None
 395 */
 396static void __init
 397ia64_log_init(int sal_info_type)
 398{
 399        u64     max_size = 0;
 400
 401        IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
 402        IA64_LOG_LOCK_INIT(sal_info_type);
 403
 404        // SAL will tell us the maximum size of any error record of this type
 405        max_size = ia64_sal_get_state_info_size(sal_info_type);
 406        if (!max_size)
 407                /* alloc_bootmem() doesn't like zero-sized allocations! */
 408                return;
 409
 410        // set up OS data structures to hold error info
 411        ia64_log_allocate(sal_info_type, max_size);
 412}
 413
 414/*
 415 * ia64_log_get
 416 *
 417 *      Get the current MCA log from SAL and copy it into the OS log buffer.
 418 *
 419 *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 420 *              irq_safe    whether you can use printk at this point
 421 *  Outputs :   size        (total record length)
 422 *              *buffer     (ptr to error record)
 423 *
 424 */
 425static u64
 426ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
 427{
 428        sal_log_record_header_t     *log_buffer;
 429        u64                         total_len = 0;
 430        unsigned long               s;
 431
 432        IA64_LOG_LOCK(sal_info_type);
 433
 434        /* Get the process state information */
 435        log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
 436
 437        total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
 438
 439        if (total_len) {
 440                IA64_LOG_INDEX_INC(sal_info_type);
 441                IA64_LOG_UNLOCK(sal_info_type);
 442                if (irq_safe) {
 443                        IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
 444                                       __func__, sal_info_type, total_len);
 445                }
 446                *buffer = (u8 *) log_buffer;
 447                return total_len;
 448        } else {
 449                IA64_LOG_UNLOCK(sal_info_type);
 450                return 0;
 451        }
 452}
 453
 454/*
 455 *  ia64_mca_log_sal_error_record
 456 *
 457 *  This function retrieves a specified error record type from SAL
 458 *  and wakes up any processes waiting for error records.
 459 *
 460 *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
 461 *              FIXME: remove MCA and irq_safe.
 462 */
 463static void
 464ia64_mca_log_sal_error_record(int sal_info_type)
 465{
 466        u8 *buffer;
 467        sal_log_record_header_t *rh;
 468        u64 size;
 469        int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
 470#ifdef IA64_MCA_DEBUG_INFO
 471        static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
 472#endif
 473
 474        size = ia64_log_get(sal_info_type, &buffer, irq_safe);
 475        if (!size)
 476                return;
 477
 478        salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
 479
 480        if (irq_safe)
 481                IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
 482                        smp_processor_id(),
 483                        sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
 484
 485        /* Clear logs from corrected errors in case there's no user-level logger */
 486        rh = (sal_log_record_header_t *)buffer;
 487        if (rh->severity == sal_log_severity_corrected)
 488                ia64_sal_clear_state_info(sal_info_type);
 489}
 490
 491/*
 492 * search_mca_table
 493 *  See if the MCA surfaced in an instruction range
 494 *  that has been tagged as recoverable.
 495 *
 496 *  Inputs
 497 *      first   First address range to check
 498 *      last    Last address range to check
 499 *      ip      Instruction pointer, address we are looking for
 500 *
 501 * Return value:
 502 *      1 on Success (in the table)/ 0 on Failure (not in the  table)
 503 */
 504int
 505search_mca_table (const struct mca_table_entry *first,
 506                const struct mca_table_entry *last,
 507                unsigned long ip)
 508{
 509        const struct mca_table_entry *curr;
 510        u64 curr_start, curr_end;
 511
 512        curr = first;
 513        while (curr <= last) {
 514                curr_start = (u64) &curr->start_addr + curr->start_addr;
 515                curr_end = (u64) &curr->end_addr + curr->end_addr;
 516
 517                if ((ip >= curr_start) && (ip <= curr_end)) {
 518                        return 1;
 519                }
 520                curr++;
 521        }
 522        return 0;
 523}
 524
 525/* Given an address, look for it in the mca tables. */
 526int mca_recover_range(unsigned long addr)
 527{
 528        extern struct mca_table_entry __start___mca_table[];
 529        extern struct mca_table_entry __stop___mca_table[];
 530
 531        return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
 532}
 533EXPORT_SYMBOL_GPL(mca_recover_range);
 534
 535#ifdef CONFIG_ACPI
 536
 537int cpe_vector = -1;
 538int ia64_cpe_irq = -1;
 539
 540static irqreturn_t
 541ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
 542{
 543        static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
 544        static int              index;
 545        static DEFINE_SPINLOCK(cpe_history_lock);
 546
 547        IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
 548                       __func__, cpe_irq, smp_processor_id());
 549
 550        /* SAL spec states this should run w/ interrupts enabled */
 551        local_irq_enable();
 552
 553        spin_lock(&cpe_history_lock);
 554        if (!cpe_poll_enabled && cpe_vector >= 0) {
 555
 556                int i, count = 1; /* we know 1 happened now */
 557                unsigned long now = jiffies;
 558
 559                for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
 560                        if (now - cpe_history[i] <= HZ)
 561                                count++;
 562                }
 563
 564                IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
 565                if (count >= CPE_HISTORY_LENGTH) {
 566
 567                        cpe_poll_enabled = 1;
 568                        spin_unlock(&cpe_history_lock);
 569                        disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
 570
 571                        /*
 572                         * Corrected errors will still be corrected, but
 573                         * make sure there's a log somewhere that indicates
 574                         * something is generating more than we can handle.
 575                         */
 576                        printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
 577
 578                        mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
 579
 580                        /* lock already released, get out now */
 581                        goto out;
 582                } else {
 583                        cpe_history[index++] = now;
 584                        if (index == CPE_HISTORY_LENGTH)
 585                                index = 0;
 586                }
 587        }
 588        spin_unlock(&cpe_history_lock);
 589out:
 590        /* Get the CPE error record and log it */
 591        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
 592
 593        local_irq_disable();
 594
 595        return IRQ_HANDLED;
 596}
 597
 598#endif /* CONFIG_ACPI */
 599
 600#ifdef CONFIG_ACPI
 601/*
 602 * ia64_mca_register_cpev
 603 *
 604 *  Register the corrected platform error vector with SAL.
 605 *
 606 *  Inputs
 607 *      cpev        Corrected Platform Error Vector number
 608 *
 609 *  Outputs
 610 *      None
 611 */
 612void
 613ia64_mca_register_cpev (int cpev)
 614{
 615        /* Register the CPE interrupt vector with SAL */
 616        struct ia64_sal_retval isrv;
 617
 618        isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
 619        if (isrv.status) {
 620                printk(KERN_ERR "Failed to register Corrected Platform "
 621                       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
 622                return;
 623        }
 624
 625        IA64_MCA_DEBUG("%s: corrected platform error "
 626                       "vector %#x registered\n", __func__, cpev);
 627}
 628#endif /* CONFIG_ACPI */
 629
 630/*
 631 * ia64_mca_cmc_vector_setup
 632 *
 633 *  Setup the corrected machine check vector register in the processor.
 634 *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
 635 *  This function is invoked on a per-processor basis.
 636 *
 637 * Inputs
 638 *      None
 639 *
 640 * Outputs
 641 *      None
 642 */
 643void
 644ia64_mca_cmc_vector_setup (void)
 645{
 646        cmcv_reg_t      cmcv;
 647
 648        cmcv.cmcv_regval        = 0;
 649        cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
 650        cmcv.cmcv_vector        = IA64_CMC_VECTOR;
 651        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 652
 653        IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
 654                       __func__, smp_processor_id(), IA64_CMC_VECTOR);
 655
 656        IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
 657                       __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
 658}
 659
 660/*
 661 * ia64_mca_cmc_vector_disable
 662 *
 663 *  Mask the corrected machine check vector register in the processor.
 664 *  This function is invoked on a per-processor basis.
 665 *
 666 * Inputs
 667 *      dummy(unused)
 668 *
 669 * Outputs
 670 *      None
 671 */
 672static void
 673ia64_mca_cmc_vector_disable (void *dummy)
 674{
 675        cmcv_reg_t      cmcv;
 676
 677        cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 678
 679        cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
 680        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 681
 682        IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
 683                       __func__, smp_processor_id(), cmcv.cmcv_vector);
 684}
 685
 686/*
 687 * ia64_mca_cmc_vector_enable
 688 *
 689 *  Unmask the corrected machine check vector register in the processor.
 690 *  This function is invoked on a per-processor basis.
 691 *
 692 * Inputs
 693 *      dummy(unused)
 694 *
 695 * Outputs
 696 *      None
 697 */
 698static void
 699ia64_mca_cmc_vector_enable (void *dummy)
 700{
 701        cmcv_reg_t      cmcv;
 702
 703        cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 704
 705        cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
 706        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 707
 708        IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
 709                       __func__, smp_processor_id(), cmcv.cmcv_vector);
 710}
 711
 712/*
 713 * ia64_mca_cmc_vector_disable_keventd
 714 *
 715 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 716 * disable the cmc interrupt vector.
 717 */
 718static void
 719ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
 720{
 721        on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
 722}
 723
 724/*
 725 * ia64_mca_cmc_vector_enable_keventd
 726 *
 727 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 728 * enable the cmc interrupt vector.
 729 */
 730static void
 731ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
 732{
 733        on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
 734}
 735
 736/*
 737 * ia64_mca_wakeup
 738 *
 739 *      Send an inter-cpu interrupt to wake-up a particular cpu.
 740 *
 741 *  Inputs  :   cpuid
 742 *  Outputs :   None
 743 */
 744static void
 745ia64_mca_wakeup(int cpu)
 746{
 747        platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
 748}
 749
 750/*
 751 * ia64_mca_wakeup_all
 752 *
 753 *      Wakeup all the slave cpus which have rendez'ed previously.
 754 *
 755 *  Inputs  :   None
 756 *  Outputs :   None
 757 */
 758static void
 759ia64_mca_wakeup_all(void)
 760{
 761        int cpu;
 762
 763        /* Clear the Rendez checkin flag for all cpus */
 764        for_each_online_cpu(cpu) {
 765                if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
 766                        ia64_mca_wakeup(cpu);
 767        }
 768
 769}
 770
 771/*
 772 * ia64_mca_rendez_interrupt_handler
 773 *
 774 *      This is handler used to put slave processors into spinloop
 775 *      while the monarch processor does the mca handling and later
 776 *      wake each slave up once the monarch is done.  The state
 777 *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
 778 *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
 779 *      the cpu has come out of OS rendezvous.
 780 *
 781 *  Inputs  :   None
 782 *  Outputs :   None
 783 */
 784static irqreturn_t
 785ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
 786{
 787        unsigned long flags;
 788        int cpu = smp_processor_id();
 789        struct ia64_mca_notify_die nd =
 790                { .sos = NULL, .monarch_cpu = &monarch_cpu };
 791
 792        /* Mask all interrupts */
 793        local_irq_save(flags);
 794
 795        NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
 796
 797        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
 798        /* Register with the SAL monarch that the slave has
 799         * reached SAL
 800         */
 801        ia64_sal_mc_rendez();
 802
 803        NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
 804
 805        /* Wait for the monarch cpu to exit. */
 806        while (monarch_cpu != -1)
 807               cpu_relax();     /* spin until monarch leaves */
 808
 809        NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
 810
 811        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
 812        /* Enable all interrupts */
 813        local_irq_restore(flags);
 814        return IRQ_HANDLED;
 815}
 816
 817/*
 818 * ia64_mca_wakeup_int_handler
 819 *
 820 *      The interrupt handler for processing the inter-cpu interrupt to the
 821 *      slave cpu which was spinning in the rendez loop.
 822 *      Since this spinning is done by turning off the interrupts and
 823 *      polling on the wakeup-interrupt bit in the IRR, there is
 824 *      nothing useful to be done in the handler.
 825 *
 826 *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
 827 *      arg             (Interrupt handler specific argument)
 828 *  Outputs :   None
 829 *
 830 */
 831static irqreturn_t
 832ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
 833{
 834        return IRQ_HANDLED;
 835}
 836
 837/* Function pointer for extra MCA recovery */
 838int (*ia64_mca_ucmc_extension)
 839        (void*,struct ia64_sal_os_state*)
 840        = NULL;
 841
 842int
 843ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
 844{
 845        if (ia64_mca_ucmc_extension)
 846                return 1;
 847
 848        ia64_mca_ucmc_extension = fn;
 849        return 0;
 850}
 851
 852void
 853ia64_unreg_MCA_extension(void)
 854{
 855        if (ia64_mca_ucmc_extension)
 856                ia64_mca_ucmc_extension = NULL;
 857}
 858
 859EXPORT_SYMBOL(ia64_reg_MCA_extension);
 860EXPORT_SYMBOL(ia64_unreg_MCA_extension);
 861
 862
 863static inline void
 864copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
 865{
 866        u64 fslot, tslot, nat;
 867        *tr = *fr;
 868        fslot = ((unsigned long)fr >> 3) & 63;
 869        tslot = ((unsigned long)tr >> 3) & 63;
 870        *tnat &= ~(1UL << tslot);
 871        nat = (fnat >> fslot) & 1;
 872        *tnat |= (nat << tslot);
 873}
 874
 875/* Change the comm field on the MCA/INT task to include the pid that
 876 * was interrupted, it makes for easier debugging.  If that pid was 0
 877 * (swapper or nested MCA/INIT) then use the start of the previous comm
 878 * field suffixed with its cpu.
 879 */
 880
 881static void
 882ia64_mca_modify_comm(const struct task_struct *previous_current)
 883{
 884        char *p, comm[sizeof(current->comm)];
 885        if (previous_current->pid)
 886                snprintf(comm, sizeof(comm), "%s %d",
 887                        current->comm, previous_current->pid);
 888        else {
 889                int l;
 890                if ((p = strchr(previous_current->comm, ' ')))
 891                        l = p - previous_current->comm;
 892                else
 893                        l = strlen(previous_current->comm);
 894                snprintf(comm, sizeof(comm), "%s %*s %d",
 895                        current->comm, l, previous_current->comm,
 896                        task_thread_info(previous_current)->cpu);
 897        }
 898        memcpy(current->comm, comm, sizeof(current->comm));
 899}
 900
 901static void
 902finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
 903                unsigned long *nat)
 904{
 905        const pal_min_state_area_t *ms = sos->pal_min_state;
 906        const u64 *bank;
 907
 908        /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
 909         * pmsa_{xip,xpsr,xfs}
 910         */
 911        if (ia64_psr(regs)->ic) {
 912                regs->cr_iip = ms->pmsa_iip;
 913                regs->cr_ipsr = ms->pmsa_ipsr;
 914                regs->cr_ifs = ms->pmsa_ifs;
 915        } else {
 916                regs->cr_iip = ms->pmsa_xip;
 917                regs->cr_ipsr = ms->pmsa_xpsr;
 918                regs->cr_ifs = ms->pmsa_xfs;
 919
 920                sos->iip = ms->pmsa_iip;
 921                sos->ipsr = ms->pmsa_ipsr;
 922                sos->ifs = ms->pmsa_ifs;
 923        }
 924        regs->pr = ms->pmsa_pr;
 925        regs->b0 = ms->pmsa_br0;
 926        regs->ar_rsc = ms->pmsa_rsc;
 927        copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
 928        copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
 929        copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
 930        copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
 931        copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
 932        copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
 933        copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
 934        copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
 935        copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
 936        copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
 937        copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
 938        if (ia64_psr(regs)->bn)
 939                bank = ms->pmsa_bank1_gr;
 940        else
 941                bank = ms->pmsa_bank0_gr;
 942        copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
 943        copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
 944        copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
 945        copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
 946        copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
 947        copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
 948        copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
 949        copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
 950        copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
 951        copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
 952        copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
 953        copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
 954        copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
 955        copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
 956        copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
 957        copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
 958}
 959
 960/* On entry to this routine, we are running on the per cpu stack, see
 961 * mca_asm.h.  The original stack has not been touched by this event.  Some of
 962 * the original stack's registers will be in the RBS on this stack.  This stack
 963 * also contains a partial pt_regs and switch_stack, the rest of the data is in
 964 * PAL minstate.
 965 *
 966 * The first thing to do is modify the original stack to look like a blocked
 967 * task so we can run backtrace on the original task.  Also mark the per cpu
 968 * stack as current to ensure that we use the correct task state, it also means
 969 * that we can do backtrace on the MCA/INIT handler code itself.
 970 */
 971
 972static struct task_struct *
 973ia64_mca_modify_original_stack(struct pt_regs *regs,
 974                const struct switch_stack *sw,
 975                struct ia64_sal_os_state *sos,
 976                const char *type)
 977{
 978        char *p;
 979        ia64_va va;
 980        extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
 981        const pal_min_state_area_t *ms = sos->pal_min_state;
 982        struct task_struct *previous_current;
 983        struct pt_regs *old_regs;
 984        struct switch_stack *old_sw;
 985        unsigned size = sizeof(struct pt_regs) +
 986                        sizeof(struct switch_stack) + 16;
 987        unsigned long *old_bspstore, *old_bsp;
 988        unsigned long *new_bspstore, *new_bsp;
 989        unsigned long old_unat, old_rnat, new_rnat, nat;
 990        u64 slots, loadrs = regs->loadrs;
 991        u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
 992        u64 ar_bspstore = regs->ar_bspstore;
 993        u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
 994        const char *msg;
 995        int cpu = smp_processor_id();
 996
 997        previous_current = curr_task(cpu);
 998        ia64_set_curr_task(cpu, current);
 999        if ((p = strchr(current->comm, ' ')))
1000                *p = '\0';
1001
1002        /* Best effort attempt to cope with MCA/INIT delivered while in
1003         * physical mode.
1004         */
1005        regs->cr_ipsr = ms->pmsa_ipsr;
1006        if (ia64_psr(regs)->dt == 0) {
1007                va.l = r12;
1008                if (va.f.reg == 0) {
1009                        va.f.reg = 7;
1010                        r12 = va.l;
1011                }
1012                va.l = r13;
1013                if (va.f.reg == 0) {
1014                        va.f.reg = 7;
1015                        r13 = va.l;
1016                }
1017        }
1018        if (ia64_psr(regs)->rt == 0) {
1019                va.l = ar_bspstore;
1020                if (va.f.reg == 0) {
1021                        va.f.reg = 7;
1022                        ar_bspstore = va.l;
1023                }
1024                va.l = ar_bsp;
1025                if (va.f.reg == 0) {
1026                        va.f.reg = 7;
1027                        ar_bsp = va.l;
1028                }
1029        }
1030
1031        /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1032         * have been copied to the old stack, the old stack may fail the
1033         * validation tests below.  So ia64_old_stack() must restore the dirty
1034         * registers from the new stack.  The old and new bspstore probably
1035         * have different alignments, so loadrs calculated on the old bsp
1036         * cannot be used to restore from the new bsp.  Calculate a suitable
1037         * loadrs for the new stack and save it in the new pt_regs, where
1038         * ia64_old_stack() can get it.
1039         */
1040        old_bspstore = (unsigned long *)ar_bspstore;
1041        old_bsp = (unsigned long *)ar_bsp;
1042        slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1043        new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1044        new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1045        regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1046
1047        /* Verify the previous stack state before we change it */
1048        if (user_mode(regs)) {
1049                msg = "occurred in user space";
1050                /* previous_current is guaranteed to be valid when the task was
1051                 * in user space, so ...
1052                 */
1053                ia64_mca_modify_comm(previous_current);
1054                goto no_mod;
1055        }
1056
1057        if (r13 != sos->prev_IA64_KR_CURRENT) {
1058                msg = "inconsistent previous current and r13";
1059                goto no_mod;
1060        }
1061
1062        if (!mca_recover_range(ms->pmsa_iip)) {
1063                if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1064                        msg = "inconsistent r12 and r13";
1065                        goto no_mod;
1066                }
1067                if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1068                        msg = "inconsistent ar.bspstore and r13";
1069                        goto no_mod;
1070                }
1071                va.p = old_bspstore;
1072                if (va.f.reg < 5) {
1073                        msg = "old_bspstore is in the wrong region";
1074                        goto no_mod;
1075                }
1076                if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1077                        msg = "inconsistent ar.bsp and r13";
1078                        goto no_mod;
1079                }
1080                size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1081                if (ar_bspstore + size > r12) {
1082                        msg = "no room for blocked state";
1083                        goto no_mod;
1084                }
1085        }
1086
1087        ia64_mca_modify_comm(previous_current);
1088
1089        /* Make the original task look blocked.  First stack a struct pt_regs,
1090         * describing the state at the time of interrupt.  mca_asm.S built a
1091         * partial pt_regs, copy it and fill in the blanks using minstate.
1092         */
1093        p = (char *)r12 - sizeof(*regs);
1094        old_regs = (struct pt_regs *)p;
1095        memcpy(old_regs, regs, sizeof(*regs));
1096        old_regs->loadrs = loadrs;
1097        old_unat = old_regs->ar_unat;
1098        finish_pt_regs(old_regs, sos, &old_unat);
1099
1100        /* Next stack a struct switch_stack.  mca_asm.S built a partial
1101         * switch_stack, copy it and fill in the blanks using pt_regs and
1102         * minstate.
1103         *
1104         * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1105         * ar.pfs is set to 0.
1106         *
1107         * unwind.c::unw_unwind() does special processing for interrupt frames.
1108         * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1109         * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1110         * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1111         * switch_stack on the original stack so it will unwind correctly when
1112         * unwind.c reads pt_regs.
1113         *
1114         * thread.ksp is updated to point to the synthesized switch_stack.
1115         */
1116        p -= sizeof(struct switch_stack);
1117        old_sw = (struct switch_stack *)p;
1118        memcpy(old_sw, sw, sizeof(*sw));
1119        old_sw->caller_unat = old_unat;
1120        old_sw->ar_fpsr = old_regs->ar_fpsr;
1121        copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1122        copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1123        copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1124        copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1125        old_sw->b0 = (u64)ia64_leave_kernel;
1126        old_sw->b1 = ms->pmsa_br1;
1127        old_sw->ar_pfs = 0;
1128        old_sw->ar_unat = old_unat;
1129        old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1130        previous_current->thread.ksp = (u64)p - 16;
1131
1132        /* Finally copy the original stack's registers back to its RBS.
1133         * Registers from ar.bspstore through ar.bsp at the time of the event
1134         * are in the current RBS, copy them back to the original stack.  The
1135         * copy must be done register by register because the original bspstore
1136         * and the current one have different alignments, so the saved RNAT
1137         * data occurs at different places.
1138         *
1139         * mca_asm does cover, so the old_bsp already includes all registers at
1140         * the time of MCA/INIT.  It also does flushrs, so all registers before
1141         * this function have been written to backing store on the MCA/INIT
1142         * stack.
1143         */
1144        new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1145        old_rnat = regs->ar_rnat;
1146        while (slots--) {
1147                if (ia64_rse_is_rnat_slot(new_bspstore)) {
1148                        new_rnat = ia64_get_rnat(new_bspstore++);
1149                }
1150                if (ia64_rse_is_rnat_slot(old_bspstore)) {
1151                        *old_bspstore++ = old_rnat;
1152                        old_rnat = 0;
1153                }
1154                nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1155                old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1156                old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1157                *old_bspstore++ = *new_bspstore++;
1158        }
1159        old_sw->ar_bspstore = (unsigned long)old_bspstore;
1160        old_sw->ar_rnat = old_rnat;
1161
1162        sos->prev_task = previous_current;
1163        return previous_current;
1164
1165no_mod:
1166        mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1167                        smp_processor_id(), type, msg);
1168        old_unat = regs->ar_unat;
1169        finish_pt_regs(regs, sos, &old_unat);
1170        return previous_current;
1171}
1172
1173/* The monarch/slave interaction is based on monarch_cpu and requires that all
1174 * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1175 * not entered rendezvous yet then wait a bit.  The assumption is that any
1176 * slave that has not rendezvoused after a reasonable time is never going to do
1177 * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1178 * interrupt, as well as cpus that receive the INIT slave event.
1179 */
1180
1181static void
1182ia64_wait_for_slaves(int monarch, const char *type)
1183{
1184        int c, i , wait;
1185
1186        /*
1187         * wait 5 seconds total for slaves (arbitrary)
1188         */
1189        for (i = 0; i < 5000; i++) {
1190                wait = 0;
1191                for_each_online_cpu(c) {
1192                        if (c == monarch)
1193                                continue;
1194                        if (ia64_mc_info.imi_rendez_checkin[c]
1195                                        == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1196                                udelay(1000);           /* short wait */
1197                                wait = 1;
1198                                break;
1199                        }
1200                }
1201                if (!wait)
1202                        goto all_in;
1203        }
1204
1205        /*
1206         * Maybe slave(s) dead. Print buffered messages immediately.
1207         */
1208        ia64_mlogbuf_finish(0);
1209        mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1210        for_each_online_cpu(c) {
1211                if (c == monarch)
1212                        continue;
1213                if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1214                        mprintk(" %d", c);
1215        }
1216        mprintk("\n");
1217        return;
1218
1219all_in:
1220        mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1221        return;
1222}
1223
1224/*  mca_insert_tr
1225 *
1226 *  Switch rid when TR reload and needed!
1227 *  iord: 1: itr, 2: itr;
1228 *
1229*/
1230static void mca_insert_tr(u64 iord)
1231{
1232
1233        int i;
1234        u64 old_rr;
1235        struct ia64_tr_entry *p;
1236        unsigned long psr;
1237        int cpu = smp_processor_id();
1238
1239        if (!ia64_idtrs[cpu])
1240                return;
1241
1242        psr = ia64_clear_ic();
1243        for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1244                p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1245                if (p->pte & 0x1) {
1246                        old_rr = ia64_get_rr(p->ifa);
1247                        if (old_rr != p->rr) {
1248                                ia64_set_rr(p->ifa, p->rr);
1249                                ia64_srlz_d();
1250                        }
1251                        ia64_ptr(iord, p->ifa, p->itir >> 2);
1252                        ia64_srlz_i();
1253                        if (iord & 0x1) {
1254                                ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1255                                ia64_srlz_i();
1256                        }
1257                        if (iord & 0x2) {
1258                                ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1259                                ia64_srlz_i();
1260                        }
1261                        if (old_rr != p->rr) {
1262                                ia64_set_rr(p->ifa, old_rr);
1263                                ia64_srlz_d();
1264                        }
1265                }
1266        }
1267        ia64_set_psr(psr);
1268}
1269
1270/*
1271 * ia64_mca_handler
1272 *
1273 *      This is uncorrectable machine check handler called from OS_MCA
1274 *      dispatch code which is in turn called from SAL_CHECK().
1275 *      This is the place where the core of OS MCA handling is done.
1276 *      Right now the logs are extracted and displayed in a well-defined
1277 *      format. This handler code is supposed to be run only on the
1278 *      monarch processor. Once the monarch is done with MCA handling
1279 *      further MCA logging is enabled by clearing logs.
1280 *      Monarch also has the duty of sending wakeup-IPIs to pull the
1281 *      slave processors out of rendezvous spinloop.
1282 *
1283 *      If multiple processors call into OS_MCA, the first will become
1284 *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1285 *      bitmask.  After the first monarch has processed its MCA, it
1286 *      will wake up the next cpu in the mca_cpu bitmask and then go
1287 *      into the rendezvous loop.  When all processors have serviced
1288 *      their MCA, the last monarch frees up the rest of the processors.
1289 */
1290void
1291ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1292                 struct ia64_sal_os_state *sos)
1293{
1294        int recover, cpu = smp_processor_id();
1295        struct task_struct *previous_current;
1296        struct ia64_mca_notify_die nd =
1297                { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1298        static atomic_t mca_count;
1299        static cpumask_t mca_cpu;
1300
1301        if (atomic_add_return(1, &mca_count) == 1) {
1302                monarch_cpu = cpu;
1303                sos->monarch = 1;
1304        } else {
1305                cpumask_set_cpu(cpu, &mca_cpu);
1306                sos->monarch = 0;
1307        }
1308        mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1309                "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1310
1311        previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1312
1313        NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1314
1315        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1316        if (sos->monarch) {
1317                ia64_wait_for_slaves(cpu, "MCA");
1318
1319                /* Wakeup all the processors which are spinning in the
1320                 * rendezvous loop.  They will leave SAL, then spin in the OS
1321                 * with interrupts disabled until this monarch cpu leaves the
1322                 * MCA handler.  That gets control back to the OS so we can
1323                 * backtrace the other cpus, backtrace when spinning in SAL
1324                 * does not work.
1325                 */
1326                ia64_mca_wakeup_all();
1327        } else {
1328                while (cpumask_test_cpu(cpu, &mca_cpu))
1329                        cpu_relax();    /* spin until monarch wakes us */
1330        }
1331
1332        NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1333
1334        /* Get the MCA error record and log it */
1335        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1336
1337        /* MCA error recovery */
1338        recover = (ia64_mca_ucmc_extension
1339                && ia64_mca_ucmc_extension(
1340                        IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1341                        sos));
1342
1343        if (recover) {
1344                sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1345                rh->severity = sal_log_severity_corrected;
1346                ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1347                sos->os_status = IA64_MCA_CORRECTED;
1348        } else {
1349                /* Dump buffered message to console */
1350                ia64_mlogbuf_finish(1);
1351        }
1352
1353        if (__this_cpu_read(ia64_mca_tr_reload)) {
1354                mca_insert_tr(0x1); /*Reload dynamic itrs*/
1355                mca_insert_tr(0x2); /*Reload dynamic itrs*/
1356        }
1357
1358        NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1359
1360        if (atomic_dec_return(&mca_count) > 0) {
1361                int i;
1362
1363                /* wake up the next monarch cpu,
1364                 * and put this cpu in the rendez loop.
1365                 */
1366                for_each_online_cpu(i) {
1367                        if (cpumask_test_cpu(i, &mca_cpu)) {
1368                                monarch_cpu = i;
1369                                cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1370                                while (monarch_cpu != -1)
1371                                        cpu_relax();    /* spin until last cpu leaves */
1372                                ia64_set_curr_task(cpu, previous_current);
1373                                ia64_mc_info.imi_rendez_checkin[cpu]
1374                                                = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1375                                return;
1376                        }
1377                }
1378        }
1379        ia64_set_curr_task(cpu, previous_current);
1380        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1381        monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1382}
1383
1384static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1385static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1386
1387/*
1388 * ia64_mca_cmc_int_handler
1389 *
1390 *  This is corrected machine check interrupt handler.
1391 *      Right now the logs are extracted and displayed in a well-defined
1392 *      format.
1393 *
1394 * Inputs
1395 *      interrupt number
1396 *      client data arg ptr
1397 *
1398 * Outputs
1399 *      None
1400 */
1401static irqreturn_t
1402ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1403{
1404        static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1405        static int              index;
1406        static DEFINE_SPINLOCK(cmc_history_lock);
1407
1408        IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1409                       __func__, cmc_irq, smp_processor_id());
1410
1411        /* SAL spec states this should run w/ interrupts enabled */
1412        local_irq_enable();
1413
1414        spin_lock(&cmc_history_lock);
1415        if (!cmc_polling_enabled) {
1416                int i, count = 1; /* we know 1 happened now */
1417                unsigned long now = jiffies;
1418
1419                for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1420                        if (now - cmc_history[i] <= HZ)
1421                                count++;
1422                }
1423
1424                IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1425                if (count >= CMC_HISTORY_LENGTH) {
1426
1427                        cmc_polling_enabled = 1;
1428                        spin_unlock(&cmc_history_lock);
1429                        /* If we're being hit with CMC interrupts, we won't
1430                         * ever execute the schedule_work() below.  Need to
1431                         * disable CMC interrupts on this processor now.
1432                         */
1433                        ia64_mca_cmc_vector_disable(NULL);
1434                        schedule_work(&cmc_disable_work);
1435
1436                        /*
1437                         * Corrected errors will still be corrected, but
1438                         * make sure there's a log somewhere that indicates
1439                         * something is generating more than we can handle.
1440                         */
1441                        printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1442
1443                        mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1444
1445                        /* lock already released, get out now */
1446                        goto out;
1447                } else {
1448                        cmc_history[index++] = now;
1449                        if (index == CMC_HISTORY_LENGTH)
1450                                index = 0;
1451                }
1452        }
1453        spin_unlock(&cmc_history_lock);
1454out:
1455        /* Get the CMC error record and log it */
1456        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1457
1458        local_irq_disable();
1459
1460        return IRQ_HANDLED;
1461}
1462
1463/*
1464 *  ia64_mca_cmc_int_caller
1465 *
1466 *      Triggered by sw interrupt from CMC polling routine.  Calls
1467 *      real interrupt handler and either triggers a sw interrupt
1468 *      on the next cpu or does cleanup at the end.
1469 *
1470 * Inputs
1471 *      interrupt number
1472 *      client data arg ptr
1473 * Outputs
1474 *      handled
1475 */
1476static irqreturn_t
1477ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1478{
1479        static int start_count = -1;
1480        unsigned int cpuid;
1481
1482        cpuid = smp_processor_id();
1483
1484        /* If first cpu, update count */
1485        if (start_count == -1)
1486                start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1487
1488        ia64_mca_cmc_int_handler(cmc_irq, arg);
1489
1490        cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1491
1492        if (cpuid < nr_cpu_ids) {
1493                platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1494        } else {
1495                /* If no log record, switch out of polling mode */
1496                if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1497
1498                        printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1499                        schedule_work(&cmc_enable_work);
1500                        cmc_polling_enabled = 0;
1501
1502                } else {
1503
1504                        mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1505                }
1506
1507                start_count = -1;
1508        }
1509
1510        return IRQ_HANDLED;
1511}
1512
1513/*
1514 *  ia64_mca_cmc_poll
1515 *
1516 *      Poll for Corrected Machine Checks (CMCs)
1517 *
1518 * Inputs   :   dummy(unused)
1519 * Outputs  :   None
1520 *
1521 */
1522static void
1523ia64_mca_cmc_poll (struct timer_list *unused)
1524{
1525        /* Trigger a CMC interrupt cascade  */
1526        platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1527                                                        IA64_IPI_DM_INT, 0);
1528}
1529
1530/*
1531 *  ia64_mca_cpe_int_caller
1532 *
1533 *      Triggered by sw interrupt from CPE polling routine.  Calls
1534 *      real interrupt handler and either triggers a sw interrupt
1535 *      on the next cpu or does cleanup at the end.
1536 *
1537 * Inputs
1538 *      interrupt number
1539 *      client data arg ptr
1540 * Outputs
1541 *      handled
1542 */
1543#ifdef CONFIG_ACPI
1544
1545static irqreturn_t
1546ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1547{
1548        static int start_count = -1;
1549        static int poll_time = MIN_CPE_POLL_INTERVAL;
1550        unsigned int cpuid;
1551
1552        cpuid = smp_processor_id();
1553
1554        /* If first cpu, update count */
1555        if (start_count == -1)
1556                start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1557
1558        ia64_mca_cpe_int_handler(cpe_irq, arg);
1559
1560        cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1561
1562        if (cpuid < NR_CPUS) {
1563                platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1564        } else {
1565                /*
1566                 * If a log was recorded, increase our polling frequency,
1567                 * otherwise, backoff or return to interrupt mode.
1568                 */
1569                if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1570                        poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1571                } else if (cpe_vector < 0) {
1572                        poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1573                } else {
1574                        poll_time = MIN_CPE_POLL_INTERVAL;
1575
1576                        printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1577                        enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1578                        cpe_poll_enabled = 0;
1579                }
1580
1581                if (cpe_poll_enabled)
1582                        mod_timer(&cpe_poll_timer, jiffies + poll_time);
1583                start_count = -1;
1584        }
1585
1586        return IRQ_HANDLED;
1587}
1588
1589/*
1590 *  ia64_mca_cpe_poll
1591 *
1592 *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1593 *      on first cpu, from there it will trickle through all the cpus.
1594 *
1595 * Inputs   :   dummy(unused)
1596 * Outputs  :   None
1597 *
1598 */
1599static void
1600ia64_mca_cpe_poll (struct timer_list *unused)
1601{
1602        /* Trigger a CPE interrupt cascade  */
1603        platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1604                                                        IA64_IPI_DM_INT, 0);
1605}
1606
1607#endif /* CONFIG_ACPI */
1608
1609static int
1610default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1611{
1612        int c;
1613        struct task_struct *g, *t;
1614        if (val != DIE_INIT_MONARCH_PROCESS)
1615                return NOTIFY_DONE;
1616#ifdef CONFIG_KEXEC
1617        if (atomic_read(&kdump_in_progress))
1618                return NOTIFY_DONE;
1619#endif
1620
1621        /*
1622         * FIXME: mlogbuf will brim over with INIT stack dumps.
1623         * To enable show_stack from INIT, we use oops_in_progress which should
1624         * be used in real oops. This would cause something wrong after INIT.
1625         */
1626        BREAK_LOGLEVEL(console_loglevel);
1627        ia64_mlogbuf_dump_from_init();
1628
1629        printk(KERN_ERR "Processes interrupted by INIT -");
1630        for_each_online_cpu(c) {
1631                struct ia64_sal_os_state *s;
1632                t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1633                s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1634                g = s->prev_task;
1635                if (g) {
1636                        if (g->pid)
1637                                printk(" %d", g->pid);
1638                        else
1639                                printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1640                }
1641        }
1642        printk("\n\n");
1643        if (read_trylock(&tasklist_lock)) {
1644                do_each_thread (g, t) {
1645                        printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1646                        show_stack(t, NULL);
1647                } while_each_thread (g, t);
1648                read_unlock(&tasklist_lock);
1649        }
1650        /* FIXME: This will not restore zapped printk locks. */
1651        RESTORE_LOGLEVEL(console_loglevel);
1652        return NOTIFY_DONE;
1653}
1654
1655/*
1656 * C portion of the OS INIT handler
1657 *
1658 * Called from ia64_os_init_dispatch
1659 *
1660 * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1661 * this event.  This code is used for both monarch and slave INIT events, see
1662 * sos->monarch.
1663 *
1664 * All INIT events switch to the INIT stack and change the previous process to
1665 * blocked status.  If one of the INIT events is the monarch then we are
1666 * probably processing the nmi button/command.  Use the monarch cpu to dump all
1667 * the processes.  The slave INIT events all spin until the monarch cpu
1668 * returns.  We can also get INIT slave events for MCA, in which case the MCA
1669 * process is the monarch.
1670 */
1671
1672void
1673ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1674                  struct ia64_sal_os_state *sos)
1675{
1676        static atomic_t slaves;
1677        static atomic_t monarchs;
1678        struct task_struct *previous_current;
1679        int cpu = smp_processor_id();
1680        struct ia64_mca_notify_die nd =
1681                { .sos = sos, .monarch_cpu = &monarch_cpu };
1682
1683        NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1684
1685        mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1686                sos->proc_state_param, cpu, sos->monarch);
1687        salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1688
1689        previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1690        sos->os_status = IA64_INIT_RESUME;
1691
1692        /* FIXME: Workaround for broken proms that drive all INIT events as
1693         * slaves.  The last slave that enters is promoted to be a monarch.
1694         * Remove this code in September 2006, that gives platforms a year to
1695         * fix their proms and get their customers updated.
1696         */
1697        if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1698                mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1699                        __func__, cpu);
1700                atomic_dec(&slaves);
1701                sos->monarch = 1;
1702        }
1703
1704        /* FIXME: Workaround for broken proms that drive all INIT events as
1705         * monarchs.  Second and subsequent monarchs are demoted to slaves.
1706         * Remove this code in September 2006, that gives platforms a year to
1707         * fix their proms and get their customers updated.
1708         */
1709        if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1710                mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1711                               __func__, cpu);
1712                atomic_dec(&monarchs);
1713                sos->monarch = 0;
1714        }
1715
1716        if (!sos->monarch) {
1717                ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1718
1719#ifdef CONFIG_KEXEC
1720                while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1721                        udelay(1000);
1722#else
1723                while (monarch_cpu == -1)
1724                        cpu_relax();    /* spin until monarch enters */
1725#endif
1726
1727                NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1728                NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1729
1730#ifdef CONFIG_KEXEC
1731                while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1732                        udelay(1000);
1733#else
1734                while (monarch_cpu != -1)
1735                        cpu_relax();    /* spin until monarch leaves */
1736#endif
1737
1738                NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1739
1740                mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1741                ia64_set_curr_task(cpu, previous_current);
1742                ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1743                atomic_dec(&slaves);
1744                return;
1745        }
1746
1747        monarch_cpu = cpu;
1748        NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1749
1750        /*
1751         * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1752         * generated via the BMC's command-line interface, but since the console is on the
1753         * same serial line, the user will need some time to switch out of the BMC before
1754         * the dump begins.
1755         */
1756        mprintk("Delaying for 5 seconds...\n");
1757        udelay(5*1000000);
1758        ia64_wait_for_slaves(cpu, "INIT");
1759        /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1760         * to default_monarch_init_process() above and just print all the
1761         * tasks.
1762         */
1763        NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1764        NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1765
1766        mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1767        atomic_dec(&monarchs);
1768        ia64_set_curr_task(cpu, previous_current);
1769        monarch_cpu = -1;
1770        return;
1771}
1772
1773static int __init
1774ia64_mca_disable_cpe_polling(char *str)
1775{
1776        cpe_poll_enabled = 0;
1777        return 1;
1778}
1779
1780__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1781
1782static struct irqaction cmci_irqaction = {
1783        .handler =      ia64_mca_cmc_int_handler,
1784        .name =         "cmc_hndlr"
1785};
1786
1787static struct irqaction cmcp_irqaction = {
1788        .handler =      ia64_mca_cmc_int_caller,
1789        .name =         "cmc_poll"
1790};
1791
1792static struct irqaction mca_rdzv_irqaction = {
1793        .handler =      ia64_mca_rendez_int_handler,
1794        .name =         "mca_rdzv"
1795};
1796
1797static struct irqaction mca_wkup_irqaction = {
1798        .handler =      ia64_mca_wakeup_int_handler,
1799        .name =         "mca_wkup"
1800};
1801
1802#ifdef CONFIG_ACPI
1803static struct irqaction mca_cpe_irqaction = {
1804        .handler =      ia64_mca_cpe_int_handler,
1805        .name =         "cpe_hndlr"
1806};
1807
1808static struct irqaction mca_cpep_irqaction = {
1809        .handler =      ia64_mca_cpe_int_caller,
1810        .name =         "cpe_poll"
1811};
1812#endif /* CONFIG_ACPI */
1813
1814/* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1815 * these stacks can never sleep, they cannot return from the kernel to user
1816 * space, they do not appear in a normal ps listing.  So there is no need to
1817 * format most of the fields.
1818 */
1819
1820static void
1821format_mca_init_stack(void *mca_data, unsigned long offset,
1822                const char *type, int cpu)
1823{
1824        struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1825        struct thread_info *ti;
1826        memset(p, 0, KERNEL_STACK_SIZE);
1827        ti = task_thread_info(p);
1828        ti->flags = _TIF_MCA_INIT;
1829        ti->preempt_count = 1;
1830        ti->task = p;
1831        ti->cpu = cpu;
1832        p->stack = ti;
1833        p->state = TASK_UNINTERRUPTIBLE;
1834        cpumask_set_cpu(cpu, &p->cpus_mask);
1835        INIT_LIST_HEAD(&p->tasks);
1836        p->parent = p->real_parent = p->group_leader = p;
1837        INIT_LIST_HEAD(&p->children);
1838        INIT_LIST_HEAD(&p->sibling);
1839        strncpy(p->comm, type, sizeof(p->comm)-1);
1840}
1841
1842/* Caller prevents this from being called after init */
1843static void * __ref mca_bootmem(void)
1844{
1845        return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1846}
1847
1848/* Do per-CPU MCA-related initialization.  */
1849void
1850ia64_mca_cpu_init(void *cpu_data)
1851{
1852        void *pal_vaddr;
1853        void *data;
1854        long sz = sizeof(struct ia64_mca_cpu);
1855        int cpu = smp_processor_id();
1856        static int first_time = 1;
1857
1858        /*
1859         * Structure will already be allocated if cpu has been online,
1860         * then offlined.
1861         */
1862        if (__per_cpu_mca[cpu]) {
1863                data = __va(__per_cpu_mca[cpu]);
1864        } else {
1865                if (first_time) {
1866                        data = mca_bootmem();
1867                        first_time = 0;
1868                } else
1869                        data = (void *)__get_free_pages(GFP_KERNEL,
1870                                                        get_order(sz));
1871                if (!data)
1872                        panic("Could not allocate MCA memory for cpu %d\n",
1873                                        cpu);
1874        }
1875        format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1876                "MCA", cpu);
1877        format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1878                "INIT", cpu);
1879        __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1880
1881        /*
1882         * Stash away a copy of the PTE needed to map the per-CPU page.
1883         * We may need it during MCA recovery.
1884         */
1885        __this_cpu_write(ia64_mca_per_cpu_pte,
1886                pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1887
1888        /*
1889         * Also, stash away a copy of the PAL address and the PTE
1890         * needed to map it.
1891         */
1892        pal_vaddr = efi_get_pal_addr();
1893        if (!pal_vaddr)
1894                return;
1895        __this_cpu_write(ia64_mca_pal_base,
1896                GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1897        __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1898                                                              PAGE_KERNEL)));
1899}
1900
1901static int ia64_mca_cpu_online(unsigned int cpu)
1902{
1903        unsigned long flags;
1904
1905        local_irq_save(flags);
1906        if (!cmc_polling_enabled)
1907                ia64_mca_cmc_vector_enable(NULL);
1908        local_irq_restore(flags);
1909        return 0;
1910}
1911
1912/*
1913 * ia64_mca_init
1914 *
1915 *  Do all the system level mca specific initialization.
1916 *
1917 *      1. Register spinloop and wakeup request interrupt vectors
1918 *
1919 *      2. Register OS_MCA handler entry point
1920 *
1921 *      3. Register OS_INIT handler entry point
1922 *
1923 *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1924 *
1925 *  Note that this initialization is done very early before some kernel
1926 *  services are available.
1927 *
1928 *  Inputs  :   None
1929 *
1930 *  Outputs :   None
1931 */
1932void __init
1933ia64_mca_init(void)
1934{
1935        ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1936        ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1937        ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1938        int i;
1939        long rc;
1940        struct ia64_sal_retval isrv;
1941        unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1942        static struct notifier_block default_init_monarch_nb = {
1943                .notifier_call = default_monarch_init_process,
1944                .priority = 0/* we need to notified last */
1945        };
1946
1947        IA64_MCA_DEBUG("%s: begin\n", __func__);
1948
1949        /* Clear the Rendez checkin flag for all cpus */
1950        for(i = 0 ; i < NR_CPUS; i++)
1951                ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1952
1953        /*
1954         * Register the rendezvous spinloop and wakeup mechanism with SAL
1955         */
1956
1957        /* Register the rendezvous interrupt vector with SAL */
1958        while (1) {
1959                isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1960                                              SAL_MC_PARAM_MECHANISM_INT,
1961                                              IA64_MCA_RENDEZ_VECTOR,
1962                                              timeout,
1963                                              SAL_MC_PARAM_RZ_ALWAYS);
1964                rc = isrv.status;
1965                if (rc == 0)
1966                        break;
1967                if (rc == -2) {
1968                        printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1969                                "%ld to %ld milliseconds\n", timeout, isrv.v0);
1970                        timeout = isrv.v0;
1971                        NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1972                        continue;
1973                }
1974                printk(KERN_ERR "Failed to register rendezvous interrupt "
1975                       "with SAL (status %ld)\n", rc);
1976                return;
1977        }
1978
1979        /* Register the wakeup interrupt vector with SAL */
1980        isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1981                                      SAL_MC_PARAM_MECHANISM_INT,
1982                                      IA64_MCA_WAKEUP_VECTOR,
1983                                      0, 0);
1984        rc = isrv.status;
1985        if (rc) {
1986                printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1987                       "(status %ld)\n", rc);
1988                return;
1989        }
1990
1991        IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1992
1993        ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1994        /*
1995         * XXX - disable SAL checksum by setting size to 0; should be
1996         *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1997         */
1998        ia64_mc_info.imi_mca_handler_size       = 0;
1999
2000        /* Register the os mca handler with SAL */
2001        if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2002                                       ia64_mc_info.imi_mca_handler,
2003                                       ia64_tpa(mca_hldlr_ptr->gp),
2004                                       ia64_mc_info.imi_mca_handler_size,
2005                                       0, 0, 0)))
2006        {
2007                printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2008                       "(status %ld)\n", rc);
2009                return;
2010        }
2011
2012        IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2013                       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2014
2015        /*
2016         * XXX - disable SAL checksum by setting size to 0, should be
2017         * size of the actual init handler in mca_asm.S.
2018         */
2019        ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
2020        ia64_mc_info.imi_monarch_init_handler_size      = 0;
2021        ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
2022        ia64_mc_info.imi_slave_init_handler_size        = 0;
2023
2024        IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2025                       ia64_mc_info.imi_monarch_init_handler);
2026
2027        /* Register the os init handler with SAL */
2028        if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2029                                       ia64_mc_info.imi_monarch_init_handler,
2030                                       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2031                                       ia64_mc_info.imi_monarch_init_handler_size,
2032                                       ia64_mc_info.imi_slave_init_handler,
2033                                       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2034                                       ia64_mc_info.imi_slave_init_handler_size)))
2035        {
2036                printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2037                       "(status %ld)\n", rc);
2038                return;
2039        }
2040        if (register_die_notifier(&default_init_monarch_nb)) {
2041                printk(KERN_ERR "Failed to register default monarch INIT process\n");
2042                return;
2043        }
2044
2045        IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2046
2047        /* Initialize the areas set aside by the OS to buffer the
2048         * platform/processor error states for MCA/INIT/CMC
2049         * handling.
2050         */
2051        ia64_log_init(SAL_INFO_TYPE_MCA);
2052        ia64_log_init(SAL_INFO_TYPE_INIT);
2053        ia64_log_init(SAL_INFO_TYPE_CMC);
2054        ia64_log_init(SAL_INFO_TYPE_CPE);
2055
2056        mca_init = 1;
2057        printk(KERN_INFO "MCA related initialization done\n");
2058}
2059
2060
2061/*
2062 * These pieces cannot be done in ia64_mca_init() because it is called before
2063 * early_irq_init() which would wipe out our percpu irq registrations. But we
2064 * cannot leave them until ia64_mca_late_init() because by then all the other
2065 * processors have been brought online and have set their own CMC vectors to
2066 * point at a non-existant action. Called from arch_early_irq_init().
2067 */
2068void __init ia64_mca_irq_init(void)
2069{
2070        /*
2071         *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2072         *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2073         */
2074        register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2075        register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2076        ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2077
2078        /* Setup the MCA rendezvous interrupt vector */
2079        register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2080
2081        /* Setup the MCA wakeup interrupt vector */
2082        register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2083
2084#ifdef CONFIG_ACPI
2085        /* Setup the CPEI/P handler */
2086        register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2087#endif
2088}
2089
2090/*
2091 * ia64_mca_late_init
2092 *
2093 *      Opportunity to setup things that require initialization later
2094 *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2095 *      platform doesn't support an interrupt driven mechanism.
2096 *
2097 *  Inputs  :   None
2098 *  Outputs :   Status
2099 */
2100static int __init
2101ia64_mca_late_init(void)
2102{
2103        if (!mca_init)
2104                return 0;
2105
2106        /* Setup the CMCI/P vector and handler */
2107        timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2108
2109        /* Unmask/enable the vector */
2110        cmc_polling_enabled = 0;
2111        cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2112                          ia64_mca_cpu_online, NULL);
2113        IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2114
2115#ifdef CONFIG_ACPI
2116        /* Setup the CPEI/P vector and handler */
2117        cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2118        timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2119
2120        {
2121                unsigned int irq;
2122
2123                if (cpe_vector >= 0) {
2124                        /* If platform supports CPEI, enable the irq. */
2125                        irq = local_vector_to_irq(cpe_vector);
2126                        if (irq > 0) {
2127                                cpe_poll_enabled = 0;
2128                                irq_set_status_flags(irq, IRQ_PER_CPU);
2129                                setup_irq(irq, &mca_cpe_irqaction);
2130                                ia64_cpe_irq = irq;
2131                                ia64_mca_register_cpev(cpe_vector);
2132                                IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2133                                        __func__);
2134                                return 0;
2135                        }
2136                        printk(KERN_ERR "%s: Failed to find irq for CPE "
2137                                        "interrupt handler, vector %d\n",
2138                                        __func__, cpe_vector);
2139                }
2140                /* If platform doesn't support CPEI, get the timer going. */
2141                if (cpe_poll_enabled) {
2142                        ia64_mca_cpe_poll(0UL);
2143                        IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2144                }
2145        }
2146#endif
2147
2148        return 0;
2149}
2150
2151device_initcall(ia64_mca_late_init);
2152