linux/arch/ia64/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Architecture-specific setup.
   4 *
   5 * Copyright (C) 1998-2003 Hewlett-Packard Co
   6 *      David Mosberger-Tang <davidm@hpl.hp.com>
   7 * 04/11/17 Ashok Raj   <ashok.raj@intel.com> Added CPU Hotplug Support
   8 *
   9 * 2005-10-07 Keith Owens <kaos@sgi.com>
  10 *            Add notify_die() hooks.
  11 */
  12#include <linux/cpu.h>
  13#include <linux/pm.h>
  14#include <linux/elf.h>
  15#include <linux/errno.h>
  16#include <linux/kernel.h>
  17#include <linux/mm.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/notifier.h>
  21#include <linux/personality.h>
  22#include <linux/sched.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sched/hotplug.h>
  25#include <linux/sched/task.h>
  26#include <linux/sched/task_stack.h>
  27#include <linux/stddef.h>
  28#include <linux/thread_info.h>
  29#include <linux/unistd.h>
  30#include <linux/efi.h>
  31#include <linux/interrupt.h>
  32#include <linux/delay.h>
  33#include <linux/kdebug.h>
  34#include <linux/utsname.h>
  35#include <linux/tracehook.h>
  36#include <linux/rcupdate.h>
  37
  38#include <asm/cpu.h>
  39#include <asm/delay.h>
  40#include <asm/elf.h>
  41#include <asm/irq.h>
  42#include <asm/kexec.h>
  43#include <asm/pgalloc.h>
  44#include <asm/processor.h>
  45#include <asm/sal.h>
  46#include <asm/switch_to.h>
  47#include <asm/tlbflush.h>
  48#include <linux/uaccess.h>
  49#include <asm/unwind.h>
  50#include <asm/user.h>
  51
  52#include "entry.h"
  53
  54#ifdef CONFIG_PERFMON
  55# include <asm/perfmon.h>
  56#endif
  57
  58#include "sigframe.h"
  59
  60void (*ia64_mark_idle)(int);
  61
  62unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  63EXPORT_SYMBOL(boot_option_idle_override);
  64void (*pm_power_off) (void);
  65EXPORT_SYMBOL(pm_power_off);
  66
  67void
  68ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  69{
  70        unsigned long ip, sp, bsp;
  71
  72        printk("\nCall Trace:\n");
  73        do {
  74                unw_get_ip(info, &ip);
  75                if (ip == 0)
  76                        break;
  77
  78                unw_get_sp(info, &sp);
  79                unw_get_bsp(info, &bsp);
  80                printk(" [<%016lx>] %pS\n"
  81                         "                                sp=%016lx bsp=%016lx\n",
  82                         ip, (void *)ip, sp, bsp);
  83        } while (unw_unwind(info) >= 0);
  84}
  85
  86void
  87show_stack (struct task_struct *task, unsigned long *sp)
  88{
  89        if (!task)
  90                unw_init_running(ia64_do_show_stack, NULL);
  91        else {
  92                struct unw_frame_info info;
  93
  94                unw_init_from_blocked_task(&info, task);
  95                ia64_do_show_stack(&info, NULL);
  96        }
  97}
  98
  99void
 100show_regs (struct pt_regs *regs)
 101{
 102        unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
 103
 104        print_modules();
 105        printk("\n");
 106        show_regs_print_info(KERN_DEFAULT);
 107        printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
 108               regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
 109               init_utsname()->release);
 110        printk("ip is at %pS\n", (void *)ip);
 111        printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
 112               regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
 113        printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
 114               regs->ar_rnat, regs->ar_bspstore, regs->pr);
 115        printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
 116               regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
 117        printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
 118        printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
 119        printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
 120               regs->f6.u.bits[1], regs->f6.u.bits[0],
 121               regs->f7.u.bits[1], regs->f7.u.bits[0]);
 122        printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
 123               regs->f8.u.bits[1], regs->f8.u.bits[0],
 124               regs->f9.u.bits[1], regs->f9.u.bits[0]);
 125        printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
 126               regs->f10.u.bits[1], regs->f10.u.bits[0],
 127               regs->f11.u.bits[1], regs->f11.u.bits[0]);
 128
 129        printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
 130        printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
 131        printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
 132        printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
 133        printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
 134        printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
 135        printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
 136        printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
 137        printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
 138
 139        if (user_mode(regs)) {
 140                /* print the stacked registers */
 141                unsigned long val, *bsp, ndirty;
 142                int i, sof, is_nat = 0;
 143
 144                sof = regs->cr_ifs & 0x7f;      /* size of frame */
 145                ndirty = (regs->loadrs >> 19);
 146                bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
 147                for (i = 0; i < sof; ++i) {
 148                        get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
 149                        printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
 150                               ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
 151                }
 152        } else
 153                show_stack(NULL, NULL);
 154}
 155
 156/* local support for deprecated console_print */
 157void
 158console_print(const char *s)
 159{
 160        printk(KERN_EMERG "%s", s);
 161}
 162
 163void
 164do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
 165{
 166        if (fsys_mode(current, &scr->pt)) {
 167                /*
 168                 * defer signal-handling etc. until we return to
 169                 * privilege-level 0.
 170                 */
 171                if (!ia64_psr(&scr->pt)->lp)
 172                        ia64_psr(&scr->pt)->lp = 1;
 173                return;
 174        }
 175
 176#ifdef CONFIG_PERFMON
 177        if (current->thread.pfm_needs_checking)
 178                /*
 179                 * Note: pfm_handle_work() allow us to call it with interrupts
 180                 * disabled, and may enable interrupts within the function.
 181                 */
 182                pfm_handle_work();
 183#endif
 184
 185        /* deal with pending signal delivery */
 186        if (test_thread_flag(TIF_SIGPENDING)) {
 187                local_irq_enable();     /* force interrupt enable */
 188                ia64_do_signal(scr, in_syscall);
 189        }
 190
 191        if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
 192                local_irq_enable();     /* force interrupt enable */
 193                tracehook_notify_resume(&scr->pt);
 194        }
 195
 196        /* copy user rbs to kernel rbs */
 197        if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
 198                local_irq_enable();     /* force interrupt enable */
 199                ia64_sync_krbs();
 200        }
 201
 202        local_irq_disable();    /* force interrupt disable */
 203}
 204
 205static int __init nohalt_setup(char * str)
 206{
 207        cpu_idle_poll_ctrl(true);
 208        return 1;
 209}
 210__setup("nohalt", nohalt_setup);
 211
 212#ifdef CONFIG_HOTPLUG_CPU
 213/* We don't actually take CPU down, just spin without interrupts. */
 214static inline void play_dead(void)
 215{
 216        unsigned int this_cpu = smp_processor_id();
 217
 218        /* Ack it */
 219        __this_cpu_write(cpu_state, CPU_DEAD);
 220
 221        max_xtp();
 222        local_irq_disable();
 223        idle_task_exit();
 224        ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
 225        /*
 226         * The above is a point of no-return, the processor is
 227         * expected to be in SAL loop now.
 228         */
 229        BUG();
 230}
 231#else
 232static inline void play_dead(void)
 233{
 234        BUG();
 235}
 236#endif /* CONFIG_HOTPLUG_CPU */
 237
 238void arch_cpu_idle_dead(void)
 239{
 240        play_dead();
 241}
 242
 243void arch_cpu_idle(void)
 244{
 245        void (*mark_idle)(int) = ia64_mark_idle;
 246
 247#ifdef CONFIG_SMP
 248        min_xtp();
 249#endif
 250        rmb();
 251        if (mark_idle)
 252                (*mark_idle)(1);
 253
 254        safe_halt();
 255
 256        if (mark_idle)
 257                (*mark_idle)(0);
 258#ifdef CONFIG_SMP
 259        normal_xtp();
 260#endif
 261}
 262
 263void
 264ia64_save_extra (struct task_struct *task)
 265{
 266#ifdef CONFIG_PERFMON
 267        unsigned long info;
 268#endif
 269
 270        if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
 271                ia64_save_debug_regs(&task->thread.dbr[0]);
 272
 273#ifdef CONFIG_PERFMON
 274        if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
 275                pfm_save_regs(task);
 276
 277        info = __this_cpu_read(pfm_syst_info);
 278        if (info & PFM_CPUINFO_SYST_WIDE)
 279                pfm_syst_wide_update_task(task, info, 0);
 280#endif
 281}
 282
 283void
 284ia64_load_extra (struct task_struct *task)
 285{
 286#ifdef CONFIG_PERFMON
 287        unsigned long info;
 288#endif
 289
 290        if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
 291                ia64_load_debug_regs(&task->thread.dbr[0]);
 292
 293#ifdef CONFIG_PERFMON
 294        if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
 295                pfm_load_regs(task);
 296
 297        info = __this_cpu_read(pfm_syst_info);
 298        if (info & PFM_CPUINFO_SYST_WIDE) 
 299                pfm_syst_wide_update_task(task, info, 1);
 300#endif
 301}
 302
 303/*
 304 * Copy the state of an ia-64 thread.
 305 *
 306 * We get here through the following  call chain:
 307 *
 308 *      from user-level:        from kernel:
 309 *
 310 *      <clone syscall>         <some kernel call frames>
 311 *      sys_clone                  :
 312 *      do_fork                 do_fork
 313 *      copy_thread             copy_thread
 314 *
 315 * This means that the stack layout is as follows:
 316 *
 317 *      +---------------------+ (highest addr)
 318 *      |   struct pt_regs    |
 319 *      +---------------------+
 320 *      | struct switch_stack |
 321 *      +---------------------+
 322 *      |                     |
 323 *      |    memory stack     |
 324 *      |                     | <-- sp (lowest addr)
 325 *      +---------------------+
 326 *
 327 * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
 328 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
 329 * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
 330 * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
 331 * the stack is page aligned and the page size is at least 4KB, this is always the case,
 332 * so there is nothing to worry about.
 333 */
 334int
 335copy_thread(unsigned long clone_flags,
 336             unsigned long user_stack_base, unsigned long user_stack_size,
 337             struct task_struct *p)
 338{
 339        extern char ia64_ret_from_clone;
 340        struct switch_stack *child_stack, *stack;
 341        unsigned long rbs, child_rbs, rbs_size;
 342        struct pt_regs *child_ptregs;
 343        struct pt_regs *regs = current_pt_regs();
 344        int retval = 0;
 345
 346        child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
 347        child_stack = (struct switch_stack *) child_ptregs - 1;
 348
 349        rbs = (unsigned long) current + IA64_RBS_OFFSET;
 350        child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
 351
 352        /* copy parts of thread_struct: */
 353        p->thread.ksp = (unsigned long) child_stack - 16;
 354
 355        /*
 356         * NOTE: The calling convention considers all floating point
 357         * registers in the high partition (fph) to be scratch.  Since
 358         * the only way to get to this point is through a system call,
 359         * we know that the values in fph are all dead.  Hence, there
 360         * is no need to inherit the fph state from the parent to the
 361         * child and all we have to do is to make sure that
 362         * IA64_THREAD_FPH_VALID is cleared in the child.
 363         *
 364         * XXX We could push this optimization a bit further by
 365         * clearing IA64_THREAD_FPH_VALID on ANY system call.
 366         * However, it's not clear this is worth doing.  Also, it
 367         * would be a slight deviation from the normal Linux system
 368         * call behavior where scratch registers are preserved across
 369         * system calls (unless used by the system call itself).
 370         */
 371#       define THREAD_FLAGS_TO_CLEAR    (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
 372                                         | IA64_THREAD_PM_VALID)
 373#       define THREAD_FLAGS_TO_SET      0
 374        p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
 375                           | THREAD_FLAGS_TO_SET);
 376
 377        ia64_drop_fpu(p);       /* don't pick up stale state from a CPU's fph */
 378
 379        if (unlikely(p->flags & PF_KTHREAD)) {
 380                if (unlikely(!user_stack_base)) {
 381                        /* fork_idle() called us */
 382                        return 0;
 383                }
 384                memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
 385                child_stack->r4 = user_stack_base;      /* payload */
 386                child_stack->r5 = user_stack_size;      /* argument */
 387                /*
 388                 * Preserve PSR bits, except for bits 32-34 and 37-45,
 389                 * which we can't read.
 390                 */
 391                child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
 392                /* mark as valid, empty frame */
 393                child_ptregs->cr_ifs = 1UL << 63;
 394                child_stack->ar_fpsr = child_ptregs->ar_fpsr
 395                        = ia64_getreg(_IA64_REG_AR_FPSR);
 396                child_stack->pr = (1 << PRED_KERNEL_STACK);
 397                child_stack->ar_bspstore = child_rbs;
 398                child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
 399
 400                /* stop some PSR bits from being inherited.
 401                 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
 402                 * therefore we must specify them explicitly here and not include them in
 403                 * IA64_PSR_BITS_TO_CLEAR.
 404                 */
 405                child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
 406                                 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
 407
 408                return 0;
 409        }
 410        stack = ((struct switch_stack *) regs) - 1;
 411        /* copy parent's switch_stack & pt_regs to child: */
 412        memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
 413
 414        /* copy the parent's register backing store to the child: */
 415        rbs_size = stack->ar_bspstore - rbs;
 416        memcpy((void *) child_rbs, (void *) rbs, rbs_size);
 417        if (clone_flags & CLONE_SETTLS)
 418                child_ptregs->r13 = regs->r16;  /* see sys_clone2() in entry.S */
 419        if (user_stack_base) {
 420                child_ptregs->r12 = user_stack_base + user_stack_size - 16;
 421                child_ptregs->ar_bspstore = user_stack_base;
 422                child_ptregs->ar_rnat = 0;
 423                child_ptregs->loadrs = 0;
 424        }
 425        child_stack->ar_bspstore = child_rbs + rbs_size;
 426        child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
 427
 428        /* stop some PSR bits from being inherited.
 429         * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
 430         * therefore we must specify them explicitly here and not include them in
 431         * IA64_PSR_BITS_TO_CLEAR.
 432         */
 433        child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
 434                                 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
 435
 436#ifdef CONFIG_PERFMON
 437        if (current->thread.pfm_context)
 438                pfm_inherit(p, child_ptregs);
 439#endif
 440        return retval;
 441}
 442
 443static void
 444do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
 445{
 446        unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
 447        unsigned long uninitialized_var(ip);    /* GCC be quiet */
 448        elf_greg_t *dst = arg;
 449        struct pt_regs *pt;
 450        char nat;
 451        int i;
 452
 453        memset(dst, 0, sizeof(elf_gregset_t));  /* don't leak any kernel bits to user-level */
 454
 455        if (unw_unwind_to_user(info) < 0)
 456                return;
 457
 458        unw_get_sp(info, &sp);
 459        pt = (struct pt_regs *) (sp + 16);
 460
 461        urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
 462
 463        if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
 464                return;
 465
 466        ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
 467                  &ar_rnat);
 468
 469        /*
 470         * coredump format:
 471         *      r0-r31
 472         *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
 473         *      predicate registers (p0-p63)
 474         *      b0-b7
 475         *      ip cfm user-mask
 476         *      ar.rsc ar.bsp ar.bspstore ar.rnat
 477         *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
 478         */
 479
 480        /* r0 is zero */
 481        for (i = 1, mask = (1UL << i); i < 32; ++i) {
 482                unw_get_gr(info, i, &dst[i], &nat);
 483                if (nat)
 484                        nat_bits |= mask;
 485                mask <<= 1;
 486        }
 487        dst[32] = nat_bits;
 488        unw_get_pr(info, &dst[33]);
 489
 490        for (i = 0; i < 8; ++i)
 491                unw_get_br(info, i, &dst[34 + i]);
 492
 493        unw_get_rp(info, &ip);
 494        dst[42] = ip + ia64_psr(pt)->ri;
 495        dst[43] = cfm;
 496        dst[44] = pt->cr_ipsr & IA64_PSR_UM;
 497
 498        unw_get_ar(info, UNW_AR_RSC, &dst[45]);
 499        /*
 500         * For bsp and bspstore, unw_get_ar() would return the kernel
 501         * addresses, but we need the user-level addresses instead:
 502         */
 503        dst[46] = urbs_end;     /* note: by convention PT_AR_BSP points to the end of the urbs! */
 504        dst[47] = pt->ar_bspstore;
 505        dst[48] = ar_rnat;
 506        unw_get_ar(info, UNW_AR_CCV, &dst[49]);
 507        unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
 508        unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
 509        dst[52] = pt->ar_pfs;   /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
 510        unw_get_ar(info, UNW_AR_LC, &dst[53]);
 511        unw_get_ar(info, UNW_AR_EC, &dst[54]);
 512        unw_get_ar(info, UNW_AR_CSD, &dst[55]);
 513        unw_get_ar(info, UNW_AR_SSD, &dst[56]);
 514}
 515
 516void
 517do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
 518{
 519        elf_fpreg_t *dst = arg;
 520        int i;
 521
 522        memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
 523
 524        if (unw_unwind_to_user(info) < 0)
 525                return;
 526
 527        /* f0 is 0.0, f1 is 1.0 */
 528
 529        for (i = 2; i < 32; ++i)
 530                unw_get_fr(info, i, dst + i);
 531
 532        ia64_flush_fph(task);
 533        if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
 534                memcpy(dst + 32, task->thread.fph, 96*16);
 535}
 536
 537void
 538do_copy_regs (struct unw_frame_info *info, void *arg)
 539{
 540        do_copy_task_regs(current, info, arg);
 541}
 542
 543void
 544do_dump_fpu (struct unw_frame_info *info, void *arg)
 545{
 546        do_dump_task_fpu(current, info, arg);
 547}
 548
 549void
 550ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
 551{
 552        unw_init_running(do_copy_regs, dst);
 553}
 554
 555int
 556dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
 557{
 558        unw_init_running(do_dump_fpu, dst);
 559        return 1;       /* f0-f31 are always valid so we always return 1 */
 560}
 561
 562/*
 563 * Flush thread state.  This is called when a thread does an execve().
 564 */
 565void
 566flush_thread (void)
 567{
 568        /* drop floating-point and debug-register state if it exists: */
 569        current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
 570        ia64_drop_fpu(current);
 571}
 572
 573/*
 574 * Clean up state associated with a thread.  This is called when
 575 * the thread calls exit().
 576 */
 577void
 578exit_thread (struct task_struct *tsk)
 579{
 580
 581        ia64_drop_fpu(tsk);
 582#ifdef CONFIG_PERFMON
 583       /* if needed, stop monitoring and flush state to perfmon context */
 584        if (tsk->thread.pfm_context)
 585                pfm_exit_thread(tsk);
 586
 587        /* free debug register resources */
 588        if (tsk->thread.flags & IA64_THREAD_DBG_VALID)
 589                pfm_release_debug_registers(tsk);
 590#endif
 591}
 592
 593unsigned long
 594get_wchan (struct task_struct *p)
 595{
 596        struct unw_frame_info info;
 597        unsigned long ip;
 598        int count = 0;
 599
 600        if (!p || p == current || p->state == TASK_RUNNING)
 601                return 0;
 602
 603        /*
 604         * Note: p may not be a blocked task (it could be current or
 605         * another process running on some other CPU.  Rather than
 606         * trying to determine if p is really blocked, we just assume
 607         * it's blocked and rely on the unwind routines to fail
 608         * gracefully if the process wasn't really blocked after all.
 609         * --davidm 99/12/15
 610         */
 611        unw_init_from_blocked_task(&info, p);
 612        do {
 613                if (p->state == TASK_RUNNING)
 614                        return 0;
 615                if (unw_unwind(&info) < 0)
 616                        return 0;
 617                unw_get_ip(&info, &ip);
 618                if (!in_sched_functions(ip))
 619                        return ip;
 620        } while (count++ < 16);
 621        return 0;
 622}
 623
 624void
 625cpu_halt (void)
 626{
 627        pal_power_mgmt_info_u_t power_info[8];
 628        unsigned long min_power;
 629        int i, min_power_state;
 630
 631        if (ia64_pal_halt_info(power_info) != 0)
 632                return;
 633
 634        min_power_state = 0;
 635        min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
 636        for (i = 1; i < 8; ++i)
 637                if (power_info[i].pal_power_mgmt_info_s.im
 638                    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
 639                        min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
 640                        min_power_state = i;
 641                }
 642
 643        while (1)
 644                ia64_pal_halt(min_power_state);
 645}
 646
 647void machine_shutdown(void)
 648{
 649#ifdef CONFIG_HOTPLUG_CPU
 650        int cpu;
 651
 652        for_each_online_cpu(cpu) {
 653                if (cpu != smp_processor_id())
 654                        cpu_down(cpu);
 655        }
 656#endif
 657#ifdef CONFIG_KEXEC
 658        kexec_disable_iosapic();
 659#endif
 660}
 661
 662void
 663machine_restart (char *restart_cmd)
 664{
 665        (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
 666        efi_reboot(REBOOT_WARM, NULL);
 667}
 668
 669void
 670machine_halt (void)
 671{
 672        (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
 673        cpu_halt();
 674}
 675
 676void
 677machine_power_off (void)
 678{
 679        if (pm_power_off)
 680                pm_power_off();
 681        machine_halt();
 682}
 683
 684