linux/arch/mips/kernel/perf_event_mipsxx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Linux performance counter support for MIPS.
   4 *
   5 * Copyright (C) 2010 MIPS Technologies, Inc.
   6 * Copyright (C) 2011 Cavium Networks, Inc.
   7 * Author: Deng-Cheng Zhu
   8 *
   9 * This code is based on the implementation for ARM, which is in turn
  10 * based on the sparc64 perf event code and the x86 code. Performance
  11 * counter access is based on the MIPS Oprofile code. And the callchain
  12 * support references the code of MIPS stacktrace.c.
  13 */
  14
  15#include <linux/cpumask.h>
  16#include <linux/interrupt.h>
  17#include <linux/smp.h>
  18#include <linux/kernel.h>
  19#include <linux/perf_event.h>
  20#include <linux/uaccess.h>
  21
  22#include <asm/irq.h>
  23#include <asm/irq_regs.h>
  24#include <asm/stacktrace.h>
  25#include <asm/time.h> /* For perf_irq */
  26
  27#define MIPS_MAX_HWEVENTS 4
  28#define MIPS_TCS_PER_COUNTER 2
  29#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
  30
  31struct cpu_hw_events {
  32        /* Array of events on this cpu. */
  33        struct perf_event       *events[MIPS_MAX_HWEVENTS];
  34
  35        /*
  36         * Set the bit (indexed by the counter number) when the counter
  37         * is used for an event.
  38         */
  39        unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  40
  41        /*
  42         * Software copy of the control register for each performance counter.
  43         * MIPS CPUs vary in performance counters. They use this differently,
  44         * and even may not use it.
  45         */
  46        unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
  47};
  48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  49        .saved_ctrl = {0},
  50};
  51
  52/* The description of MIPS performance events. */
  53struct mips_perf_event {
  54        unsigned int event_id;
  55        /*
  56         * MIPS performance counters are indexed starting from 0.
  57         * CNTR_EVEN indicates the indexes of the counters to be used are
  58         * even numbers.
  59         */
  60        unsigned int cntr_mask;
  61        #define CNTR_EVEN       0x55555555
  62        #define CNTR_ODD        0xaaaaaaaa
  63        #define CNTR_ALL        0xffffffff
  64        enum {
  65                T  = 0,
  66                V  = 1,
  67                P  = 2,
  68        } range;
  69};
  70
  71static struct mips_perf_event raw_event;
  72static DEFINE_MUTEX(raw_event_mutex);
  73
  74#define C(x) PERF_COUNT_HW_CACHE_##x
  75
  76struct mips_pmu {
  77        u64             max_period;
  78        u64             valid_count;
  79        u64             overflow;
  80        const char      *name;
  81        int             irq;
  82        u64             (*read_counter)(unsigned int idx);
  83        void            (*write_counter)(unsigned int idx, u64 val);
  84        const struct mips_perf_event *(*map_raw_event)(u64 config);
  85        const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  86        const struct mips_perf_event (*cache_event_map)
  87                                [PERF_COUNT_HW_CACHE_MAX]
  88                                [PERF_COUNT_HW_CACHE_OP_MAX]
  89                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  90        unsigned int    num_counters;
  91};
  92
  93static struct mips_pmu mipspmu;
  94
  95#define M_PERFCTL_EVENT(event)          (((event) << MIPS_PERFCTRL_EVENT_S) & \
  96                                         MIPS_PERFCTRL_EVENT)
  97#define M_PERFCTL_VPEID(vpe)            ((vpe)    << MIPS_PERFCTRL_VPEID_S)
  98
  99#ifdef CONFIG_CPU_BMIPS5000
 100#define M_PERFCTL_MT_EN(filter)         0
 101#else /* !CONFIG_CPU_BMIPS5000 */
 102#define M_PERFCTL_MT_EN(filter)         (filter)
 103#endif /* CONFIG_CPU_BMIPS5000 */
 104
 105#define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
 106#define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
 107#define    M_TC_EN_TC                   M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
 108
 109#define M_PERFCTL_COUNT_EVENT_WHENEVER  (MIPS_PERFCTRL_EXL |            \
 110                                         MIPS_PERFCTRL_K |              \
 111                                         MIPS_PERFCTRL_U |              \
 112                                         MIPS_PERFCTRL_S |              \
 113                                         MIPS_PERFCTRL_IE)
 114
 115#ifdef CONFIG_MIPS_MT_SMP
 116#define M_PERFCTL_CONFIG_MASK           0x3fff801f
 117#else
 118#define M_PERFCTL_CONFIG_MASK           0x1f
 119#endif
 120
 121
 122#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 123static DEFINE_RWLOCK(pmuint_rwlock);
 124
 125#if defined(CONFIG_CPU_BMIPS5000)
 126#define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
 127                         0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
 128#else
 129#define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
 130                         0 : cpu_vpe_id(&current_cpu_data))
 131#endif
 132
 133/* Copied from op_model_mipsxx.c */
 134static unsigned int vpe_shift(void)
 135{
 136        if (num_possible_cpus() > 1)
 137                return 1;
 138
 139        return 0;
 140}
 141
 142static unsigned int counters_total_to_per_cpu(unsigned int counters)
 143{
 144        return counters >> vpe_shift();
 145}
 146
 147#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 148#define vpe_id()        0
 149
 150#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 151
 152static void resume_local_counters(void);
 153static void pause_local_counters(void);
 154static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 155static int mipsxx_pmu_handle_shared_irq(void);
 156
 157static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 158{
 159        if (vpe_id() == 1)
 160                idx = (idx + 2) & 3;
 161        return idx;
 162}
 163
 164static u64 mipsxx_pmu_read_counter(unsigned int idx)
 165{
 166        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 167
 168        switch (idx) {
 169        case 0:
 170                /*
 171                 * The counters are unsigned, we must cast to truncate
 172                 * off the high bits.
 173                 */
 174                return (u32)read_c0_perfcntr0();
 175        case 1:
 176                return (u32)read_c0_perfcntr1();
 177        case 2:
 178                return (u32)read_c0_perfcntr2();
 179        case 3:
 180                return (u32)read_c0_perfcntr3();
 181        default:
 182                WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 183                return 0;
 184        }
 185}
 186
 187static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 188{
 189        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 190
 191        switch (idx) {
 192        case 0:
 193                return read_c0_perfcntr0_64();
 194        case 1:
 195                return read_c0_perfcntr1_64();
 196        case 2:
 197                return read_c0_perfcntr2_64();
 198        case 3:
 199                return read_c0_perfcntr3_64();
 200        default:
 201                WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 202                return 0;
 203        }
 204}
 205
 206static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 207{
 208        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 209
 210        switch (idx) {
 211        case 0:
 212                write_c0_perfcntr0(val);
 213                return;
 214        case 1:
 215                write_c0_perfcntr1(val);
 216                return;
 217        case 2:
 218                write_c0_perfcntr2(val);
 219                return;
 220        case 3:
 221                write_c0_perfcntr3(val);
 222                return;
 223        }
 224}
 225
 226static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 227{
 228        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 229
 230        switch (idx) {
 231        case 0:
 232                write_c0_perfcntr0_64(val);
 233                return;
 234        case 1:
 235                write_c0_perfcntr1_64(val);
 236                return;
 237        case 2:
 238                write_c0_perfcntr2_64(val);
 239                return;
 240        case 3:
 241                write_c0_perfcntr3_64(val);
 242                return;
 243        }
 244}
 245
 246static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 247{
 248        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 249
 250        switch (idx) {
 251        case 0:
 252                return read_c0_perfctrl0();
 253        case 1:
 254                return read_c0_perfctrl1();
 255        case 2:
 256                return read_c0_perfctrl2();
 257        case 3:
 258                return read_c0_perfctrl3();
 259        default:
 260                WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 261                return 0;
 262        }
 263}
 264
 265static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 266{
 267        idx = mipsxx_pmu_swizzle_perf_idx(idx);
 268
 269        switch (idx) {
 270        case 0:
 271                write_c0_perfctrl0(val);
 272                return;
 273        case 1:
 274                write_c0_perfctrl1(val);
 275                return;
 276        case 2:
 277                write_c0_perfctrl2(val);
 278                return;
 279        case 3:
 280                write_c0_perfctrl3(val);
 281                return;
 282        }
 283}
 284
 285static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 286                                    struct hw_perf_event *hwc)
 287{
 288        int i;
 289
 290        /*
 291         * We only need to care the counter mask. The range has been
 292         * checked definitely.
 293         */
 294        unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
 295
 296        for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 297                /*
 298                 * Note that some MIPS perf events can be counted by both
 299                 * even and odd counters, wheresas many other are only by
 300                 * even _or_ odd counters. This introduces an issue that
 301                 * when the former kind of event takes the counter the
 302                 * latter kind of event wants to use, then the "counter
 303                 * allocation" for the latter event will fail. In fact if
 304                 * they can be dynamically swapped, they both feel happy.
 305                 * But here we leave this issue alone for now.
 306                 */
 307                if (test_bit(i, &cntr_mask) &&
 308                        !test_and_set_bit(i, cpuc->used_mask))
 309                        return i;
 310        }
 311
 312        return -EAGAIN;
 313}
 314
 315static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 316{
 317        struct perf_event *event = container_of(evt, struct perf_event, hw);
 318        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 319        unsigned int range = evt->event_base >> 24;
 320
 321        WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 322
 323        cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 324                (evt->config_base & M_PERFCTL_CONFIG_MASK) |
 325                /* Make sure interrupt enabled. */
 326                MIPS_PERFCTRL_IE;
 327
 328        if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
 329                /* enable the counter for the calling thread */
 330                cpuc->saved_ctrl[idx] |=
 331                        (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
 332        } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
 333                /* The counter is processor wide. Set it up to count all TCs. */
 334                pr_debug("Enabling perf counter for all TCs\n");
 335                cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
 336        } else {
 337                unsigned int cpu, ctrl;
 338
 339                /*
 340                 * Set up the counter for a particular CPU when event->cpu is
 341                 * a valid CPU number. Otherwise set up the counter for the CPU
 342                 * scheduling this thread.
 343                 */
 344                cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
 345
 346                ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
 347                ctrl |= M_TC_EN_VPE;
 348                cpuc->saved_ctrl[idx] |= ctrl;
 349                pr_debug("Enabling perf counter for CPU%d\n", cpu);
 350        }
 351        /*
 352         * We do not actually let the counter run. Leave it until start().
 353         */
 354}
 355
 356static void mipsxx_pmu_disable_event(int idx)
 357{
 358        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 359        unsigned long flags;
 360
 361        WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 362
 363        local_irq_save(flags);
 364        cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 365                ~M_PERFCTL_COUNT_EVENT_WHENEVER;
 366        mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 367        local_irq_restore(flags);
 368}
 369
 370static int mipspmu_event_set_period(struct perf_event *event,
 371                                    struct hw_perf_event *hwc,
 372                                    int idx)
 373{
 374        u64 left = local64_read(&hwc->period_left);
 375        u64 period = hwc->sample_period;
 376        int ret = 0;
 377
 378        if (unlikely((left + period) & (1ULL << 63))) {
 379                /* left underflowed by more than period. */
 380                left = period;
 381                local64_set(&hwc->period_left, left);
 382                hwc->last_period = period;
 383                ret = 1;
 384        } else  if (unlikely((left + period) <= period)) {
 385                /* left underflowed by less than period. */
 386                left += period;
 387                local64_set(&hwc->period_left, left);
 388                hwc->last_period = period;
 389                ret = 1;
 390        }
 391
 392        if (left > mipspmu.max_period) {
 393                left = mipspmu.max_period;
 394                local64_set(&hwc->period_left, left);
 395        }
 396
 397        local64_set(&hwc->prev_count, mipspmu.overflow - left);
 398
 399        mipspmu.write_counter(idx, mipspmu.overflow - left);
 400
 401        perf_event_update_userpage(event);
 402
 403        return ret;
 404}
 405
 406static void mipspmu_event_update(struct perf_event *event,
 407                                 struct hw_perf_event *hwc,
 408                                 int idx)
 409{
 410        u64 prev_raw_count, new_raw_count;
 411        u64 delta;
 412
 413again:
 414        prev_raw_count = local64_read(&hwc->prev_count);
 415        new_raw_count = mipspmu.read_counter(idx);
 416
 417        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 418                                new_raw_count) != prev_raw_count)
 419                goto again;
 420
 421        delta = new_raw_count - prev_raw_count;
 422
 423        local64_add(delta, &event->count);
 424        local64_sub(delta, &hwc->period_left);
 425}
 426
 427static void mipspmu_start(struct perf_event *event, int flags)
 428{
 429        struct hw_perf_event *hwc = &event->hw;
 430
 431        if (flags & PERF_EF_RELOAD)
 432                WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 433
 434        hwc->state = 0;
 435
 436        /* Set the period for the event. */
 437        mipspmu_event_set_period(event, hwc, hwc->idx);
 438
 439        /* Enable the event. */
 440        mipsxx_pmu_enable_event(hwc, hwc->idx);
 441}
 442
 443static void mipspmu_stop(struct perf_event *event, int flags)
 444{
 445        struct hw_perf_event *hwc = &event->hw;
 446
 447        if (!(hwc->state & PERF_HES_STOPPED)) {
 448                /* We are working on a local event. */
 449                mipsxx_pmu_disable_event(hwc->idx);
 450                barrier();
 451                mipspmu_event_update(event, hwc, hwc->idx);
 452                hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 453        }
 454}
 455
 456static int mipspmu_add(struct perf_event *event, int flags)
 457{
 458        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 459        struct hw_perf_event *hwc = &event->hw;
 460        int idx;
 461        int err = 0;
 462
 463        perf_pmu_disable(event->pmu);
 464
 465        /* To look for a free counter for this event. */
 466        idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 467        if (idx < 0) {
 468                err = idx;
 469                goto out;
 470        }
 471
 472        /*
 473         * If there is an event in the counter we are going to use then
 474         * make sure it is disabled.
 475         */
 476        event->hw.idx = idx;
 477        mipsxx_pmu_disable_event(idx);
 478        cpuc->events[idx] = event;
 479
 480        hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 481        if (flags & PERF_EF_START)
 482                mipspmu_start(event, PERF_EF_RELOAD);
 483
 484        /* Propagate our changes to the userspace mapping. */
 485        perf_event_update_userpage(event);
 486
 487out:
 488        perf_pmu_enable(event->pmu);
 489        return err;
 490}
 491
 492static void mipspmu_del(struct perf_event *event, int flags)
 493{
 494        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 495        struct hw_perf_event *hwc = &event->hw;
 496        int idx = hwc->idx;
 497
 498        WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 499
 500        mipspmu_stop(event, PERF_EF_UPDATE);
 501        cpuc->events[idx] = NULL;
 502        clear_bit(idx, cpuc->used_mask);
 503
 504        perf_event_update_userpage(event);
 505}
 506
 507static void mipspmu_read(struct perf_event *event)
 508{
 509        struct hw_perf_event *hwc = &event->hw;
 510
 511        /* Don't read disabled counters! */
 512        if (hwc->idx < 0)
 513                return;
 514
 515        mipspmu_event_update(event, hwc, hwc->idx);
 516}
 517
 518static void mipspmu_enable(struct pmu *pmu)
 519{
 520#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 521        write_unlock(&pmuint_rwlock);
 522#endif
 523        resume_local_counters();
 524}
 525
 526/*
 527 * MIPS performance counters can be per-TC. The control registers can
 528 * not be directly accessed across CPUs. Hence if we want to do global
 529 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 530 * can not make sure this function is called with interrupts enabled. So
 531 * here we pause local counters and then grab a rwlock and leave the
 532 * counters on other CPUs alone. If any counter interrupt raises while
 533 * we own the write lock, simply pause local counters on that CPU and
 534 * spin in the handler. Also we know we won't be switched to another
 535 * CPU after pausing local counters and before grabbing the lock.
 536 */
 537static void mipspmu_disable(struct pmu *pmu)
 538{
 539        pause_local_counters();
 540#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 541        write_lock(&pmuint_rwlock);
 542#endif
 543}
 544
 545static atomic_t active_events = ATOMIC_INIT(0);
 546static DEFINE_MUTEX(pmu_reserve_mutex);
 547static int (*save_perf_irq)(void);
 548
 549static int mipspmu_get_irq(void)
 550{
 551        int err;
 552
 553        if (mipspmu.irq >= 0) {
 554                /* Request my own irq handler. */
 555                err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 556                                  IRQF_PERCPU | IRQF_NOBALANCING |
 557                                  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
 558                                  IRQF_SHARED,
 559                                  "mips_perf_pmu", &mipspmu);
 560                if (err) {
 561                        pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
 562                                mipspmu.irq);
 563                }
 564        } else if (cp0_perfcount_irq < 0) {
 565                /*
 566                 * We are sharing the irq number with the timer interrupt.
 567                 */
 568                save_perf_irq = perf_irq;
 569                perf_irq = mipsxx_pmu_handle_shared_irq;
 570                err = 0;
 571        } else {
 572                pr_warn("The platform hasn't properly defined its interrupt controller\n");
 573                err = -ENOENT;
 574        }
 575
 576        return err;
 577}
 578
 579static void mipspmu_free_irq(void)
 580{
 581        if (mipspmu.irq >= 0)
 582                free_irq(mipspmu.irq, &mipspmu);
 583        else if (cp0_perfcount_irq < 0)
 584                perf_irq = save_perf_irq;
 585}
 586
 587/*
 588 * mipsxx/rm9000/loongson2 have different performance counters, they have
 589 * specific low-level init routines.
 590 */
 591static void reset_counters(void *arg);
 592static int __hw_perf_event_init(struct perf_event *event);
 593
 594static void hw_perf_event_destroy(struct perf_event *event)
 595{
 596        if (atomic_dec_and_mutex_lock(&active_events,
 597                                &pmu_reserve_mutex)) {
 598                /*
 599                 * We must not call the destroy function with interrupts
 600                 * disabled.
 601                 */
 602                on_each_cpu(reset_counters,
 603                        (void *)(long)mipspmu.num_counters, 1);
 604                mipspmu_free_irq();
 605                mutex_unlock(&pmu_reserve_mutex);
 606        }
 607}
 608
 609static int mipspmu_event_init(struct perf_event *event)
 610{
 611        int err = 0;
 612
 613        /* does not support taken branch sampling */
 614        if (has_branch_stack(event))
 615                return -EOPNOTSUPP;
 616
 617        switch (event->attr.type) {
 618        case PERF_TYPE_RAW:
 619        case PERF_TYPE_HARDWARE:
 620        case PERF_TYPE_HW_CACHE:
 621                break;
 622
 623        default:
 624                return -ENOENT;
 625        }
 626
 627        if (event->cpu >= 0 && !cpu_online(event->cpu))
 628                return -ENODEV;
 629
 630        if (!atomic_inc_not_zero(&active_events)) {
 631                mutex_lock(&pmu_reserve_mutex);
 632                if (atomic_read(&active_events) == 0)
 633                        err = mipspmu_get_irq();
 634
 635                if (!err)
 636                        atomic_inc(&active_events);
 637                mutex_unlock(&pmu_reserve_mutex);
 638        }
 639
 640        if (err)
 641                return err;
 642
 643        return __hw_perf_event_init(event);
 644}
 645
 646static struct pmu pmu = {
 647        .pmu_enable     = mipspmu_enable,
 648        .pmu_disable    = mipspmu_disable,
 649        .event_init     = mipspmu_event_init,
 650        .add            = mipspmu_add,
 651        .del            = mipspmu_del,
 652        .start          = mipspmu_start,
 653        .stop           = mipspmu_stop,
 654        .read           = mipspmu_read,
 655};
 656
 657static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 658{
 659/*
 660 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 661 * event_id.
 662 */
 663#ifdef CONFIG_MIPS_MT_SMP
 664        if (num_possible_cpus() > 1)
 665                return ((unsigned int)pev->range << 24) |
 666                        (pev->cntr_mask & 0xffff00) |
 667                        (pev->event_id & 0xff);
 668        else
 669#endif /* CONFIG_MIPS_MT_SMP */
 670                return ((pev->cntr_mask & 0xffff00) |
 671                        (pev->event_id & 0xff));
 672}
 673
 674static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 675{
 676
 677        if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
 678                return ERR_PTR(-EOPNOTSUPP);
 679        return &(*mipspmu.general_event_map)[idx];
 680}
 681
 682static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 683{
 684        unsigned int cache_type, cache_op, cache_result;
 685        const struct mips_perf_event *pev;
 686
 687        cache_type = (config >> 0) & 0xff;
 688        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 689                return ERR_PTR(-EINVAL);
 690
 691        cache_op = (config >> 8) & 0xff;
 692        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 693                return ERR_PTR(-EINVAL);
 694
 695        cache_result = (config >> 16) & 0xff;
 696        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 697                return ERR_PTR(-EINVAL);
 698
 699        pev = &((*mipspmu.cache_event_map)
 700                                        [cache_type]
 701                                        [cache_op]
 702                                        [cache_result]);
 703
 704        if (pev->cntr_mask == 0)
 705                return ERR_PTR(-EOPNOTSUPP);
 706
 707        return pev;
 708
 709}
 710
 711static int validate_group(struct perf_event *event)
 712{
 713        struct perf_event *sibling, *leader = event->group_leader;
 714        struct cpu_hw_events fake_cpuc;
 715
 716        memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 717
 718        if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 719                return -EINVAL;
 720
 721        for_each_sibling_event(sibling, leader) {
 722                if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 723                        return -EINVAL;
 724        }
 725
 726        if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 727                return -EINVAL;
 728
 729        return 0;
 730}
 731
 732/* This is needed by specific irq handlers in perf_event_*.c */
 733static void handle_associated_event(struct cpu_hw_events *cpuc,
 734                                    int idx, struct perf_sample_data *data,
 735                                    struct pt_regs *regs)
 736{
 737        struct perf_event *event = cpuc->events[idx];
 738        struct hw_perf_event *hwc = &event->hw;
 739
 740        mipspmu_event_update(event, hwc, idx);
 741        data->period = event->hw.last_period;
 742        if (!mipspmu_event_set_period(event, hwc, idx))
 743                return;
 744
 745        if (perf_event_overflow(event, data, regs))
 746                mipsxx_pmu_disable_event(idx);
 747}
 748
 749
 750static int __n_counters(void)
 751{
 752        if (!cpu_has_perf)
 753                return 0;
 754        if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
 755                return 1;
 756        if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
 757                return 2;
 758        if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
 759                return 3;
 760
 761        return 4;
 762}
 763
 764static int n_counters(void)
 765{
 766        int counters;
 767
 768        switch (current_cpu_type()) {
 769        case CPU_R10000:
 770                counters = 2;
 771                break;
 772
 773        case CPU_R12000:
 774        case CPU_R14000:
 775        case CPU_R16000:
 776                counters = 4;
 777                break;
 778
 779        default:
 780                counters = __n_counters();
 781        }
 782
 783        return counters;
 784}
 785
 786static void reset_counters(void *arg)
 787{
 788        int counters = (int)(long)arg;
 789        switch (counters) {
 790        case 4:
 791                mipsxx_pmu_write_control(3, 0);
 792                mipspmu.write_counter(3, 0);
 793                /* fall through */
 794        case 3:
 795                mipsxx_pmu_write_control(2, 0);
 796                mipspmu.write_counter(2, 0);
 797                /* fall through */
 798        case 2:
 799                mipsxx_pmu_write_control(1, 0);
 800                mipspmu.write_counter(1, 0);
 801                /* fall through */
 802        case 1:
 803                mipsxx_pmu_write_control(0, 0);
 804                mipspmu.write_counter(0, 0);
 805                /* fall through */
 806        }
 807}
 808
 809/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
 810static const struct mips_perf_event mipsxxcore_event_map
 811                                [PERF_COUNT_HW_MAX] = {
 812        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 813        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 814        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 815        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 816};
 817
 818/* 74K/proAptiv core has different branch event code. */
 819static const struct mips_perf_event mipsxxcore_event_map2
 820                                [PERF_COUNT_HW_MAX] = {
 821        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 822        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 823        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 824        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 825};
 826
 827static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
 828        [PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
 829        [PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
 830        /* These only count dcache, not icache */
 831        [PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
 832        [PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
 833        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
 834        [PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
 835};
 836
 837static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
 838        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
 839        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
 840        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
 841        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
 842};
 843
 844static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 845        [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 846        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 847        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 848        [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
 849        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 850        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 851        [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 852};
 853
 854static const struct mips_perf_event bmips5000_event_map
 855                                [PERF_COUNT_HW_MAX] = {
 856        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
 857        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 858        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 859};
 860
 861static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
 862        [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 863        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
 864        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
 865        [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
 866        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
 867        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
 868};
 869
 870/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
 871static const struct mips_perf_event mipsxxcore_cache_map
 872                                [PERF_COUNT_HW_CACHE_MAX]
 873                                [PERF_COUNT_HW_CACHE_OP_MAX]
 874                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 875[C(L1D)] = {
 876        /*
 877         * Like some other architectures (e.g. ARM), the performance
 878         * counters don't differentiate between read and write
 879         * accesses/misses, so this isn't strictly correct, but it's the
 880         * best we can do. Writes and reads get combined.
 881         */
 882        [C(OP_READ)] = {
 883                [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
 884                [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 885        },
 886        [C(OP_WRITE)] = {
 887                [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
 888                [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 889        },
 890},
 891[C(L1I)] = {
 892        [C(OP_READ)] = {
 893                [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
 894                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
 895        },
 896        [C(OP_WRITE)] = {
 897                [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
 898                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
 899        },
 900        [C(OP_PREFETCH)] = {
 901                [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
 902                /*
 903                 * Note that MIPS has only "hit" events countable for
 904                 * the prefetch operation.
 905                 */
 906        },
 907},
 908[C(LL)] = {
 909        [C(OP_READ)] = {
 910                [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
 911                [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
 912        },
 913        [C(OP_WRITE)] = {
 914                [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
 915                [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
 916        },
 917},
 918[C(DTLB)] = {
 919        [C(OP_READ)] = {
 920                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
 921                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
 922        },
 923        [C(OP_WRITE)] = {
 924                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
 925                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
 926        },
 927},
 928[C(ITLB)] = {
 929        [C(OP_READ)] = {
 930                [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
 931                [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
 932        },
 933        [C(OP_WRITE)] = {
 934                [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
 935                [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
 936        },
 937},
 938[C(BPU)] = {
 939        /* Using the same code for *HW_BRANCH* */
 940        [C(OP_READ)] = {
 941                [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
 942                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
 943        },
 944        [C(OP_WRITE)] = {
 945                [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
 946                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
 947        },
 948},
 949};
 950
 951/* 74K/proAptiv core has completely different cache event map. */
 952static const struct mips_perf_event mipsxxcore_cache_map2
 953                                [PERF_COUNT_HW_CACHE_MAX]
 954                                [PERF_COUNT_HW_CACHE_OP_MAX]
 955                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 956[C(L1D)] = {
 957        /*
 958         * Like some other architectures (e.g. ARM), the performance
 959         * counters don't differentiate between read and write
 960         * accesses/misses, so this isn't strictly correct, but it's the
 961         * best we can do. Writes and reads get combined.
 962         */
 963        [C(OP_READ)] = {
 964                [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
 965                [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
 966        },
 967        [C(OP_WRITE)] = {
 968                [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
 969                [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
 970        },
 971},
 972[C(L1I)] = {
 973        [C(OP_READ)] = {
 974                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
 975                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
 976        },
 977        [C(OP_WRITE)] = {
 978                [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
 979                [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
 980        },
 981        [C(OP_PREFETCH)] = {
 982                [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
 983                /*
 984                 * Note that MIPS has only "hit" events countable for
 985                 * the prefetch operation.
 986                 */
 987        },
 988},
 989[C(LL)] = {
 990        [C(OP_READ)] = {
 991                [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
 992                [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
 993        },
 994        [C(OP_WRITE)] = {
 995                [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
 996                [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
 997        },
 998},
 999/*
1000 * 74K core does not have specific DTLB events. proAptiv core has
1001 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1002 * not included here. One can use raw events if really needed.
1003 */
1004[C(ITLB)] = {
1005        [C(OP_READ)] = {
1006                [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1007                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1008        },
1009        [C(OP_WRITE)] = {
1010                [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1011                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1012        },
1013},
1014[C(BPU)] = {
1015        /* Using the same code for *HW_BRANCH* */
1016        [C(OP_READ)] = {
1017                [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1018                [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1019        },
1020        [C(OP_WRITE)] = {
1021                [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1022                [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1023        },
1024},
1025};
1026
1027static const struct mips_perf_event i6x00_cache_map
1028                                [PERF_COUNT_HW_CACHE_MAX]
1029                                [PERF_COUNT_HW_CACHE_OP_MAX]
1030                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1031[C(L1D)] = {
1032        [C(OP_READ)] = {
1033                [C(RESULT_ACCESS)]      = { 0x46, CNTR_EVEN | CNTR_ODD },
1034                [C(RESULT_MISS)]        = { 0x49, CNTR_EVEN | CNTR_ODD },
1035        },
1036        [C(OP_WRITE)] = {
1037                [C(RESULT_ACCESS)]      = { 0x47, CNTR_EVEN | CNTR_ODD },
1038                [C(RESULT_MISS)]        = { 0x4a, CNTR_EVEN | CNTR_ODD },
1039        },
1040},
1041[C(L1I)] = {
1042        [C(OP_READ)] = {
1043                [C(RESULT_ACCESS)]      = { 0x84, CNTR_EVEN | CNTR_ODD },
1044                [C(RESULT_MISS)]        = { 0x85, CNTR_EVEN | CNTR_ODD },
1045        },
1046},
1047[C(DTLB)] = {
1048        /* Can't distinguish read & write */
1049        [C(OP_READ)] = {
1050                [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1051                [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1052        },
1053        [C(OP_WRITE)] = {
1054                [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1055                [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1056        },
1057},
1058[C(BPU)] = {
1059        /* Conditional branches / mispredicted */
1060        [C(OP_READ)] = {
1061                [C(RESULT_ACCESS)]      = { 0x15, CNTR_EVEN | CNTR_ODD },
1062                [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN | CNTR_ODD },
1063        },
1064},
1065};
1066
1067static const struct mips_perf_event loongson3_cache_map
1068                                [PERF_COUNT_HW_CACHE_MAX]
1069                                [PERF_COUNT_HW_CACHE_OP_MAX]
1070                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1071[C(L1D)] = {
1072        /*
1073         * Like some other architectures (e.g. ARM), the performance
1074         * counters don't differentiate between read and write
1075         * accesses/misses, so this isn't strictly correct, but it's the
1076         * best we can do. Writes and reads get combined.
1077         */
1078        [C(OP_READ)] = {
1079                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1080        },
1081        [C(OP_WRITE)] = {
1082                [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1083        },
1084},
1085[C(L1I)] = {
1086        [C(OP_READ)] = {
1087                [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1088        },
1089        [C(OP_WRITE)] = {
1090                [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1091        },
1092},
1093[C(DTLB)] = {
1094        [C(OP_READ)] = {
1095                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1096        },
1097        [C(OP_WRITE)] = {
1098                [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1099        },
1100},
1101[C(ITLB)] = {
1102        [C(OP_READ)] = {
1103                [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1104        },
1105        [C(OP_WRITE)] = {
1106                [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1107        },
1108},
1109[C(BPU)] = {
1110        /* Using the same code for *HW_BRANCH* */
1111        [C(OP_READ)] = {
1112                [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1113                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1114        },
1115        [C(OP_WRITE)] = {
1116                [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1117                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1118        },
1119},
1120};
1121
1122/* BMIPS5000 */
1123static const struct mips_perf_event bmips5000_cache_map
1124                                [PERF_COUNT_HW_CACHE_MAX]
1125                                [PERF_COUNT_HW_CACHE_OP_MAX]
1126                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1127[C(L1D)] = {
1128        /*
1129         * Like some other architectures (e.g. ARM), the performance
1130         * counters don't differentiate between read and write
1131         * accesses/misses, so this isn't strictly correct, but it's the
1132         * best we can do. Writes and reads get combined.
1133         */
1134        [C(OP_READ)] = {
1135                [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1136                [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1137        },
1138        [C(OP_WRITE)] = {
1139                [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1140                [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1141        },
1142},
1143[C(L1I)] = {
1144        [C(OP_READ)] = {
1145                [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1146                [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1147        },
1148        [C(OP_WRITE)] = {
1149                [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1150                [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1151        },
1152        [C(OP_PREFETCH)] = {
1153                [C(RESULT_ACCESS)]      = { 23, CNTR_EVEN, T },
1154                /*
1155                 * Note that MIPS has only "hit" events countable for
1156                 * the prefetch operation.
1157                 */
1158        },
1159},
1160[C(LL)] = {
1161        [C(OP_READ)] = {
1162                [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1163                [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1164        },
1165        [C(OP_WRITE)] = {
1166                [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1167                [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1168        },
1169},
1170[C(BPU)] = {
1171        /* Using the same code for *HW_BRANCH* */
1172        [C(OP_READ)] = {
1173                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1174        },
1175        [C(OP_WRITE)] = {
1176                [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1177        },
1178},
1179};
1180
1181
1182static const struct mips_perf_event octeon_cache_map
1183                                [PERF_COUNT_HW_CACHE_MAX]
1184                                [PERF_COUNT_HW_CACHE_OP_MAX]
1185                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1186[C(L1D)] = {
1187        [C(OP_READ)] = {
1188                [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1189                [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1190        },
1191        [C(OP_WRITE)] = {
1192                [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1193        },
1194},
1195[C(L1I)] = {
1196        [C(OP_READ)] = {
1197                [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1198        },
1199        [C(OP_PREFETCH)] = {
1200                [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1201        },
1202},
1203[C(DTLB)] = {
1204        /*
1205         * Only general DTLB misses are counted use the same event for
1206         * read and write.
1207         */
1208        [C(OP_READ)] = {
1209                [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1210        },
1211        [C(OP_WRITE)] = {
1212                [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1213        },
1214},
1215[C(ITLB)] = {
1216        [C(OP_READ)] = {
1217                [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1218        },
1219},
1220};
1221
1222static const struct mips_perf_event xlp_cache_map
1223                                [PERF_COUNT_HW_CACHE_MAX]
1224                                [PERF_COUNT_HW_CACHE_OP_MAX]
1225                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1226[C(L1D)] = {
1227        [C(OP_READ)] = {
1228                [C(RESULT_ACCESS)]      = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1229                [C(RESULT_MISS)]        = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1230        },
1231        [C(OP_WRITE)] = {
1232                [C(RESULT_ACCESS)]      = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1233                [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1234        },
1235},
1236[C(L1I)] = {
1237        [C(OP_READ)] = {
1238                [C(RESULT_ACCESS)]      = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1239                [C(RESULT_MISS)]        = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1240        },
1241},
1242[C(LL)] = {
1243        [C(OP_READ)] = {
1244                [C(RESULT_ACCESS)]      = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1245                [C(RESULT_MISS)]        = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1246        },
1247        [C(OP_WRITE)] = {
1248                [C(RESULT_ACCESS)]      = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1249                [C(RESULT_MISS)]        = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1250        },
1251},
1252[C(DTLB)] = {
1253        /*
1254         * Only general DTLB misses are counted use the same event for
1255         * read and write.
1256         */
1257        [C(OP_READ)] = {
1258                [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1259        },
1260        [C(OP_WRITE)] = {
1261                [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1262        },
1263},
1264[C(ITLB)] = {
1265        [C(OP_READ)] = {
1266                [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1267        },
1268        [C(OP_WRITE)] = {
1269                [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1270        },
1271},
1272[C(BPU)] = {
1273        [C(OP_READ)] = {
1274                [C(RESULT_MISS)]        = { 0x25, CNTR_ALL },
1275        },
1276},
1277};
1278
1279static int __hw_perf_event_init(struct perf_event *event)
1280{
1281        struct perf_event_attr *attr = &event->attr;
1282        struct hw_perf_event *hwc = &event->hw;
1283        const struct mips_perf_event *pev;
1284        int err;
1285
1286        /* Returning MIPS event descriptor for generic perf event. */
1287        if (PERF_TYPE_HARDWARE == event->attr.type) {
1288                if (event->attr.config >= PERF_COUNT_HW_MAX)
1289                        return -EINVAL;
1290                pev = mipspmu_map_general_event(event->attr.config);
1291        } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1292                pev = mipspmu_map_cache_event(event->attr.config);
1293        } else if (PERF_TYPE_RAW == event->attr.type) {
1294                /* We are working on the global raw event. */
1295                mutex_lock(&raw_event_mutex);
1296                pev = mipspmu.map_raw_event(event->attr.config);
1297        } else {
1298                /* The event type is not (yet) supported. */
1299                return -EOPNOTSUPP;
1300        }
1301
1302        if (IS_ERR(pev)) {
1303                if (PERF_TYPE_RAW == event->attr.type)
1304                        mutex_unlock(&raw_event_mutex);
1305                return PTR_ERR(pev);
1306        }
1307
1308        /*
1309         * We allow max flexibility on how each individual counter shared
1310         * by the single CPU operates (the mode exclusion and the range).
1311         */
1312        hwc->config_base = MIPS_PERFCTRL_IE;
1313
1314        hwc->event_base = mipspmu_perf_event_encode(pev);
1315        if (PERF_TYPE_RAW == event->attr.type)
1316                mutex_unlock(&raw_event_mutex);
1317
1318        if (!attr->exclude_user)
1319                hwc->config_base |= MIPS_PERFCTRL_U;
1320        if (!attr->exclude_kernel) {
1321                hwc->config_base |= MIPS_PERFCTRL_K;
1322                /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1323                hwc->config_base |= MIPS_PERFCTRL_EXL;
1324        }
1325        if (!attr->exclude_hv)
1326                hwc->config_base |= MIPS_PERFCTRL_S;
1327
1328        hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1329        /*
1330         * The event can belong to another cpu. We do not assign a local
1331         * counter for it for now.
1332         */
1333        hwc->idx = -1;
1334        hwc->config = 0;
1335
1336        if (!hwc->sample_period) {
1337                hwc->sample_period  = mipspmu.max_period;
1338                hwc->last_period    = hwc->sample_period;
1339                local64_set(&hwc->period_left, hwc->sample_period);
1340        }
1341
1342        err = 0;
1343        if (event->group_leader != event)
1344                err = validate_group(event);
1345
1346        event->destroy = hw_perf_event_destroy;
1347
1348        if (err)
1349                event->destroy(event);
1350
1351        return err;
1352}
1353
1354static void pause_local_counters(void)
1355{
1356        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1357        int ctr = mipspmu.num_counters;
1358        unsigned long flags;
1359
1360        local_irq_save(flags);
1361        do {
1362                ctr--;
1363                cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1364                mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1365                                         ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1366        } while (ctr > 0);
1367        local_irq_restore(flags);
1368}
1369
1370static void resume_local_counters(void)
1371{
1372        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1373        int ctr = mipspmu.num_counters;
1374
1375        do {
1376                ctr--;
1377                mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1378        } while (ctr > 0);
1379}
1380
1381static int mipsxx_pmu_handle_shared_irq(void)
1382{
1383        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1384        struct perf_sample_data data;
1385        unsigned int counters = mipspmu.num_counters;
1386        u64 counter;
1387        int n, handled = IRQ_NONE;
1388        struct pt_regs *regs;
1389
1390        if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1391                return handled;
1392        /*
1393         * First we pause the local counters, so that when we are locked
1394         * here, the counters are all paused. When it gets locked due to
1395         * perf_disable(), the timer interrupt handler will be delayed.
1396         *
1397         * See also mipsxx_pmu_start().
1398         */
1399        pause_local_counters();
1400#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1401        read_lock(&pmuint_rwlock);
1402#endif
1403
1404        regs = get_irq_regs();
1405
1406        perf_sample_data_init(&data, 0, 0);
1407
1408        for (n = counters - 1; n >= 0; n--) {
1409                if (!test_bit(n, cpuc->used_mask))
1410                        continue;
1411
1412                counter = mipspmu.read_counter(n);
1413                if (!(counter & mipspmu.overflow))
1414                        continue;
1415
1416                handle_associated_event(cpuc, n, &data, regs);
1417                handled = IRQ_HANDLED;
1418        }
1419
1420#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1421        read_unlock(&pmuint_rwlock);
1422#endif
1423        resume_local_counters();
1424
1425        /*
1426         * Do all the work for the pending perf events. We can do this
1427         * in here because the performance counter interrupt is a regular
1428         * interrupt, not NMI.
1429         */
1430        if (handled == IRQ_HANDLED)
1431                irq_work_run();
1432
1433        return handled;
1434}
1435
1436static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1437{
1438        return mipsxx_pmu_handle_shared_irq();
1439}
1440
1441/* 24K */
1442#define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1443        ((b) == 0 || (b) == 1 || (b) == 11)
1444
1445/* 34K */
1446#define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1447        ((b) == 0 || (b) == 1 || (b) == 11)
1448#ifdef CONFIG_MIPS_MT_SMP
1449#define IS_RANGE_P_34K_EVENT(r, b)                                      \
1450        ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1451         (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1452         (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1453         ((b) >= 64 && (b) <= 67))
1454#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1455#endif
1456
1457/* 74K */
1458#define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1459        ((b) == 0 || (b) == 1)
1460
1461/* proAptiv */
1462#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)                              \
1463        ((b) == 0 || (b) == 1)
1464/* P5600 */
1465#define IS_BOTH_COUNTERS_P5600_EVENT(b)                                 \
1466        ((b) == 0 || (b) == 1)
1467
1468/* 1004K */
1469#define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1470        ((b) == 0 || (b) == 1 || (b) == 11)
1471#ifdef CONFIG_MIPS_MT_SMP
1472#define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1473        ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1474         (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1475         (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1476         (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1477         ((b) >= 64 && (b) <= 67))
1478#define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1479#endif
1480
1481/* interAptiv */
1482#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)                            \
1483        ((b) == 0 || (b) == 1 || (b) == 11)
1484#ifdef CONFIG_MIPS_MT_SMP
1485/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1486#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)                               \
1487        ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1488         (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||            \
1489         (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&         \
1490         (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||          \
1491         ((b) >= 64 && (b) <= 67))
1492#define IS_RANGE_V_INTERAPTIV_EVENT(r)  ((r) == 47 || (r) == 175)
1493#endif
1494
1495/* BMIPS5000 */
1496#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)                             \
1497        ((b) == 0 || (b) == 1)
1498
1499
1500/*
1501 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1502 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1503 * indicate the even/odd bank selector. So, for example, when user wants to take
1504 * the Event Num of 15 for odd counters (by referring to the user manual), then
1505 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1506 * to be used.
1507 *
1508 * Some newer cores have even more events, in which case the user can use raw
1509 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1510 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1511 */
1512static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1513{
1514        /* currently most cores have 7-bit event numbers */
1515        unsigned int raw_id = config & 0xff;
1516        unsigned int base_id = raw_id & 0x7f;
1517
1518        switch (current_cpu_type()) {
1519        case CPU_24K:
1520                if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1521                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1522                else
1523                        raw_event.cntr_mask =
1524                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1525#ifdef CONFIG_MIPS_MT_SMP
1526                /*
1527                 * This is actually doing nothing. Non-multithreading
1528                 * CPUs will not check and calculate the range.
1529                 */
1530                raw_event.range = P;
1531#endif
1532                break;
1533        case CPU_34K:
1534                if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1535                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1536                else
1537                        raw_event.cntr_mask =
1538                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1539#ifdef CONFIG_MIPS_MT_SMP
1540                if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1541                        raw_event.range = P;
1542                else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1543                        raw_event.range = V;
1544                else
1545                        raw_event.range = T;
1546#endif
1547                break;
1548        case CPU_74K:
1549        case CPU_1074K:
1550                if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1551                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1552                else
1553                        raw_event.cntr_mask =
1554                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1555#ifdef CONFIG_MIPS_MT_SMP
1556                raw_event.range = P;
1557#endif
1558                break;
1559        case CPU_PROAPTIV:
1560                if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1561                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1562                else
1563                        raw_event.cntr_mask =
1564                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1565#ifdef CONFIG_MIPS_MT_SMP
1566                raw_event.range = P;
1567#endif
1568                break;
1569        case CPU_P5600:
1570        case CPU_P6600:
1571                /* 8-bit event numbers */
1572                raw_id = config & 0x1ff;
1573                base_id = raw_id & 0xff;
1574                if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1575                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1576                else
1577                        raw_event.cntr_mask =
1578                                raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1579#ifdef CONFIG_MIPS_MT_SMP
1580                raw_event.range = P;
1581#endif
1582                break;
1583        case CPU_I6400:
1584        case CPU_I6500:
1585                /* 8-bit event numbers */
1586                base_id = config & 0xff;
1587                raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1588                break;
1589        case CPU_1004K:
1590                if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1591                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1592                else
1593                        raw_event.cntr_mask =
1594                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1595#ifdef CONFIG_MIPS_MT_SMP
1596                if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1597                        raw_event.range = P;
1598                else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1599                        raw_event.range = V;
1600                else
1601                        raw_event.range = T;
1602#endif
1603                break;
1604        case CPU_INTERAPTIV:
1605                if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1606                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1607                else
1608                        raw_event.cntr_mask =
1609                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1610#ifdef CONFIG_MIPS_MT_SMP
1611                if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1612                        raw_event.range = P;
1613                else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1614                        raw_event.range = V;
1615                else
1616                        raw_event.range = T;
1617#endif
1618                break;
1619        case CPU_BMIPS5000:
1620                if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1621                        raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1622                else
1623                        raw_event.cntr_mask =
1624                                raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1625                break;
1626        case CPU_LOONGSON3:
1627                raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1628        break;
1629        }
1630
1631        raw_event.event_id = base_id;
1632
1633        return &raw_event;
1634}
1635
1636static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1637{
1638        unsigned int raw_id = config & 0xff;
1639        unsigned int base_id = raw_id & 0x7f;
1640
1641
1642        raw_event.cntr_mask = CNTR_ALL;
1643        raw_event.event_id = base_id;
1644
1645        if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1646                if (base_id > 0x42)
1647                        return ERR_PTR(-EOPNOTSUPP);
1648        } else {
1649                if (base_id > 0x3a)
1650                        return ERR_PTR(-EOPNOTSUPP);
1651        }
1652
1653        switch (base_id) {
1654        case 0x00:
1655        case 0x0f:
1656        case 0x1e:
1657        case 0x1f:
1658        case 0x2f:
1659        case 0x34:
1660        case 0x3b ... 0x3f:
1661                return ERR_PTR(-EOPNOTSUPP);
1662        default:
1663                break;
1664        }
1665
1666        return &raw_event;
1667}
1668
1669static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1670{
1671        unsigned int raw_id = config & 0xff;
1672
1673        /* Only 1-63 are defined */
1674        if ((raw_id < 0x01) || (raw_id > 0x3f))
1675                return ERR_PTR(-EOPNOTSUPP);
1676
1677        raw_event.cntr_mask = CNTR_ALL;
1678        raw_event.event_id = raw_id;
1679
1680        return &raw_event;
1681}
1682
1683static int __init
1684init_hw_perf_events(void)
1685{
1686        int counters, irq;
1687        int counter_bits;
1688
1689        pr_info("Performance counters: ");
1690
1691        counters = n_counters();
1692        if (counters == 0) {
1693                pr_cont("No available PMU.\n");
1694                return -ENODEV;
1695        }
1696
1697#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1698        if (!cpu_has_mipsmt_pertccounters)
1699                counters = counters_total_to_per_cpu(counters);
1700#endif
1701
1702        if (get_c0_perfcount_int)
1703                irq = get_c0_perfcount_int();
1704        else if (cp0_perfcount_irq >= 0)
1705                irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1706        else
1707                irq = -1;
1708
1709        mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1710
1711        switch (current_cpu_type()) {
1712        case CPU_24K:
1713                mipspmu.name = "mips/24K";
1714                mipspmu.general_event_map = &mipsxxcore_event_map;
1715                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1716                break;
1717        case CPU_34K:
1718                mipspmu.name = "mips/34K";
1719                mipspmu.general_event_map = &mipsxxcore_event_map;
1720                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1721                break;
1722        case CPU_74K:
1723                mipspmu.name = "mips/74K";
1724                mipspmu.general_event_map = &mipsxxcore_event_map2;
1725                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1726                break;
1727        case CPU_PROAPTIV:
1728                mipspmu.name = "mips/proAptiv";
1729                mipspmu.general_event_map = &mipsxxcore_event_map2;
1730                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1731                break;
1732        case CPU_P5600:
1733                mipspmu.name = "mips/P5600";
1734                mipspmu.general_event_map = &mipsxxcore_event_map2;
1735                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1736                break;
1737        case CPU_P6600:
1738                mipspmu.name = "mips/P6600";
1739                mipspmu.general_event_map = &mipsxxcore_event_map2;
1740                mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1741                break;
1742        case CPU_I6400:
1743                mipspmu.name = "mips/I6400";
1744                mipspmu.general_event_map = &i6x00_event_map;
1745                mipspmu.cache_event_map = &i6x00_cache_map;
1746                break;
1747        case CPU_I6500:
1748                mipspmu.name = "mips/I6500";
1749                mipspmu.general_event_map = &i6x00_event_map;
1750                mipspmu.cache_event_map = &i6x00_cache_map;
1751                break;
1752        case CPU_1004K:
1753                mipspmu.name = "mips/1004K";
1754                mipspmu.general_event_map = &mipsxxcore_event_map;
1755                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1756                break;
1757        case CPU_1074K:
1758                mipspmu.name = "mips/1074K";
1759                mipspmu.general_event_map = &mipsxxcore_event_map;
1760                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1761                break;
1762        case CPU_INTERAPTIV:
1763                mipspmu.name = "mips/interAptiv";
1764                mipspmu.general_event_map = &mipsxxcore_event_map;
1765                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1766                break;
1767        case CPU_LOONGSON1:
1768                mipspmu.name = "mips/loongson1";
1769                mipspmu.general_event_map = &mipsxxcore_event_map;
1770                mipspmu.cache_event_map = &mipsxxcore_cache_map;
1771                break;
1772        case CPU_LOONGSON3:
1773                mipspmu.name = "mips/loongson3";
1774                mipspmu.general_event_map = &loongson3_event_map;
1775                mipspmu.cache_event_map = &loongson3_cache_map;
1776                break;
1777        case CPU_CAVIUM_OCTEON:
1778        case CPU_CAVIUM_OCTEON_PLUS:
1779        case CPU_CAVIUM_OCTEON2:
1780                mipspmu.name = "octeon";
1781                mipspmu.general_event_map = &octeon_event_map;
1782                mipspmu.cache_event_map = &octeon_cache_map;
1783                mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1784                break;
1785        case CPU_BMIPS5000:
1786                mipspmu.name = "BMIPS5000";
1787                mipspmu.general_event_map = &bmips5000_event_map;
1788                mipspmu.cache_event_map = &bmips5000_cache_map;
1789                break;
1790        case CPU_XLP:
1791                mipspmu.name = "xlp";
1792                mipspmu.general_event_map = &xlp_event_map;
1793                mipspmu.cache_event_map = &xlp_cache_map;
1794                mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1795                break;
1796        default:
1797                pr_cont("Either hardware does not support performance "
1798                        "counters, or not yet implemented.\n");
1799                return -ENODEV;
1800        }
1801
1802        mipspmu.num_counters = counters;
1803        mipspmu.irq = irq;
1804
1805        if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
1806                mipspmu.max_period = (1ULL << 63) - 1;
1807                mipspmu.valid_count = (1ULL << 63) - 1;
1808                mipspmu.overflow = 1ULL << 63;
1809                mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1810                mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1811                counter_bits = 64;
1812        } else {
1813                mipspmu.max_period = (1ULL << 31) - 1;
1814                mipspmu.valid_count = (1ULL << 31) - 1;
1815                mipspmu.overflow = 1ULL << 31;
1816                mipspmu.read_counter = mipsxx_pmu_read_counter;
1817                mipspmu.write_counter = mipsxx_pmu_write_counter;
1818                counter_bits = 32;
1819        }
1820
1821        on_each_cpu(reset_counters, (void *)(long)counters, 1);
1822
1823        pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1824                "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1825                irq < 0 ? " (share with timer interrupt)" : "");
1826
1827        perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1828
1829        return 0;
1830}
1831early_initcall(init_hw_perf_events);
1832