linux/arch/mips/kernel/smp-bmips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
   7 *
   8 * SMP support for BMIPS
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/sched.h>
  13#include <linux/sched/hotplug.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/mm.h>
  16#include <linux/delay.h>
  17#include <linux/smp.h>
  18#include <linux/interrupt.h>
  19#include <linux/spinlock.h>
  20#include <linux/cpu.h>
  21#include <linux/cpumask.h>
  22#include <linux/reboot.h>
  23#include <linux/io.h>
  24#include <linux/compiler.h>
  25#include <linux/linkage.h>
  26#include <linux/bug.h>
  27#include <linux/kernel.h>
  28#include <linux/kexec.h>
  29
  30#include <asm/time.h>
  31#include <asm/pgtable.h>
  32#include <asm/processor.h>
  33#include <asm/bootinfo.h>
  34#include <asm/pmon.h>
  35#include <asm/cacheflush.h>
  36#include <asm/tlbflush.h>
  37#include <asm/mipsregs.h>
  38#include <asm/bmips.h>
  39#include <asm/traps.h>
  40#include <asm/barrier.h>
  41#include <asm/cpu-features.h>
  42
  43static int __maybe_unused max_cpus = 1;
  44
  45/* these may be configured by the platform code */
  46int bmips_smp_enabled = 1;
  47int bmips_cpu_offset;
  48cpumask_t bmips_booted_mask;
  49unsigned long bmips_tp1_irqs = IE_IRQ1;
  50
  51#define RESET_FROM_KSEG0                0x80080800
  52#define RESET_FROM_KSEG1                0xa0080800
  53
  54static void bmips_set_reset_vec(int cpu, u32 val);
  55
  56#ifdef CONFIG_SMP
  57
  58/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  59unsigned long bmips_smp_boot_sp;
  60unsigned long bmips_smp_boot_gp;
  61
  62static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
  63static void bmips5000_send_ipi_single(int cpu, unsigned int action);
  64static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
  65static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
  66
  67/* SW interrupts 0,1 are used for interprocessor signaling */
  68#define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
  69#define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
  70
  71#define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
  72#define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  73#define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  74#define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
  75
  76static void __init bmips_smp_setup(void)
  77{
  78        int i, cpu = 1, boot_cpu = 0;
  79        int cpu_hw_intr;
  80
  81        switch (current_cpu_type()) {
  82        case CPU_BMIPS4350:
  83        case CPU_BMIPS4380:
  84                /* arbitration priority */
  85                clear_c0_brcm_cmt_ctrl(0x30);
  86
  87                /* NBK and weak order flags */
  88                set_c0_brcm_config_0(0x30000);
  89
  90                /* Find out if we are running on TP0 or TP1 */
  91                boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
  92
  93                /*
  94                 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
  95                 * thread
  96                 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  97                 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  98                 */
  99                if (boot_cpu == 0)
 100                        cpu_hw_intr = 0x02;
 101                else
 102                        cpu_hw_intr = 0x1d;
 103
 104                change_c0_brcm_cmt_intr(0xf8018000,
 105                                        (cpu_hw_intr << 27) | (0x03 << 15));
 106
 107                /* single core, 2 threads (2 pipelines) */
 108                max_cpus = 2;
 109
 110                break;
 111        case CPU_BMIPS5000:
 112                /* enable raceless SW interrupts */
 113                set_c0_brcm_config(0x03 << 22);
 114
 115                /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
 116                change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
 117
 118                /* N cores, 2 threads per core */
 119                max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
 120
 121                /* clear any pending SW interrupts */
 122                for (i = 0; i < max_cpus; i++) {
 123                        write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
 124                        write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
 125                }
 126
 127                break;
 128        default:
 129                max_cpus = 1;
 130        }
 131
 132        if (!bmips_smp_enabled)
 133                max_cpus = 1;
 134
 135        /* this can be overridden by the BSP */
 136        if (!board_ebase_setup)
 137                board_ebase_setup = &bmips_ebase_setup;
 138
 139        __cpu_number_map[boot_cpu] = 0;
 140        __cpu_logical_map[0] = boot_cpu;
 141
 142        for (i = 0; i < max_cpus; i++) {
 143                if (i != boot_cpu) {
 144                        __cpu_number_map[i] = cpu;
 145                        __cpu_logical_map[cpu] = i;
 146                        cpu++;
 147                }
 148                set_cpu_possible(i, 1);
 149                set_cpu_present(i, 1);
 150        }
 151}
 152
 153/*
 154 * IPI IRQ setup - runs on CPU0
 155 */
 156static void bmips_prepare_cpus(unsigned int max_cpus)
 157{
 158        irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
 159
 160        switch (current_cpu_type()) {
 161        case CPU_BMIPS4350:
 162        case CPU_BMIPS4380:
 163                bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
 164                break;
 165        case CPU_BMIPS5000:
 166                bmips_ipi_interrupt = bmips5000_ipi_interrupt;
 167                break;
 168        default:
 169                return;
 170        }
 171
 172        if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
 173                        IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
 174                panic("Can't request IPI0 interrupt");
 175        if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
 176                        IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
 177                panic("Can't request IPI1 interrupt");
 178}
 179
 180/*
 181 * Tell the hardware to boot CPUx - runs on CPU0
 182 */
 183static int bmips_boot_secondary(int cpu, struct task_struct *idle)
 184{
 185        bmips_smp_boot_sp = __KSTK_TOS(idle);
 186        bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
 187        mb();
 188
 189        /*
 190         * Initial boot sequence for secondary CPU:
 191         *   bmips_reset_nmi_vec @ a000_0000 ->
 192         *   bmips_smp_entry ->
 193         *   plat_wired_tlb_setup (cached function call; optional) ->
 194         *   start_secondary (cached jump)
 195         *
 196         * Warm restart sequence:
 197         *   play_dead WAIT loop ->
 198         *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
 199         *   eret to play_dead ->
 200         *   bmips_secondary_reentry ->
 201         *   start_secondary
 202         */
 203
 204        pr_info("SMP: Booting CPU%d...\n", cpu);
 205
 206        if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
 207                /* kseg1 might not exist if this CPU enabled XKS01 */
 208                bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
 209
 210                switch (current_cpu_type()) {
 211                case CPU_BMIPS4350:
 212                case CPU_BMIPS4380:
 213                        bmips43xx_send_ipi_single(cpu, 0);
 214                        break;
 215                case CPU_BMIPS5000:
 216                        bmips5000_send_ipi_single(cpu, 0);
 217                        break;
 218                }
 219        } else {
 220                bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
 221
 222                switch (current_cpu_type()) {
 223                case CPU_BMIPS4350:
 224                case CPU_BMIPS4380:
 225                        /* Reset slave TP1 if booting from TP0 */
 226                        if (cpu_logical_map(cpu) == 1)
 227                                set_c0_brcm_cmt_ctrl(0x01);
 228                        break;
 229                case CPU_BMIPS5000:
 230                        write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
 231                        break;
 232                }
 233                cpumask_set_cpu(cpu, &bmips_booted_mask);
 234        }
 235
 236        return 0;
 237}
 238
 239/*
 240 * Early setup - runs on secondary CPU after cache probe
 241 */
 242static void bmips_init_secondary(void)
 243{
 244        switch (current_cpu_type()) {
 245        case CPU_BMIPS4350:
 246        case CPU_BMIPS4380:
 247                clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
 248                break;
 249        case CPU_BMIPS5000:
 250                write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
 251                cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
 252                break;
 253        }
 254}
 255
 256/*
 257 * Late setup - runs on secondary CPU before entering the idle loop
 258 */
 259static void bmips_smp_finish(void)
 260{
 261        pr_info("SMP: CPU%d is running\n", smp_processor_id());
 262
 263        /* make sure there won't be a timer interrupt for a little while */
 264        write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
 265
 266        irq_enable_hazard();
 267        set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
 268        irq_enable_hazard();
 269}
 270
 271/*
 272 * BMIPS5000 raceless IPIs
 273 *
 274 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
 275 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
 276 * IPI1 is used for SMP_CALL_FUNCTION
 277 */
 278
 279static void bmips5000_send_ipi_single(int cpu, unsigned int action)
 280{
 281        write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
 282}
 283
 284static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
 285{
 286        int action = irq - IPI0_IRQ;
 287
 288        write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
 289
 290        if (action == 0)
 291                scheduler_ipi();
 292        else
 293                generic_smp_call_function_interrupt();
 294
 295        return IRQ_HANDLED;
 296}
 297
 298static void bmips5000_send_ipi_mask(const struct cpumask *mask,
 299        unsigned int action)
 300{
 301        unsigned int i;
 302
 303        for_each_cpu(i, mask)
 304                bmips5000_send_ipi_single(i, action);
 305}
 306
 307/*
 308 * BMIPS43xx racey IPIs
 309 *
 310 * We use one inbound SW IRQ for each CPU.
 311 *
 312 * A spinlock must be held in order to keep CPUx from accidentally clearing
 313 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
 314 * same spinlock is used to protect the action masks.
 315 */
 316
 317static DEFINE_SPINLOCK(ipi_lock);
 318static DEFINE_PER_CPU(int, ipi_action_mask);
 319
 320static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
 321{
 322        unsigned long flags;
 323
 324        spin_lock_irqsave(&ipi_lock, flags);
 325        set_c0_cause(cpu ? C_SW1 : C_SW0);
 326        per_cpu(ipi_action_mask, cpu) |= action;
 327        irq_enable_hazard();
 328        spin_unlock_irqrestore(&ipi_lock, flags);
 329}
 330
 331static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
 332{
 333        unsigned long flags;
 334        int action, cpu = irq - IPI0_IRQ;
 335
 336        spin_lock_irqsave(&ipi_lock, flags);
 337        action = __this_cpu_read(ipi_action_mask);
 338        per_cpu(ipi_action_mask, cpu) = 0;
 339        clear_c0_cause(cpu ? C_SW1 : C_SW0);
 340        spin_unlock_irqrestore(&ipi_lock, flags);
 341
 342        if (action & SMP_RESCHEDULE_YOURSELF)
 343                scheduler_ipi();
 344        if (action & SMP_CALL_FUNCTION)
 345                generic_smp_call_function_interrupt();
 346
 347        return IRQ_HANDLED;
 348}
 349
 350static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
 351        unsigned int action)
 352{
 353        unsigned int i;
 354
 355        for_each_cpu(i, mask)
 356                bmips43xx_send_ipi_single(i, action);
 357}
 358
 359#ifdef CONFIG_HOTPLUG_CPU
 360
 361static int bmips_cpu_disable(void)
 362{
 363        unsigned int cpu = smp_processor_id();
 364
 365        if (cpu == 0)
 366                return -EBUSY;
 367
 368        pr_info("SMP: CPU%d is offline\n", cpu);
 369
 370        set_cpu_online(cpu, false);
 371        calculate_cpu_foreign_map();
 372        irq_cpu_offline();
 373        clear_c0_status(IE_IRQ5);
 374
 375        local_flush_tlb_all();
 376        local_flush_icache_range(0, ~0);
 377
 378        return 0;
 379}
 380
 381static void bmips_cpu_die(unsigned int cpu)
 382{
 383}
 384
 385void __ref play_dead(void)
 386{
 387        idle_task_exit();
 388
 389        /* flush data cache */
 390        _dma_cache_wback_inv(0, ~0);
 391
 392        /*
 393         * Wakeup is on SW0 or SW1; disable everything else
 394         * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
 395         * IRQ handlers; this clears ST0_IE and returns immediately.
 396         */
 397        clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
 398        change_c0_status(
 399                IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
 400                IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
 401        irq_disable_hazard();
 402
 403        /*
 404         * wait for SW interrupt from bmips_boot_secondary(), then jump
 405         * back to start_secondary()
 406         */
 407        __asm__ __volatile__(
 408        "       wait\n"
 409        "       j       bmips_secondary_reentry\n"
 410        : : : "memory");
 411}
 412
 413#endif /* CONFIG_HOTPLUG_CPU */
 414
 415const struct plat_smp_ops bmips43xx_smp_ops = {
 416        .smp_setup              = bmips_smp_setup,
 417        .prepare_cpus           = bmips_prepare_cpus,
 418        .boot_secondary         = bmips_boot_secondary,
 419        .smp_finish             = bmips_smp_finish,
 420        .init_secondary         = bmips_init_secondary,
 421        .send_ipi_single        = bmips43xx_send_ipi_single,
 422        .send_ipi_mask          = bmips43xx_send_ipi_mask,
 423#ifdef CONFIG_HOTPLUG_CPU
 424        .cpu_disable            = bmips_cpu_disable,
 425        .cpu_die                = bmips_cpu_die,
 426#endif
 427#ifdef CONFIG_KEXEC
 428        .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
 429#endif
 430};
 431
 432const struct plat_smp_ops bmips5000_smp_ops = {
 433        .smp_setup              = bmips_smp_setup,
 434        .prepare_cpus           = bmips_prepare_cpus,
 435        .boot_secondary         = bmips_boot_secondary,
 436        .smp_finish             = bmips_smp_finish,
 437        .init_secondary         = bmips_init_secondary,
 438        .send_ipi_single        = bmips5000_send_ipi_single,
 439        .send_ipi_mask          = bmips5000_send_ipi_mask,
 440#ifdef CONFIG_HOTPLUG_CPU
 441        .cpu_disable            = bmips_cpu_disable,
 442        .cpu_die                = bmips_cpu_die,
 443#endif
 444#ifdef CONFIG_KEXEC
 445        .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
 446#endif
 447};
 448
 449#endif /* CONFIG_SMP */
 450
 451/***********************************************************************
 452 * BMIPS vector relocation
 453 * This is primarily used for SMP boot, but it is applicable to some
 454 * UP BMIPS systems as well.
 455 ***********************************************************************/
 456
 457static void bmips_wr_vec(unsigned long dst, char *start, char *end)
 458{
 459        memcpy((void *)dst, start, end - start);
 460        dma_cache_wback(dst, end - start);
 461        local_flush_icache_range(dst, dst + (end - start));
 462        instruction_hazard();
 463}
 464
 465static inline void bmips_nmi_handler_setup(void)
 466{
 467        bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
 468                &bmips_reset_nmi_vec_end);
 469        bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
 470                &bmips_smp_int_vec_end);
 471}
 472
 473struct reset_vec_info {
 474        int cpu;
 475        u32 val;
 476};
 477
 478static void bmips_set_reset_vec_remote(void *vinfo)
 479{
 480        struct reset_vec_info *info = vinfo;
 481        int shift = info->cpu & 0x01 ? 16 : 0;
 482        u32 mask = ~(0xffff << shift), val = info->val >> 16;
 483
 484        preempt_disable();
 485        if (smp_processor_id() > 0) {
 486                smp_call_function_single(0, &bmips_set_reset_vec_remote,
 487                                         info, 1);
 488        } else {
 489                if (info->cpu & 0x02) {
 490                        /* BMIPS5200 "should" use mask/shift, but it's buggy */
 491                        bmips_write_zscm_reg(0xa0, (val << 16) | val);
 492                        bmips_read_zscm_reg(0xa0);
 493                } else {
 494                        write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
 495                                              (val << shift));
 496                }
 497        }
 498        preempt_enable();
 499}
 500
 501static void bmips_set_reset_vec(int cpu, u32 val)
 502{
 503        struct reset_vec_info info;
 504
 505        if (current_cpu_type() == CPU_BMIPS5000) {
 506                /* this needs to run from CPU0 (which is always online) */
 507                info.cpu = cpu;
 508                info.val = val;
 509                bmips_set_reset_vec_remote(&info);
 510        } else {
 511                void __iomem *cbr = BMIPS_GET_CBR();
 512
 513                if (cpu == 0)
 514                        __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
 515                else {
 516                        if (current_cpu_type() != CPU_BMIPS4380)
 517                                return;
 518                        __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
 519                }
 520        }
 521        __sync();
 522        back_to_back_c0_hazard();
 523}
 524
 525void bmips_ebase_setup(void)
 526{
 527        unsigned long new_ebase = ebase;
 528
 529        BUG_ON(ebase != CKSEG0);
 530
 531        switch (current_cpu_type()) {
 532        case CPU_BMIPS4350:
 533                /*
 534                 * BMIPS4350 cannot relocate the normal vectors, but it
 535                 * can relocate the BEV=1 vectors.  So CPU1 starts up at
 536                 * the relocated BEV=1, IV=0 general exception vector @
 537                 * 0xa000_0380.
 538                 *
 539                 * set_uncached_handler() is used here because:
 540                 *  - CPU1 will run this from uncached space
 541                 *  - None of the cacheflush functions are set up yet
 542                 */
 543                set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
 544                        &bmips_smp_int_vec, 0x80);
 545                __sync();
 546                return;
 547        case CPU_BMIPS3300:
 548        case CPU_BMIPS4380:
 549                /*
 550                 * 0x8000_0000: reset/NMI (initially in kseg1)
 551                 * 0x8000_0400: normal vectors
 552                 */
 553                new_ebase = 0x80000400;
 554                bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 555                break;
 556        case CPU_BMIPS5000:
 557                /*
 558                 * 0x8000_0000: reset/NMI (initially in kseg1)
 559                 * 0x8000_1000: normal vectors
 560                 */
 561                new_ebase = 0x80001000;
 562                bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 563                write_c0_ebase(new_ebase);
 564                break;
 565        default:
 566                return;
 567        }
 568
 569        board_nmi_handler_setup = &bmips_nmi_handler_setup;
 570        ebase = new_ebase;
 571}
 572
 573asmlinkage void __weak plat_wired_tlb_setup(void)
 574{
 575        /*
 576         * Called when starting/restarting a secondary CPU.
 577         * Kernel stacks and other important data might only be accessible
 578         * once the wired entries are present.
 579         */
 580}
 581
 582void bmips_cpu_setup(void)
 583{
 584        void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
 585        u32 __maybe_unused cfg;
 586
 587        switch (current_cpu_type()) {
 588        case CPU_BMIPS3300:
 589                /* Set BIU to async mode */
 590                set_c0_brcm_bus_pll(BIT(22));
 591                __sync();
 592
 593                /* put the BIU back in sync mode */
 594                clear_c0_brcm_bus_pll(BIT(22));
 595
 596                /* clear BHTD to enable branch history table */
 597                clear_c0_brcm_reset(BIT(16));
 598
 599                /* Flush and enable RAC */
 600                cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
 601                __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
 602                __raw_readl(cbr + BMIPS_RAC_CONFIG);
 603
 604                cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
 605                __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
 606                __raw_readl(cbr + BMIPS_RAC_CONFIG);
 607
 608                cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
 609                __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
 610                __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
 611                break;
 612
 613        case CPU_BMIPS4380:
 614                /* CBG workaround for early BMIPS4380 CPUs */
 615                switch (read_c0_prid()) {
 616                case 0x2a040:
 617                case 0x2a042:
 618                case 0x2a044:
 619                case 0x2a060:
 620                        cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
 621                        __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
 622                        __raw_readl(cbr + BMIPS_L2_CONFIG);
 623                }
 624
 625                /* clear BHTD to enable branch history table */
 626                clear_c0_brcm_config_0(BIT(21));
 627
 628                /* XI/ROTR enable */
 629                set_c0_brcm_config_0(BIT(23));
 630                set_c0_brcm_cmt_ctrl(BIT(15));
 631                break;
 632
 633        case CPU_BMIPS5000:
 634                /* enable RDHWR, BRDHWR */
 635                set_c0_brcm_config(BIT(17) | BIT(21));
 636
 637                /* Disable JTB */
 638                __asm__ __volatile__(
 639                "       .set    noreorder\n"
 640                "       li      $8, 0x5a455048\n"
 641                "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
 642                "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
 643                "       li      $9, 0x00008000\n"
 644                "       or      $8, $8, $9\n"
 645                "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
 646                "       sync\n"
 647                "       li      $8, 0x0\n"
 648                "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
 649                "       .set    reorder\n"
 650                : : : "$8", "$9");
 651
 652                /* XI enable */
 653                set_c0_brcm_config(BIT(27));
 654
 655                /* enable MIPS32R2 ROR instruction for XI TLB handlers */
 656                __asm__ __volatile__(
 657                "       li      $8, 0x5a455048\n"
 658                "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
 659                "       nop; nop; nop\n"
 660                "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
 661                "       lui     $9, 0x0100\n"
 662                "       or      $8, $9\n"
 663                "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
 664                : : : "$8", "$9");
 665                break;
 666        }
 667}
 668