linux/arch/mips/kernel/smp-cps.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2013 Imagination Technologies
   4 * Author: Paul Burton <paul.burton@mips.com>
   5 */
   6
   7#include <linux/cpu.h>
   8#include <linux/delay.h>
   9#include <linux/io.h>
  10#include <linux/sched/task_stack.h>
  11#include <linux/sched/hotplug.h>
  12#include <linux/slab.h>
  13#include <linux/smp.h>
  14#include <linux/types.h>
  15
  16#include <asm/bcache.h>
  17#include <asm/mips-cps.h>
  18#include <asm/mips_mt.h>
  19#include <asm/mipsregs.h>
  20#include <asm/pm-cps.h>
  21#include <asm/r4kcache.h>
  22#include <asm/smp-cps.h>
  23#include <asm/time.h>
  24#include <asm/uasm.h>
  25
  26static bool threads_disabled;
  27static DECLARE_BITMAP(core_power, NR_CPUS);
  28
  29struct core_boot_config *mips_cps_core_bootcfg;
  30
  31static int __init setup_nothreads(char *s)
  32{
  33        threads_disabled = true;
  34        return 0;
  35}
  36early_param("nothreads", setup_nothreads);
  37
  38static unsigned core_vpe_count(unsigned int cluster, unsigned core)
  39{
  40        if (threads_disabled)
  41                return 1;
  42
  43        return mips_cps_numvps(cluster, core);
  44}
  45
  46static void __init cps_smp_setup(void)
  47{
  48        unsigned int nclusters, ncores, nvpes, core_vpes;
  49        unsigned long core_entry;
  50        int cl, c, v;
  51
  52        /* Detect & record VPE topology */
  53        nvpes = 0;
  54        nclusters = mips_cps_numclusters();
  55        pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
  56        for (cl = 0; cl < nclusters; cl++) {
  57                if (cl > 0)
  58                        pr_cont(",");
  59                pr_cont("{");
  60
  61                ncores = mips_cps_numcores(cl);
  62                for (c = 0; c < ncores; c++) {
  63                        core_vpes = core_vpe_count(cl, c);
  64
  65                        if (c > 0)
  66                                pr_cont(",");
  67                        pr_cont("%u", core_vpes);
  68
  69                        /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
  70                        if (!cl && !c)
  71                                smp_num_siblings = core_vpes;
  72
  73                        for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
  74                                cpu_set_cluster(&cpu_data[nvpes + v], cl);
  75                                cpu_set_core(&cpu_data[nvpes + v], c);
  76                                cpu_set_vpe_id(&cpu_data[nvpes + v], v);
  77                        }
  78
  79                        nvpes += core_vpes;
  80                }
  81
  82                pr_cont("}");
  83        }
  84        pr_cont(" total %u\n", nvpes);
  85
  86        /* Indicate present CPUs (CPU being synonymous with VPE) */
  87        for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
  88                set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
  89                set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
  90                __cpu_number_map[v] = v;
  91                __cpu_logical_map[v] = v;
  92        }
  93
  94        /* Set a coherent default CCA (CWB) */
  95        change_c0_config(CONF_CM_CMASK, 0x5);
  96
  97        /* Core 0 is powered up (we're running on it) */
  98        bitmap_set(core_power, 0, 1);
  99
 100        /* Initialise core 0 */
 101        mips_cps_core_init();
 102
 103        /* Make core 0 coherent with everything */
 104        write_gcr_cl_coherence(0xff);
 105
 106        if (mips_cm_revision() >= CM_REV_CM3) {
 107                core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
 108                write_gcr_bev_base(core_entry);
 109        }
 110
 111#ifdef CONFIG_MIPS_MT_FPAFF
 112        /* If we have an FPU, enroll ourselves in the FPU-full mask */
 113        if (cpu_has_fpu)
 114                cpumask_set_cpu(0, &mt_fpu_cpumask);
 115#endif /* CONFIG_MIPS_MT_FPAFF */
 116}
 117
 118static void __init cps_prepare_cpus(unsigned int max_cpus)
 119{
 120        unsigned ncores, core_vpes, c, cca;
 121        bool cca_unsuitable, cores_limited;
 122        u32 *entry_code;
 123
 124        mips_mt_set_cpuoptions();
 125
 126        /* Detect whether the CCA is unsuited to multi-core SMP */
 127        cca = read_c0_config() & CONF_CM_CMASK;
 128        switch (cca) {
 129        case 0x4: /* CWBE */
 130        case 0x5: /* CWB */
 131                /* The CCA is coherent, multi-core is fine */
 132                cca_unsuitable = false;
 133                break;
 134
 135        default:
 136                /* CCA is not coherent, multi-core is not usable */
 137                cca_unsuitable = true;
 138        }
 139
 140        /* Warn the user if the CCA prevents multi-core */
 141        cores_limited = false;
 142        if (cca_unsuitable || cpu_has_dc_aliases) {
 143                for_each_present_cpu(c) {
 144                        if (cpus_are_siblings(smp_processor_id(), c))
 145                                continue;
 146
 147                        set_cpu_present(c, false);
 148                        cores_limited = true;
 149                }
 150        }
 151        if (cores_limited)
 152                pr_warn("Using only one core due to %s%s%s\n",
 153                        cca_unsuitable ? "unsuitable CCA" : "",
 154                        (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
 155                        cpu_has_dc_aliases ? "dcache aliasing" : "");
 156
 157        /*
 158         * Patch the start of mips_cps_core_entry to provide:
 159         *
 160         * s0 = kseg0 CCA
 161         */
 162        entry_code = (u32 *)&mips_cps_core_entry;
 163        uasm_i_addiu(&entry_code, 16, 0, cca);
 164        blast_dcache_range((unsigned long)&mips_cps_core_entry,
 165                           (unsigned long)entry_code);
 166        bc_wback_inv((unsigned long)&mips_cps_core_entry,
 167                     (void *)entry_code - (void *)&mips_cps_core_entry);
 168        __sync();
 169
 170        /* Allocate core boot configuration structs */
 171        ncores = mips_cps_numcores(0);
 172        mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
 173                                        GFP_KERNEL);
 174        if (!mips_cps_core_bootcfg) {
 175                pr_err("Failed to allocate boot config for %u cores\n", ncores);
 176                goto err_out;
 177        }
 178
 179        /* Allocate VPE boot configuration structs */
 180        for (c = 0; c < ncores; c++) {
 181                core_vpes = core_vpe_count(0, c);
 182                mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
 183                                sizeof(*mips_cps_core_bootcfg[c].vpe_config),
 184                                GFP_KERNEL);
 185                if (!mips_cps_core_bootcfg[c].vpe_config) {
 186                        pr_err("Failed to allocate %u VPE boot configs\n",
 187                               core_vpes);
 188                        goto err_out;
 189                }
 190        }
 191
 192        /* Mark this CPU as booted */
 193        atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
 194                   1 << cpu_vpe_id(&current_cpu_data));
 195
 196        return;
 197err_out:
 198        /* Clean up allocations */
 199        if (mips_cps_core_bootcfg) {
 200                for (c = 0; c < ncores; c++)
 201                        kfree(mips_cps_core_bootcfg[c].vpe_config);
 202                kfree(mips_cps_core_bootcfg);
 203                mips_cps_core_bootcfg = NULL;
 204        }
 205
 206        /* Effectively disable SMP by declaring CPUs not present */
 207        for_each_possible_cpu(c) {
 208                if (c == 0)
 209                        continue;
 210                set_cpu_present(c, false);
 211        }
 212}
 213
 214static void boot_core(unsigned int core, unsigned int vpe_id)
 215{
 216        u32 stat, seq_state;
 217        unsigned timeout;
 218
 219        /* Select the appropriate core */
 220        mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 221
 222        /* Set its reset vector */
 223        write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
 224
 225        /* Ensure its coherency is disabled */
 226        write_gcr_co_coherence(0);
 227
 228        /* Start it with the legacy memory map and exception base */
 229        write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
 230
 231        /* Ensure the core can access the GCRs */
 232        set_gcr_access(1 << core);
 233
 234        if (mips_cpc_present()) {
 235                /* Reset the core */
 236                mips_cpc_lock_other(core);
 237
 238                if (mips_cm_revision() >= CM_REV_CM3) {
 239                        /* Run only the requested VP following the reset */
 240                        write_cpc_co_vp_stop(0xf);
 241                        write_cpc_co_vp_run(1 << vpe_id);
 242
 243                        /*
 244                         * Ensure that the VP_RUN register is written before the
 245                         * core leaves reset.
 246                         */
 247                        wmb();
 248                }
 249
 250                write_cpc_co_cmd(CPC_Cx_CMD_RESET);
 251
 252                timeout = 100;
 253                while (true) {
 254                        stat = read_cpc_co_stat_conf();
 255                        seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
 256                        seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
 257
 258                        /* U6 == coherent execution, ie. the core is up */
 259                        if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
 260                                break;
 261
 262                        /* Delay a little while before we start warning */
 263                        if (timeout) {
 264                                timeout--;
 265                                mdelay(10);
 266                                continue;
 267                        }
 268
 269                        pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
 270                                core, stat);
 271                        mdelay(1000);
 272                }
 273
 274                mips_cpc_unlock_other();
 275        } else {
 276                /* Take the core out of reset */
 277                write_gcr_co_reset_release(0);
 278        }
 279
 280        mips_cm_unlock_other();
 281
 282        /* The core is now powered up */
 283        bitmap_set(core_power, core, 1);
 284}
 285
 286static void remote_vpe_boot(void *dummy)
 287{
 288        unsigned core = cpu_core(&current_cpu_data);
 289        struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
 290
 291        mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
 292}
 293
 294static int cps_boot_secondary(int cpu, struct task_struct *idle)
 295{
 296        unsigned core = cpu_core(&cpu_data[cpu]);
 297        unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
 298        struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
 299        struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
 300        unsigned long core_entry;
 301        unsigned int remote;
 302        int err;
 303
 304        /* We don't yet support booting CPUs in other clusters */
 305        if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
 306                return -ENOSYS;
 307
 308        vpe_cfg->pc = (unsigned long)&smp_bootstrap;
 309        vpe_cfg->sp = __KSTK_TOS(idle);
 310        vpe_cfg->gp = (unsigned long)task_thread_info(idle);
 311
 312        atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
 313
 314        preempt_disable();
 315
 316        if (!test_bit(core, core_power)) {
 317                /* Boot a VPE on a powered down core */
 318                boot_core(core, vpe_id);
 319                goto out;
 320        }
 321
 322        if (cpu_has_vp) {
 323                mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 324                core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
 325                write_gcr_co_reset_base(core_entry);
 326                mips_cm_unlock_other();
 327        }
 328
 329        if (!cpus_are_siblings(cpu, smp_processor_id())) {
 330                /* Boot a VPE on another powered up core */
 331                for (remote = 0; remote < NR_CPUS; remote++) {
 332                        if (!cpus_are_siblings(cpu, remote))
 333                                continue;
 334                        if (cpu_online(remote))
 335                                break;
 336                }
 337                if (remote >= NR_CPUS) {
 338                        pr_crit("No online CPU in core %u to start CPU%d\n",
 339                                core, cpu);
 340                        goto out;
 341                }
 342
 343                err = smp_call_function_single(remote, remote_vpe_boot,
 344                                               NULL, 1);
 345                if (err)
 346                        panic("Failed to call remote CPU\n");
 347                goto out;
 348        }
 349
 350        BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
 351
 352        /* Boot a VPE on this core */
 353        mips_cps_boot_vpes(core_cfg, vpe_id);
 354out:
 355        preempt_enable();
 356        return 0;
 357}
 358
 359static void cps_init_secondary(void)
 360{
 361        /* Disable MT - we only want to run 1 TC per VPE */
 362        if (cpu_has_mipsmt)
 363                dmt();
 364
 365        if (mips_cm_revision() >= CM_REV_CM3) {
 366                unsigned int ident = read_gic_vl_ident();
 367
 368                /*
 369                 * Ensure that our calculation of the VP ID matches up with
 370                 * what the GIC reports, otherwise we'll have configured
 371                 * interrupts incorrectly.
 372                 */
 373                BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
 374        }
 375
 376        if (cpu_has_veic)
 377                clear_c0_status(ST0_IM);
 378        else
 379                change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
 380                                         STATUSF_IP4 | STATUSF_IP5 |
 381                                         STATUSF_IP6 | STATUSF_IP7);
 382}
 383
 384static void cps_smp_finish(void)
 385{
 386        write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
 387
 388#ifdef CONFIG_MIPS_MT_FPAFF
 389        /* If we have an FPU, enroll ourselves in the FPU-full mask */
 390        if (cpu_has_fpu)
 391                cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
 392#endif /* CONFIG_MIPS_MT_FPAFF */
 393
 394        local_irq_enable();
 395}
 396
 397#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
 398
 399enum cpu_death {
 400        CPU_DEATH_HALT,
 401        CPU_DEATH_POWER,
 402};
 403
 404static void cps_shutdown_this_cpu(enum cpu_death death)
 405{
 406        unsigned int cpu, core, vpe_id;
 407
 408        cpu = smp_processor_id();
 409        core = cpu_core(&cpu_data[cpu]);
 410
 411        if (death == CPU_DEATH_HALT) {
 412                vpe_id = cpu_vpe_id(&cpu_data[cpu]);
 413
 414                pr_debug("Halting core %d VP%d\n", core, vpe_id);
 415                if (cpu_has_mipsmt) {
 416                        /* Halt this TC */
 417                        write_c0_tchalt(TCHALT_H);
 418                        instruction_hazard();
 419                } else if (cpu_has_vp) {
 420                        write_cpc_cl_vp_stop(1 << vpe_id);
 421
 422                        /* Ensure that the VP_STOP register is written */
 423                        wmb();
 424                }
 425        } else {
 426                pr_debug("Gating power to core %d\n", core);
 427                /* Power down the core */
 428                cps_pm_enter_state(CPS_PM_POWER_GATED);
 429        }
 430}
 431
 432#ifdef CONFIG_KEXEC
 433
 434static void cps_kexec_nonboot_cpu(void)
 435{
 436        if (cpu_has_mipsmt || cpu_has_vp)
 437                cps_shutdown_this_cpu(CPU_DEATH_HALT);
 438        else
 439                cps_shutdown_this_cpu(CPU_DEATH_POWER);
 440}
 441
 442#endif /* CONFIG_KEXEC */
 443
 444#endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
 445
 446#ifdef CONFIG_HOTPLUG_CPU
 447
 448static int cps_cpu_disable(void)
 449{
 450        unsigned cpu = smp_processor_id();
 451        struct core_boot_config *core_cfg;
 452
 453        if (!cpu)
 454                return -EBUSY;
 455
 456        if (!cps_pm_support_state(CPS_PM_POWER_GATED))
 457                return -EINVAL;
 458
 459        core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
 460        atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
 461        smp_mb__after_atomic();
 462        set_cpu_online(cpu, false);
 463        calculate_cpu_foreign_map();
 464
 465        return 0;
 466}
 467
 468static unsigned cpu_death_sibling;
 469static enum cpu_death cpu_death;
 470
 471void play_dead(void)
 472{
 473        unsigned int cpu;
 474
 475        local_irq_disable();
 476        idle_task_exit();
 477        cpu = smp_processor_id();
 478        cpu_death = CPU_DEATH_POWER;
 479
 480        pr_debug("CPU%d going offline\n", cpu);
 481
 482        if (cpu_has_mipsmt || cpu_has_vp) {
 483                /* Look for another online VPE within the core */
 484                for_each_online_cpu(cpu_death_sibling) {
 485                        if (!cpus_are_siblings(cpu, cpu_death_sibling))
 486                                continue;
 487
 488                        /*
 489                         * There is an online VPE within the core. Just halt
 490                         * this TC and leave the core alone.
 491                         */
 492                        cpu_death = CPU_DEATH_HALT;
 493                        break;
 494                }
 495        }
 496
 497        /* This CPU has chosen its way out */
 498        (void)cpu_report_death();
 499
 500        cps_shutdown_this_cpu(cpu_death);
 501
 502        /* This should never be reached */
 503        panic("Failed to offline CPU %u", cpu);
 504}
 505
 506static void wait_for_sibling_halt(void *ptr_cpu)
 507{
 508        unsigned cpu = (unsigned long)ptr_cpu;
 509        unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
 510        unsigned halted;
 511        unsigned long flags;
 512
 513        do {
 514                local_irq_save(flags);
 515                settc(vpe_id);
 516                halted = read_tc_c0_tchalt();
 517                local_irq_restore(flags);
 518        } while (!(halted & TCHALT_H));
 519}
 520
 521static void cps_cpu_die(unsigned int cpu)
 522{
 523        unsigned core = cpu_core(&cpu_data[cpu]);
 524        unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
 525        ktime_t fail_time;
 526        unsigned stat;
 527        int err;
 528
 529        /* Wait for the cpu to choose its way out */
 530        if (!cpu_wait_death(cpu, 5)) {
 531                pr_err("CPU%u: didn't offline\n", cpu);
 532                return;
 533        }
 534
 535        /*
 536         * Now wait for the CPU to actually offline. Without doing this that
 537         * offlining may race with one or more of:
 538         *
 539         *   - Onlining the CPU again.
 540         *   - Powering down the core if another VPE within it is offlined.
 541         *   - A sibling VPE entering a non-coherent state.
 542         *
 543         * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
 544         * with which we could race, so do nothing.
 545         */
 546        if (cpu_death == CPU_DEATH_POWER) {
 547                /*
 548                 * Wait for the core to enter a powered down or clock gated
 549                 * state, the latter happening when a JTAG probe is connected
 550                 * in which case the CPC will refuse to power down the core.
 551                 */
 552                fail_time = ktime_add_ms(ktime_get(), 2000);
 553                do {
 554                        mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 555                        mips_cpc_lock_other(core);
 556                        stat = read_cpc_co_stat_conf();
 557                        stat &= CPC_Cx_STAT_CONF_SEQSTATE;
 558                        stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
 559                        mips_cpc_unlock_other();
 560                        mips_cm_unlock_other();
 561
 562                        if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
 563                            stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
 564                            stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
 565                                break;
 566
 567                        /*
 568                         * The core ought to have powered down, but didn't &
 569                         * now we don't really know what state it's in. It's
 570                         * likely that its _pwr_up pin has been wired to logic
 571                         * 1 & it powered back up as soon as we powered it
 572                         * down...
 573                         *
 574                         * The best we can do is warn the user & continue in
 575                         * the hope that the core is doing nothing harmful &
 576                         * might behave properly if we online it later.
 577                         */
 578                        if (WARN(ktime_after(ktime_get(), fail_time),
 579                                 "CPU%u hasn't powered down, seq. state %u\n",
 580                                 cpu, stat))
 581                                break;
 582                } while (1);
 583
 584                /* Indicate the core is powered off */
 585                bitmap_clear(core_power, core, 1);
 586        } else if (cpu_has_mipsmt) {
 587                /*
 588                 * Have a CPU with access to the offlined CPUs registers wait
 589                 * for its TC to halt.
 590                 */
 591                err = smp_call_function_single(cpu_death_sibling,
 592                                               wait_for_sibling_halt,
 593                                               (void *)(unsigned long)cpu, 1);
 594                if (err)
 595                        panic("Failed to call remote sibling CPU\n");
 596        } else if (cpu_has_vp) {
 597                do {
 598                        mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 599                        stat = read_cpc_co_vp_running();
 600                        mips_cm_unlock_other();
 601                } while (stat & (1 << vpe_id));
 602        }
 603}
 604
 605#endif /* CONFIG_HOTPLUG_CPU */
 606
 607static const struct plat_smp_ops cps_smp_ops = {
 608        .smp_setup              = cps_smp_setup,
 609        .prepare_cpus           = cps_prepare_cpus,
 610        .boot_secondary         = cps_boot_secondary,
 611        .init_secondary         = cps_init_secondary,
 612        .smp_finish             = cps_smp_finish,
 613        .send_ipi_single        = mips_smp_send_ipi_single,
 614        .send_ipi_mask          = mips_smp_send_ipi_mask,
 615#ifdef CONFIG_HOTPLUG_CPU
 616        .cpu_disable            = cps_cpu_disable,
 617        .cpu_die                = cps_cpu_die,
 618#endif
 619#ifdef CONFIG_KEXEC
 620        .kexec_nonboot_cpu      = cps_kexec_nonboot_cpu,
 621#endif
 622};
 623
 624bool mips_cps_smp_in_use(void)
 625{
 626        extern const struct plat_smp_ops *mp_ops;
 627        return mp_ops == &cps_smp_ops;
 628}
 629
 630int register_cps_smp_ops(void)
 631{
 632        if (!mips_cm_present()) {
 633                pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
 634                return -ENODEV;
 635        }
 636
 637        /* check we have a GIC - we need one for IPIs */
 638        if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
 639                pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
 640                return -ENODEV;
 641        }
 642
 643        register_smp_ops(&cps_smp_ops);
 644        return 0;
 645}
 646