linux/arch/mips/kernel/smp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 * Copyright (C) 2000, 2001 Kanoj Sarcar
   5 * Copyright (C) 2000, 2001 Ralf Baechle
   6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
   7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
   8 */
   9#include <linux/cache.h>
  10#include <linux/delay.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/smp.h>
  14#include <linux/spinlock.h>
  15#include <linux/threads.h>
  16#include <linux/export.h>
  17#include <linux/time.h>
  18#include <linux/timex.h>
  19#include <linux/sched/mm.h>
  20#include <linux/cpumask.h>
  21#include <linux/cpu.h>
  22#include <linux/err.h>
  23#include <linux/ftrace.h>
  24#include <linux/irqdomain.h>
  25#include <linux/of.h>
  26#include <linux/of_irq.h>
  27
  28#include <linux/atomic.h>
  29#include <asm/cpu.h>
  30#include <asm/ginvt.h>
  31#include <asm/processor.h>
  32#include <asm/idle.h>
  33#include <asm/r4k-timer.h>
  34#include <asm/mips-cps.h>
  35#include <asm/mmu_context.h>
  36#include <asm/time.h>
  37#include <asm/setup.h>
  38#include <asm/maar.h>
  39
  40int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
  41EXPORT_SYMBOL(__cpu_number_map);
  42
  43int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
  44EXPORT_SYMBOL(__cpu_logical_map);
  45
  46/* Number of TCs (or siblings in Intel speak) per CPU core */
  47int smp_num_siblings = 1;
  48EXPORT_SYMBOL(smp_num_siblings);
  49
  50/* representing the TCs (or siblings in Intel speak) of each logical CPU */
  51cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  52EXPORT_SYMBOL(cpu_sibling_map);
  53
  54/* representing the core map of multi-core chips of each logical CPU */
  55cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
  56EXPORT_SYMBOL(cpu_core_map);
  57
  58static DECLARE_COMPLETION(cpu_starting);
  59static DECLARE_COMPLETION(cpu_running);
  60
  61/*
  62 * A logcal cpu mask containing only one VPE per core to
  63 * reduce the number of IPIs on large MT systems.
  64 */
  65cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
  66EXPORT_SYMBOL(cpu_foreign_map);
  67
  68/* representing cpus for which sibling maps can be computed */
  69static cpumask_t cpu_sibling_setup_map;
  70
  71/* representing cpus for which core maps can be computed */
  72static cpumask_t cpu_core_setup_map;
  73
  74cpumask_t cpu_coherent_mask;
  75
  76#ifdef CONFIG_GENERIC_IRQ_IPI
  77static struct irq_desc *call_desc;
  78static struct irq_desc *sched_desc;
  79#endif
  80
  81static inline void set_cpu_sibling_map(int cpu)
  82{
  83        int i;
  84
  85        cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
  86
  87        if (smp_num_siblings > 1) {
  88                for_each_cpu(i, &cpu_sibling_setup_map) {
  89                        if (cpus_are_siblings(cpu, i)) {
  90                                cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
  91                                cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
  92                        }
  93                }
  94        } else
  95                cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
  96}
  97
  98static inline void set_cpu_core_map(int cpu)
  99{
 100        int i;
 101
 102        cpumask_set_cpu(cpu, &cpu_core_setup_map);
 103
 104        for_each_cpu(i, &cpu_core_setup_map) {
 105                if (cpu_data[cpu].package == cpu_data[i].package) {
 106                        cpumask_set_cpu(i, &cpu_core_map[cpu]);
 107                        cpumask_set_cpu(cpu, &cpu_core_map[i]);
 108                }
 109        }
 110}
 111
 112/*
 113 * Calculate a new cpu_foreign_map mask whenever a
 114 * new cpu appears or disappears.
 115 */
 116void calculate_cpu_foreign_map(void)
 117{
 118        int i, k, core_present;
 119        cpumask_t temp_foreign_map;
 120
 121        /* Re-calculate the mask */
 122        cpumask_clear(&temp_foreign_map);
 123        for_each_online_cpu(i) {
 124                core_present = 0;
 125                for_each_cpu(k, &temp_foreign_map)
 126                        if (cpus_are_siblings(i, k))
 127                                core_present = 1;
 128                if (!core_present)
 129                        cpumask_set_cpu(i, &temp_foreign_map);
 130        }
 131
 132        for_each_online_cpu(i)
 133                cpumask_andnot(&cpu_foreign_map[i],
 134                               &temp_foreign_map, &cpu_sibling_map[i]);
 135}
 136
 137const struct plat_smp_ops *mp_ops;
 138EXPORT_SYMBOL(mp_ops);
 139
 140void register_smp_ops(const struct plat_smp_ops *ops)
 141{
 142        if (mp_ops)
 143                printk(KERN_WARNING "Overriding previously set SMP ops\n");
 144
 145        mp_ops = ops;
 146}
 147
 148#ifdef CONFIG_GENERIC_IRQ_IPI
 149void mips_smp_send_ipi_single(int cpu, unsigned int action)
 150{
 151        mips_smp_send_ipi_mask(cpumask_of(cpu), action);
 152}
 153
 154void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
 155{
 156        unsigned long flags;
 157        unsigned int core;
 158        int cpu;
 159
 160        local_irq_save(flags);
 161
 162        switch (action) {
 163        case SMP_CALL_FUNCTION:
 164                __ipi_send_mask(call_desc, mask);
 165                break;
 166
 167        case SMP_RESCHEDULE_YOURSELF:
 168                __ipi_send_mask(sched_desc, mask);
 169                break;
 170
 171        default:
 172                BUG();
 173        }
 174
 175        if (mips_cpc_present()) {
 176                for_each_cpu(cpu, mask) {
 177                        if (cpus_are_siblings(cpu, smp_processor_id()))
 178                                continue;
 179
 180                        core = cpu_core(&cpu_data[cpu]);
 181
 182                        while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
 183                                mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 184                                mips_cpc_lock_other(core);
 185                                write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
 186                                mips_cpc_unlock_other();
 187                                mips_cm_unlock_other();
 188                        }
 189                }
 190        }
 191
 192        local_irq_restore(flags);
 193}
 194
 195
 196static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
 197{
 198        scheduler_ipi();
 199
 200        return IRQ_HANDLED;
 201}
 202
 203static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
 204{
 205        generic_smp_call_function_interrupt();
 206
 207        return IRQ_HANDLED;
 208}
 209
 210static struct irqaction irq_resched = {
 211        .handler        = ipi_resched_interrupt,
 212        .flags          = IRQF_PERCPU,
 213        .name           = "IPI resched"
 214};
 215
 216static struct irqaction irq_call = {
 217        .handler        = ipi_call_interrupt,
 218        .flags          = IRQF_PERCPU,
 219        .name           = "IPI call"
 220};
 221
 222static void smp_ipi_init_one(unsigned int virq,
 223                                    struct irqaction *action)
 224{
 225        int ret;
 226
 227        irq_set_handler(virq, handle_percpu_irq);
 228        ret = setup_irq(virq, action);
 229        BUG_ON(ret);
 230}
 231
 232static unsigned int call_virq, sched_virq;
 233
 234int mips_smp_ipi_allocate(const struct cpumask *mask)
 235{
 236        int virq;
 237        struct irq_domain *ipidomain;
 238        struct device_node *node;
 239
 240        node = of_irq_find_parent(of_root);
 241        ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
 242
 243        /*
 244         * Some platforms have half DT setup. So if we found irq node but
 245         * didn't find an ipidomain, try to search for one that is not in the
 246         * DT.
 247         */
 248        if (node && !ipidomain)
 249                ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
 250
 251        /*
 252         * There are systems which use IPI IRQ domains, but only have one
 253         * registered when some runtime condition is met. For example a Malta
 254         * kernel may include support for GIC & CPU interrupt controller IPI
 255         * IRQ domains, but if run on a system with no GIC & no MT ASE then
 256         * neither will be supported or registered.
 257         *
 258         * We only have a problem if we're actually using multiple CPUs so fail
 259         * loudly if that is the case. Otherwise simply return, skipping IPI
 260         * setup, if we're running with only a single CPU.
 261         */
 262        if (!ipidomain) {
 263                BUG_ON(num_present_cpus() > 1);
 264                return 0;
 265        }
 266
 267        virq = irq_reserve_ipi(ipidomain, mask);
 268        BUG_ON(!virq);
 269        if (!call_virq)
 270                call_virq = virq;
 271
 272        virq = irq_reserve_ipi(ipidomain, mask);
 273        BUG_ON(!virq);
 274        if (!sched_virq)
 275                sched_virq = virq;
 276
 277        if (irq_domain_is_ipi_per_cpu(ipidomain)) {
 278                int cpu;
 279
 280                for_each_cpu(cpu, mask) {
 281                        smp_ipi_init_one(call_virq + cpu, &irq_call);
 282                        smp_ipi_init_one(sched_virq + cpu, &irq_resched);
 283                }
 284        } else {
 285                smp_ipi_init_one(call_virq, &irq_call);
 286                smp_ipi_init_one(sched_virq, &irq_resched);
 287        }
 288
 289        return 0;
 290}
 291
 292int mips_smp_ipi_free(const struct cpumask *mask)
 293{
 294        struct irq_domain *ipidomain;
 295        struct device_node *node;
 296
 297        node = of_irq_find_parent(of_root);
 298        ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
 299
 300        /*
 301         * Some platforms have half DT setup. So if we found irq node but
 302         * didn't find an ipidomain, try to search for one that is not in the
 303         * DT.
 304         */
 305        if (node && !ipidomain)
 306                ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
 307
 308        BUG_ON(!ipidomain);
 309
 310        if (irq_domain_is_ipi_per_cpu(ipidomain)) {
 311                int cpu;
 312
 313                for_each_cpu(cpu, mask) {
 314                        remove_irq(call_virq + cpu, &irq_call);
 315                        remove_irq(sched_virq + cpu, &irq_resched);
 316                }
 317        }
 318        irq_destroy_ipi(call_virq, mask);
 319        irq_destroy_ipi(sched_virq, mask);
 320        return 0;
 321}
 322
 323
 324static int __init mips_smp_ipi_init(void)
 325{
 326        if (num_possible_cpus() == 1)
 327                return 0;
 328
 329        mips_smp_ipi_allocate(cpu_possible_mask);
 330
 331        call_desc = irq_to_desc(call_virq);
 332        sched_desc = irq_to_desc(sched_virq);
 333
 334        return 0;
 335}
 336early_initcall(mips_smp_ipi_init);
 337#endif
 338
 339/*
 340 * First C code run on the secondary CPUs after being started up by
 341 * the master.
 342 */
 343asmlinkage void start_secondary(void)
 344{
 345        unsigned int cpu;
 346
 347        cpu_probe();
 348        per_cpu_trap_init(false);
 349        mips_clockevent_init();
 350        mp_ops->init_secondary();
 351        cpu_report();
 352        maar_init();
 353
 354        /*
 355         * XXX parity protection should be folded in here when it's converted
 356         * to an option instead of something based on .cputype
 357         */
 358
 359        calibrate_delay();
 360        preempt_disable();
 361        cpu = smp_processor_id();
 362        cpu_data[cpu].udelay_val = loops_per_jiffy;
 363
 364        cpumask_set_cpu(cpu, &cpu_coherent_mask);
 365        notify_cpu_starting(cpu);
 366
 367        /* Notify boot CPU that we're starting & ready to sync counters */
 368        complete(&cpu_starting);
 369
 370        synchronise_count_slave(cpu);
 371
 372        /* The CPU is running and counters synchronised, now mark it online */
 373        set_cpu_online(cpu, true);
 374
 375        set_cpu_sibling_map(cpu);
 376        set_cpu_core_map(cpu);
 377
 378        calculate_cpu_foreign_map();
 379
 380        /*
 381         * Notify boot CPU that we're up & online and it can safely return
 382         * from __cpu_up
 383         */
 384        complete(&cpu_running);
 385
 386        /*
 387         * irq will be enabled in ->smp_finish(), enabling it too early
 388         * is dangerous.
 389         */
 390        WARN_ON_ONCE(!irqs_disabled());
 391        mp_ops->smp_finish();
 392
 393        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 394}
 395
 396static void stop_this_cpu(void *dummy)
 397{
 398        /*
 399         * Remove this CPU:
 400         */
 401
 402        set_cpu_online(smp_processor_id(), false);
 403        calculate_cpu_foreign_map();
 404        local_irq_disable();
 405        while (1);
 406}
 407
 408void smp_send_stop(void)
 409{
 410        smp_call_function(stop_this_cpu, NULL, 0);
 411}
 412
 413void __init smp_cpus_done(unsigned int max_cpus)
 414{
 415}
 416
 417/* called from main before smp_init() */
 418void __init smp_prepare_cpus(unsigned int max_cpus)
 419{
 420        init_new_context(current, &init_mm);
 421        current_thread_info()->cpu = 0;
 422        mp_ops->prepare_cpus(max_cpus);
 423        set_cpu_sibling_map(0);
 424        set_cpu_core_map(0);
 425        calculate_cpu_foreign_map();
 426#ifndef CONFIG_HOTPLUG_CPU
 427        init_cpu_present(cpu_possible_mask);
 428#endif
 429        cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
 430}
 431
 432/* preload SMP state for boot cpu */
 433void smp_prepare_boot_cpu(void)
 434{
 435        if (mp_ops->prepare_boot_cpu)
 436                mp_ops->prepare_boot_cpu();
 437        set_cpu_possible(0, true);
 438        set_cpu_online(0, true);
 439}
 440
 441int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 442{
 443        int err;
 444
 445        err = mp_ops->boot_secondary(cpu, tidle);
 446        if (err)
 447                return err;
 448
 449        /* Wait for CPU to start and be ready to sync counters */
 450        if (!wait_for_completion_timeout(&cpu_starting,
 451                                         msecs_to_jiffies(1000))) {
 452                pr_crit("CPU%u: failed to start\n", cpu);
 453                return -EIO;
 454        }
 455
 456        synchronise_count_master(cpu);
 457
 458        /* Wait for CPU to finish startup & mark itself online before return */
 459        wait_for_completion(&cpu_running);
 460        return 0;
 461}
 462
 463/* Not really SMP stuff ... */
 464int setup_profiling_timer(unsigned int multiplier)
 465{
 466        return 0;
 467}
 468
 469static void flush_tlb_all_ipi(void *info)
 470{
 471        local_flush_tlb_all();
 472}
 473
 474void flush_tlb_all(void)
 475{
 476        if (cpu_has_mmid) {
 477                htw_stop();
 478                ginvt_full();
 479                sync_ginv();
 480                instruction_hazard();
 481                htw_start();
 482                return;
 483        }
 484
 485        on_each_cpu(flush_tlb_all_ipi, NULL, 1);
 486}
 487
 488static void flush_tlb_mm_ipi(void *mm)
 489{
 490        drop_mmu_context((struct mm_struct *)mm);
 491}
 492
 493/*
 494 * Special Variant of smp_call_function for use by TLB functions:
 495 *
 496 *  o No return value
 497 *  o collapses to normal function call on UP kernels
 498 *  o collapses to normal function call on systems with a single shared
 499 *    primary cache.
 500 */
 501static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
 502{
 503        smp_call_function(func, info, 1);
 504}
 505
 506static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
 507{
 508        preempt_disable();
 509
 510        smp_on_other_tlbs(func, info);
 511        func(info);
 512
 513        preempt_enable();
 514}
 515
 516/*
 517 * The following tlb flush calls are invoked when old translations are
 518 * being torn down, or pte attributes are changing. For single threaded
 519 * address spaces, a new context is obtained on the current cpu, and tlb
 520 * context on other cpus are invalidated to force a new context allocation
 521 * at switch_mm time, should the mm ever be used on other cpus. For
 522 * multithreaded address spaces, intercpu interrupts have to be sent.
 523 * Another case where intercpu interrupts are required is when the target
 524 * mm might be active on another cpu (eg debuggers doing the flushes on
 525 * behalf of debugees, kswapd stealing pages from another process etc).
 526 * Kanoj 07/00.
 527 */
 528
 529void flush_tlb_mm(struct mm_struct *mm)
 530{
 531        preempt_disable();
 532
 533        if (cpu_has_mmid) {
 534                /*
 535                 * No need to worry about other CPUs - the ginvt in
 536                 * drop_mmu_context() will be globalized.
 537                 */
 538        } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 539                smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
 540        } else {
 541                unsigned int cpu;
 542
 543                for_each_online_cpu(cpu) {
 544                        if (cpu != smp_processor_id() && cpu_context(cpu, mm))
 545                                set_cpu_context(cpu, mm, 0);
 546                }
 547        }
 548        drop_mmu_context(mm);
 549
 550        preempt_enable();
 551}
 552
 553struct flush_tlb_data {
 554        struct vm_area_struct *vma;
 555        unsigned long addr1;
 556        unsigned long addr2;
 557};
 558
 559static void flush_tlb_range_ipi(void *info)
 560{
 561        struct flush_tlb_data *fd = info;
 562
 563        local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
 564}
 565
 566void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 567{
 568        struct mm_struct *mm = vma->vm_mm;
 569        unsigned long addr;
 570        u32 old_mmid;
 571
 572        preempt_disable();
 573        if (cpu_has_mmid) {
 574                htw_stop();
 575                old_mmid = read_c0_memorymapid();
 576                write_c0_memorymapid(cpu_asid(0, mm));
 577                mtc0_tlbw_hazard();
 578                addr = round_down(start, PAGE_SIZE * 2);
 579                end = round_up(end, PAGE_SIZE * 2);
 580                do {
 581                        ginvt_va_mmid(addr);
 582                        sync_ginv();
 583                        addr += PAGE_SIZE * 2;
 584                } while (addr < end);
 585                write_c0_memorymapid(old_mmid);
 586                instruction_hazard();
 587                htw_start();
 588        } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 589                struct flush_tlb_data fd = {
 590                        .vma = vma,
 591                        .addr1 = start,
 592                        .addr2 = end,
 593                };
 594
 595                smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
 596                local_flush_tlb_range(vma, start, end);
 597        } else {
 598                unsigned int cpu;
 599                int exec = vma->vm_flags & VM_EXEC;
 600
 601                for_each_online_cpu(cpu) {
 602                        /*
 603                         * flush_cache_range() will only fully flush icache if
 604                         * the VMA is executable, otherwise we must invalidate
 605                         * ASID without it appearing to has_valid_asid() as if
 606                         * mm has been completely unused by that CPU.
 607                         */
 608                        if (cpu != smp_processor_id() && cpu_context(cpu, mm))
 609                                set_cpu_context(cpu, mm, !exec);
 610                }
 611                local_flush_tlb_range(vma, start, end);
 612        }
 613        preempt_enable();
 614}
 615
 616static void flush_tlb_kernel_range_ipi(void *info)
 617{
 618        struct flush_tlb_data *fd = info;
 619
 620        local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
 621}
 622
 623void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 624{
 625        struct flush_tlb_data fd = {
 626                .addr1 = start,
 627                .addr2 = end,
 628        };
 629
 630        on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
 631}
 632
 633static void flush_tlb_page_ipi(void *info)
 634{
 635        struct flush_tlb_data *fd = info;
 636
 637        local_flush_tlb_page(fd->vma, fd->addr1);
 638}
 639
 640void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 641{
 642        u32 old_mmid;
 643
 644        preempt_disable();
 645        if (cpu_has_mmid) {
 646                htw_stop();
 647                old_mmid = read_c0_memorymapid();
 648                write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
 649                mtc0_tlbw_hazard();
 650                ginvt_va_mmid(page);
 651                sync_ginv();
 652                write_c0_memorymapid(old_mmid);
 653                instruction_hazard();
 654                htw_start();
 655        } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
 656                   (current->mm != vma->vm_mm)) {
 657                struct flush_tlb_data fd = {
 658                        .vma = vma,
 659                        .addr1 = page,
 660                };
 661
 662                smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
 663                local_flush_tlb_page(vma, page);
 664        } else {
 665                unsigned int cpu;
 666
 667                for_each_online_cpu(cpu) {
 668                        /*
 669                         * flush_cache_page() only does partial flushes, so
 670                         * invalidate ASID without it appearing to
 671                         * has_valid_asid() as if mm has been completely unused
 672                         * by that CPU.
 673                         */
 674                        if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
 675                                set_cpu_context(cpu, vma->vm_mm, 1);
 676                }
 677                local_flush_tlb_page(vma, page);
 678        }
 679        preempt_enable();
 680}
 681
 682static void flush_tlb_one_ipi(void *info)
 683{
 684        unsigned long vaddr = (unsigned long) info;
 685
 686        local_flush_tlb_one(vaddr);
 687}
 688
 689void flush_tlb_one(unsigned long vaddr)
 690{
 691        smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
 692}
 693
 694EXPORT_SYMBOL(flush_tlb_page);
 695EXPORT_SYMBOL(flush_tlb_one);
 696
 697#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 698
 699static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
 700static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
 701
 702void tick_broadcast(const struct cpumask *mask)
 703{
 704        atomic_t *count;
 705        call_single_data_t *csd;
 706        int cpu;
 707
 708        for_each_cpu(cpu, mask) {
 709                count = &per_cpu(tick_broadcast_count, cpu);
 710                csd = &per_cpu(tick_broadcast_csd, cpu);
 711
 712                if (atomic_inc_return(count) == 1)
 713                        smp_call_function_single_async(cpu, csd);
 714        }
 715}
 716
 717static void tick_broadcast_callee(void *info)
 718{
 719        int cpu = smp_processor_id();
 720        tick_receive_broadcast();
 721        atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
 722}
 723
 724static int __init tick_broadcast_init(void)
 725{
 726        call_single_data_t *csd;
 727        int cpu;
 728
 729        for (cpu = 0; cpu < NR_CPUS; cpu++) {
 730                csd = &per_cpu(tick_broadcast_csd, cpu);
 731                csd->func = tick_broadcast_callee;
 732        }
 733
 734        return 0;
 735}
 736early_initcall(tick_broadcast_init);
 737
 738#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
 739