linux/arch/mips/kvm/emulate.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: Instruction/Exception emulation
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/ktime.h>
  15#include <linux/kvm_host.h>
  16#include <linux/vmalloc.h>
  17#include <linux/fs.h>
  18#include <linux/memblock.h>
  19#include <linux/random.h>
  20#include <asm/page.h>
  21#include <asm/cacheflush.h>
  22#include <asm/cacheops.h>
  23#include <asm/cpu-info.h>
  24#include <asm/mmu_context.h>
  25#include <asm/tlbflush.h>
  26#include <asm/inst.h>
  27
  28#undef CONFIG_MIPS_MT
  29#include <asm/r4kcache.h>
  30#define CONFIG_MIPS_MT
  31
  32#include "interrupt.h"
  33#include "commpage.h"
  34
  35#include "trace.h"
  36
  37/*
  38 * Compute the return address and do emulate branch simulation, if required.
  39 * This function should be called only in branch delay slot active.
  40 */
  41static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
  42                                  unsigned long *out)
  43{
  44        unsigned int dspcontrol;
  45        union mips_instruction insn;
  46        struct kvm_vcpu_arch *arch = &vcpu->arch;
  47        long epc = instpc;
  48        long nextpc;
  49        int err;
  50
  51        if (epc & 3) {
  52                kvm_err("%s: unaligned epc\n", __func__);
  53                return -EINVAL;
  54        }
  55
  56        /* Read the instruction */
  57        err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
  58        if (err)
  59                return err;
  60
  61        switch (insn.i_format.opcode) {
  62                /* jr and jalr are in r_format format. */
  63        case spec_op:
  64                switch (insn.r_format.func) {
  65                case jalr_op:
  66                        arch->gprs[insn.r_format.rd] = epc + 8;
  67                        /* Fall through */
  68                case jr_op:
  69                        nextpc = arch->gprs[insn.r_format.rs];
  70                        break;
  71                default:
  72                        return -EINVAL;
  73                }
  74                break;
  75
  76                /*
  77                 * This group contains:
  78                 * bltz_op, bgez_op, bltzl_op, bgezl_op,
  79                 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
  80                 */
  81        case bcond_op:
  82                switch (insn.i_format.rt) {
  83                case bltz_op:
  84                case bltzl_op:
  85                        if ((long)arch->gprs[insn.i_format.rs] < 0)
  86                                epc = epc + 4 + (insn.i_format.simmediate << 2);
  87                        else
  88                                epc += 8;
  89                        nextpc = epc;
  90                        break;
  91
  92                case bgez_op:
  93                case bgezl_op:
  94                        if ((long)arch->gprs[insn.i_format.rs] >= 0)
  95                                epc = epc + 4 + (insn.i_format.simmediate << 2);
  96                        else
  97                                epc += 8;
  98                        nextpc = epc;
  99                        break;
 100
 101                case bltzal_op:
 102                case bltzall_op:
 103                        arch->gprs[31] = epc + 8;
 104                        if ((long)arch->gprs[insn.i_format.rs] < 0)
 105                                epc = epc + 4 + (insn.i_format.simmediate << 2);
 106                        else
 107                                epc += 8;
 108                        nextpc = epc;
 109                        break;
 110
 111                case bgezal_op:
 112                case bgezall_op:
 113                        arch->gprs[31] = epc + 8;
 114                        if ((long)arch->gprs[insn.i_format.rs] >= 0)
 115                                epc = epc + 4 + (insn.i_format.simmediate << 2);
 116                        else
 117                                epc += 8;
 118                        nextpc = epc;
 119                        break;
 120                case bposge32_op:
 121                        if (!cpu_has_dsp) {
 122                                kvm_err("%s: DSP branch but not DSP ASE\n",
 123                                        __func__);
 124                                return -EINVAL;
 125                        }
 126
 127                        dspcontrol = rddsp(0x01);
 128
 129                        if (dspcontrol >= 32)
 130                                epc = epc + 4 + (insn.i_format.simmediate << 2);
 131                        else
 132                                epc += 8;
 133                        nextpc = epc;
 134                        break;
 135                default:
 136                        return -EINVAL;
 137                }
 138                break;
 139
 140                /* These are unconditional and in j_format. */
 141        case jal_op:
 142                arch->gprs[31] = instpc + 8;
 143                /* fall through */
 144        case j_op:
 145                epc += 4;
 146                epc >>= 28;
 147                epc <<= 28;
 148                epc |= (insn.j_format.target << 2);
 149                nextpc = epc;
 150                break;
 151
 152                /* These are conditional and in i_format. */
 153        case beq_op:
 154        case beql_op:
 155                if (arch->gprs[insn.i_format.rs] ==
 156                    arch->gprs[insn.i_format.rt])
 157                        epc = epc + 4 + (insn.i_format.simmediate << 2);
 158                else
 159                        epc += 8;
 160                nextpc = epc;
 161                break;
 162
 163        case bne_op:
 164        case bnel_op:
 165                if (arch->gprs[insn.i_format.rs] !=
 166                    arch->gprs[insn.i_format.rt])
 167                        epc = epc + 4 + (insn.i_format.simmediate << 2);
 168                else
 169                        epc += 8;
 170                nextpc = epc;
 171                break;
 172
 173        case blez_op:   /* POP06 */
 174#ifndef CONFIG_CPU_MIPSR6
 175        case blezl_op:  /* removed in R6 */
 176#endif
 177                if (insn.i_format.rt != 0)
 178                        goto compact_branch;
 179                if ((long)arch->gprs[insn.i_format.rs] <= 0)
 180                        epc = epc + 4 + (insn.i_format.simmediate << 2);
 181                else
 182                        epc += 8;
 183                nextpc = epc;
 184                break;
 185
 186        case bgtz_op:   /* POP07 */
 187#ifndef CONFIG_CPU_MIPSR6
 188        case bgtzl_op:  /* removed in R6 */
 189#endif
 190                if (insn.i_format.rt != 0)
 191                        goto compact_branch;
 192                if ((long)arch->gprs[insn.i_format.rs] > 0)
 193                        epc = epc + 4 + (insn.i_format.simmediate << 2);
 194                else
 195                        epc += 8;
 196                nextpc = epc;
 197                break;
 198
 199                /* And now the FPA/cp1 branch instructions. */
 200        case cop1_op:
 201                kvm_err("%s: unsupported cop1_op\n", __func__);
 202                return -EINVAL;
 203
 204#ifdef CONFIG_CPU_MIPSR6
 205        /* R6 added the following compact branches with forbidden slots */
 206        case blezl_op:  /* POP26 */
 207        case bgtzl_op:  /* POP27 */
 208                /* only rt == 0 isn't compact branch */
 209                if (insn.i_format.rt != 0)
 210                        goto compact_branch;
 211                return -EINVAL;
 212        case pop10_op:
 213        case pop30_op:
 214                /* only rs == rt == 0 is reserved, rest are compact branches */
 215                if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
 216                        goto compact_branch;
 217                return -EINVAL;
 218        case pop66_op:
 219        case pop76_op:
 220                /* only rs == 0 isn't compact branch */
 221                if (insn.i_format.rs != 0)
 222                        goto compact_branch;
 223                return -EINVAL;
 224compact_branch:
 225                /*
 226                 * If we've hit an exception on the forbidden slot, then
 227                 * the branch must not have been taken.
 228                 */
 229                epc += 8;
 230                nextpc = epc;
 231                break;
 232#else
 233compact_branch:
 234                /* Fall through - Compact branches not supported before R6 */
 235#endif
 236        default:
 237                return -EINVAL;
 238        }
 239
 240        *out = nextpc;
 241        return 0;
 242}
 243
 244enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
 245{
 246        int err;
 247
 248        if (cause & CAUSEF_BD) {
 249                err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
 250                                             &vcpu->arch.pc);
 251                if (err)
 252                        return EMULATE_FAIL;
 253        } else {
 254                vcpu->arch.pc += 4;
 255        }
 256
 257        kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
 258
 259        return EMULATE_DONE;
 260}
 261
 262/**
 263 * kvm_get_badinstr() - Get bad instruction encoding.
 264 * @opc:        Guest pointer to faulting instruction.
 265 * @vcpu:       KVM VCPU information.
 266 *
 267 * Gets the instruction encoding of the faulting instruction, using the saved
 268 * BadInstr register value if it exists, otherwise falling back to reading guest
 269 * memory at @opc.
 270 *
 271 * Returns:     The instruction encoding of the faulting instruction.
 272 */
 273int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
 274{
 275        if (cpu_has_badinstr) {
 276                *out = vcpu->arch.host_cp0_badinstr;
 277                return 0;
 278        } else {
 279                return kvm_get_inst(opc, vcpu, out);
 280        }
 281}
 282
 283/**
 284 * kvm_get_badinstrp() - Get bad prior instruction encoding.
 285 * @opc:        Guest pointer to prior faulting instruction.
 286 * @vcpu:       KVM VCPU information.
 287 *
 288 * Gets the instruction encoding of the prior faulting instruction (the branch
 289 * containing the delay slot which faulted), using the saved BadInstrP register
 290 * value if it exists, otherwise falling back to reading guest memory at @opc.
 291 *
 292 * Returns:     The instruction encoding of the prior faulting instruction.
 293 */
 294int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
 295{
 296        if (cpu_has_badinstrp) {
 297                *out = vcpu->arch.host_cp0_badinstrp;
 298                return 0;
 299        } else {
 300                return kvm_get_inst(opc, vcpu, out);
 301        }
 302}
 303
 304/**
 305 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
 306 * @vcpu:       Virtual CPU.
 307 *
 308 * Returns:     1 if the CP0_Count timer is disabled by either the guest
 309 *              CP0_Cause.DC bit or the count_ctl.DC bit.
 310 *              0 otherwise (in which case CP0_Count timer is running).
 311 */
 312int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
 313{
 314        struct mips_coproc *cop0 = vcpu->arch.cop0;
 315
 316        return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
 317                (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
 318}
 319
 320/**
 321 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
 322 *
 323 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
 324 *
 325 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 326 */
 327static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
 328{
 329        s64 now_ns, periods;
 330        u64 delta;
 331
 332        now_ns = ktime_to_ns(now);
 333        delta = now_ns + vcpu->arch.count_dyn_bias;
 334
 335        if (delta >= vcpu->arch.count_period) {
 336                /* If delta is out of safe range the bias needs adjusting */
 337                periods = div64_s64(now_ns, vcpu->arch.count_period);
 338                vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
 339                /* Recalculate delta with new bias */
 340                delta = now_ns + vcpu->arch.count_dyn_bias;
 341        }
 342
 343        /*
 344         * We've ensured that:
 345         *   delta < count_period
 346         *
 347         * Therefore the intermediate delta*count_hz will never overflow since
 348         * at the boundary condition:
 349         *   delta = count_period
 350         *   delta = NSEC_PER_SEC * 2^32 / count_hz
 351         *   delta * count_hz = NSEC_PER_SEC * 2^32
 352         */
 353        return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
 354}
 355
 356/**
 357 * kvm_mips_count_time() - Get effective current time.
 358 * @vcpu:       Virtual CPU.
 359 *
 360 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
 361 * except when the master disable bit is set in count_ctl, in which case it is
 362 * count_resume, i.e. the time that the count was disabled.
 363 *
 364 * Returns:     Effective monotonic ktime for CP0_Count.
 365 */
 366static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
 367{
 368        if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 369                return vcpu->arch.count_resume;
 370
 371        return ktime_get();
 372}
 373
 374/**
 375 * kvm_mips_read_count_running() - Read the current count value as if running.
 376 * @vcpu:       Virtual CPU.
 377 * @now:        Kernel time to read CP0_Count at.
 378 *
 379 * Returns the current guest CP0_Count register at time @now and handles if the
 380 * timer interrupt is pending and hasn't been handled yet.
 381 *
 382 * Returns:     The current value of the guest CP0_Count register.
 383 */
 384static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
 385{
 386        struct mips_coproc *cop0 = vcpu->arch.cop0;
 387        ktime_t expires, threshold;
 388        u32 count, compare;
 389        int running;
 390
 391        /* Calculate the biased and scaled guest CP0_Count */
 392        count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 393        compare = kvm_read_c0_guest_compare(cop0);
 394
 395        /*
 396         * Find whether CP0_Count has reached the closest timer interrupt. If
 397         * not, we shouldn't inject it.
 398         */
 399        if ((s32)(count - compare) < 0)
 400                return count;
 401
 402        /*
 403         * The CP0_Count we're going to return has already reached the closest
 404         * timer interrupt. Quickly check if it really is a new interrupt by
 405         * looking at whether the interval until the hrtimer expiry time is
 406         * less than 1/4 of the timer period.
 407         */
 408        expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
 409        threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
 410        if (ktime_before(expires, threshold)) {
 411                /*
 412                 * Cancel it while we handle it so there's no chance of
 413                 * interference with the timeout handler.
 414                 */
 415                running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
 416
 417                /* Nothing should be waiting on the timeout */
 418                kvm_mips_callbacks->queue_timer_int(vcpu);
 419
 420                /*
 421                 * Restart the timer if it was running based on the expiry time
 422                 * we read, so that we don't push it back 2 periods.
 423                 */
 424                if (running) {
 425                        expires = ktime_add_ns(expires,
 426                                               vcpu->arch.count_period);
 427                        hrtimer_start(&vcpu->arch.comparecount_timer, expires,
 428                                      HRTIMER_MODE_ABS);
 429                }
 430        }
 431
 432        return count;
 433}
 434
 435/**
 436 * kvm_mips_read_count() - Read the current count value.
 437 * @vcpu:       Virtual CPU.
 438 *
 439 * Read the current guest CP0_Count value, taking into account whether the timer
 440 * is stopped.
 441 *
 442 * Returns:     The current guest CP0_Count value.
 443 */
 444u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
 445{
 446        struct mips_coproc *cop0 = vcpu->arch.cop0;
 447
 448        /* If count disabled just read static copy of count */
 449        if (kvm_mips_count_disabled(vcpu))
 450                return kvm_read_c0_guest_count(cop0);
 451
 452        return kvm_mips_read_count_running(vcpu, ktime_get());
 453}
 454
 455/**
 456 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
 457 * @vcpu:       Virtual CPU.
 458 * @count:      Output pointer for CP0_Count value at point of freeze.
 459 *
 460 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
 461 * at the point it was frozen. It is guaranteed that any pending interrupts at
 462 * the point it was frozen are handled, and none after that point.
 463 *
 464 * This is useful where the time/CP0_Count is needed in the calculation of the
 465 * new parameters.
 466 *
 467 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 468 *
 469 * Returns:     The ktime at the point of freeze.
 470 */
 471ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
 472{
 473        ktime_t now;
 474
 475        /* stop hrtimer before finding time */
 476        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 477        now = ktime_get();
 478
 479        /* find count at this point and handle pending hrtimer */
 480        *count = kvm_mips_read_count_running(vcpu, now);
 481
 482        return now;
 483}
 484
 485/**
 486 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
 487 * @vcpu:       Virtual CPU.
 488 * @now:        ktime at point of resume.
 489 * @count:      CP0_Count at point of resume.
 490 *
 491 * Resumes the timer and updates the timer expiry based on @now and @count.
 492 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
 493 * parameters need to be changed.
 494 *
 495 * It is guaranteed that a timer interrupt immediately after resume will be
 496 * handled, but not if CP_Compare is exactly at @count. That case is already
 497 * handled by kvm_mips_freeze_timer().
 498 *
 499 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 500 */
 501static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
 502                                    ktime_t now, u32 count)
 503{
 504        struct mips_coproc *cop0 = vcpu->arch.cop0;
 505        u32 compare;
 506        u64 delta;
 507        ktime_t expire;
 508
 509        /* Calculate timeout (wrap 0 to 2^32) */
 510        compare = kvm_read_c0_guest_compare(cop0);
 511        delta = (u64)(u32)(compare - count - 1) + 1;
 512        delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 513        expire = ktime_add_ns(now, delta);
 514
 515        /* Update hrtimer to use new timeout */
 516        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 517        hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
 518}
 519
 520/**
 521 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
 522 * @vcpu:       Virtual CPU.
 523 * @before:     Time before Count was saved, lower bound of drift calculation.
 524 * @count:      CP0_Count at point of restore.
 525 * @min_drift:  Minimum amount of drift permitted before correction.
 526 *              Must be <= 0.
 527 *
 528 * Restores the timer from a particular @count, accounting for drift. This can
 529 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
 530 * to be used for a period of time, but the exact ktime corresponding to the
 531 * final Count that must be restored is not known.
 532 *
 533 * It is gauranteed that a timer interrupt immediately after restore will be
 534 * handled, but not if CP0_Compare is exactly at @count. That case should
 535 * already be handled when the hardware timer state is saved.
 536 *
 537 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
 538 * stopped).
 539 *
 540 * Returns:     Amount of correction to count_bias due to drift.
 541 */
 542int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
 543                             u32 count, int min_drift)
 544{
 545        ktime_t now, count_time;
 546        u32 now_count, before_count;
 547        u64 delta;
 548        int drift, ret = 0;
 549
 550        /* Calculate expected count at before */
 551        before_count = vcpu->arch.count_bias +
 552                        kvm_mips_ktime_to_count(vcpu, before);
 553
 554        /*
 555         * Detect significantly negative drift, where count is lower than
 556         * expected. Some negative drift is expected when hardware counter is
 557         * set after kvm_mips_freeze_timer(), and it is harmless to allow the
 558         * time to jump forwards a little, within reason. If the drift is too
 559         * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
 560         */
 561        drift = count - before_count;
 562        if (drift < min_drift) {
 563                count_time = before;
 564                vcpu->arch.count_bias += drift;
 565                ret = drift;
 566                goto resume;
 567        }
 568
 569        /* Calculate expected count right now */
 570        now = ktime_get();
 571        now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 572
 573        /*
 574         * Detect positive drift, where count is higher than expected, and
 575         * adjust the bias to avoid guest time going backwards.
 576         */
 577        drift = count - now_count;
 578        if (drift > 0) {
 579                count_time = now;
 580                vcpu->arch.count_bias += drift;
 581                ret = drift;
 582                goto resume;
 583        }
 584
 585        /* Subtract nanosecond delta to find ktime when count was read */
 586        delta = (u64)(u32)(now_count - count);
 587        delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 588        count_time = ktime_sub_ns(now, delta);
 589
 590resume:
 591        /* Resume using the calculated ktime */
 592        kvm_mips_resume_hrtimer(vcpu, count_time, count);
 593        return ret;
 594}
 595
 596/**
 597 * kvm_mips_write_count() - Modify the count and update timer.
 598 * @vcpu:       Virtual CPU.
 599 * @count:      Guest CP0_Count value to set.
 600 *
 601 * Sets the CP0_Count value and updates the timer accordingly.
 602 */
 603void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
 604{
 605        struct mips_coproc *cop0 = vcpu->arch.cop0;
 606        ktime_t now;
 607
 608        /* Calculate bias */
 609        now = kvm_mips_count_time(vcpu);
 610        vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 611
 612        if (kvm_mips_count_disabled(vcpu))
 613                /* The timer's disabled, adjust the static count */
 614                kvm_write_c0_guest_count(cop0, count);
 615        else
 616                /* Update timeout */
 617                kvm_mips_resume_hrtimer(vcpu, now, count);
 618}
 619
 620/**
 621 * kvm_mips_init_count() - Initialise timer.
 622 * @vcpu:       Virtual CPU.
 623 * @count_hz:   Frequency of timer.
 624 *
 625 * Initialise the timer to the specified frequency, zero it, and set it going if
 626 * it's enabled.
 627 */
 628void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
 629{
 630        vcpu->arch.count_hz = count_hz;
 631        vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 632        vcpu->arch.count_dyn_bias = 0;
 633
 634        /* Starting at 0 */
 635        kvm_mips_write_count(vcpu, 0);
 636}
 637
 638/**
 639 * kvm_mips_set_count_hz() - Update the frequency of the timer.
 640 * @vcpu:       Virtual CPU.
 641 * @count_hz:   Frequency of CP0_Count timer in Hz.
 642 *
 643 * Change the frequency of the CP0_Count timer. This is done atomically so that
 644 * CP0_Count is continuous and no timer interrupt is lost.
 645 *
 646 * Returns:     -EINVAL if @count_hz is out of range.
 647 *              0 on success.
 648 */
 649int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
 650{
 651        struct mips_coproc *cop0 = vcpu->arch.cop0;
 652        int dc;
 653        ktime_t now;
 654        u32 count;
 655
 656        /* ensure the frequency is in a sensible range... */
 657        if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
 658                return -EINVAL;
 659        /* ... and has actually changed */
 660        if (vcpu->arch.count_hz == count_hz)
 661                return 0;
 662
 663        /* Safely freeze timer so we can keep it continuous */
 664        dc = kvm_mips_count_disabled(vcpu);
 665        if (dc) {
 666                now = kvm_mips_count_time(vcpu);
 667                count = kvm_read_c0_guest_count(cop0);
 668        } else {
 669                now = kvm_mips_freeze_hrtimer(vcpu, &count);
 670        }
 671
 672        /* Update the frequency */
 673        vcpu->arch.count_hz = count_hz;
 674        vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 675        vcpu->arch.count_dyn_bias = 0;
 676
 677        /* Calculate adjusted bias so dynamic count is unchanged */
 678        vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 679
 680        /* Update and resume hrtimer */
 681        if (!dc)
 682                kvm_mips_resume_hrtimer(vcpu, now, count);
 683        return 0;
 684}
 685
 686/**
 687 * kvm_mips_write_compare() - Modify compare and update timer.
 688 * @vcpu:       Virtual CPU.
 689 * @compare:    New CP0_Compare value.
 690 * @ack:        Whether to acknowledge timer interrupt.
 691 *
 692 * Update CP0_Compare to a new value and update the timeout.
 693 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
 694 * any pending timer interrupt is preserved.
 695 */
 696void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
 697{
 698        struct mips_coproc *cop0 = vcpu->arch.cop0;
 699        int dc;
 700        u32 old_compare = kvm_read_c0_guest_compare(cop0);
 701        s32 delta = compare - old_compare;
 702        u32 cause;
 703        ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
 704        u32 count;
 705
 706        /* if unchanged, must just be an ack */
 707        if (old_compare == compare) {
 708                if (!ack)
 709                        return;
 710                kvm_mips_callbacks->dequeue_timer_int(vcpu);
 711                kvm_write_c0_guest_compare(cop0, compare);
 712                return;
 713        }
 714
 715        /*
 716         * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
 717         * too to prevent guest CP0_Count hitting guest CP0_Compare.
 718         *
 719         * The new GTOffset corresponds to the new value of CP0_Compare, and is
 720         * set prior to it being written into the guest context. We disable
 721         * preemption until the new value is written to prevent restore of a
 722         * GTOffset corresponding to the old CP0_Compare value.
 723         */
 724        if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
 725                preempt_disable();
 726                write_c0_gtoffset(compare - read_c0_count());
 727                back_to_back_c0_hazard();
 728        }
 729
 730        /* freeze_hrtimer() takes care of timer interrupts <= count */
 731        dc = kvm_mips_count_disabled(vcpu);
 732        if (!dc)
 733                now = kvm_mips_freeze_hrtimer(vcpu, &count);
 734
 735        if (ack)
 736                kvm_mips_callbacks->dequeue_timer_int(vcpu);
 737        else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
 738                /*
 739                 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
 740                 * preserve guest CP0_Cause.TI if we don't want to ack it.
 741                 */
 742                cause = kvm_read_c0_guest_cause(cop0);
 743
 744        kvm_write_c0_guest_compare(cop0, compare);
 745
 746        if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
 747                if (delta > 0)
 748                        preempt_enable();
 749
 750                back_to_back_c0_hazard();
 751
 752                if (!ack && cause & CAUSEF_TI)
 753                        kvm_write_c0_guest_cause(cop0, cause);
 754        }
 755
 756        /* resume_hrtimer() takes care of timer interrupts > count */
 757        if (!dc)
 758                kvm_mips_resume_hrtimer(vcpu, now, count);
 759
 760        /*
 761         * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
 762         * until after the new CP0_Compare is written, otherwise new guest
 763         * CP0_Count could hit new guest CP0_Compare.
 764         */
 765        if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
 766                write_c0_gtoffset(compare - read_c0_count());
 767}
 768
 769/**
 770 * kvm_mips_count_disable() - Disable count.
 771 * @vcpu:       Virtual CPU.
 772 *
 773 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
 774 * time will be handled but not after.
 775 *
 776 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
 777 * count_ctl.DC has been set (count disabled).
 778 *
 779 * Returns:     The time that the timer was stopped.
 780 */
 781static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
 782{
 783        struct mips_coproc *cop0 = vcpu->arch.cop0;
 784        u32 count;
 785        ktime_t now;
 786
 787        /* Stop hrtimer */
 788        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 789
 790        /* Set the static count from the dynamic count, handling pending TI */
 791        now = ktime_get();
 792        count = kvm_mips_read_count_running(vcpu, now);
 793        kvm_write_c0_guest_count(cop0, count);
 794
 795        return now;
 796}
 797
 798/**
 799 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
 800 * @vcpu:       Virtual CPU.
 801 *
 802 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
 803 * before the final stop time will be handled if the timer isn't disabled by
 804 * count_ctl.DC, but not after.
 805 *
 806 * Assumes CP0_Cause.DC is clear (count enabled).
 807 */
 808void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
 809{
 810        struct mips_coproc *cop0 = vcpu->arch.cop0;
 811
 812        kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
 813        if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 814                kvm_mips_count_disable(vcpu);
 815}
 816
 817/**
 818 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
 819 * @vcpu:       Virtual CPU.
 820 *
 821 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
 822 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
 823 * potentially before even returning, so the caller should be careful with
 824 * ordering of CP0_Cause modifications so as not to lose it.
 825 *
 826 * Assumes CP0_Cause.DC is set (count disabled).
 827 */
 828void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
 829{
 830        struct mips_coproc *cop0 = vcpu->arch.cop0;
 831        u32 count;
 832
 833        kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
 834
 835        /*
 836         * Set the dynamic count to match the static count.
 837         * This starts the hrtimer if count_ctl.DC allows it.
 838         * Otherwise it conveniently updates the biases.
 839         */
 840        count = kvm_read_c0_guest_count(cop0);
 841        kvm_mips_write_count(vcpu, count);
 842}
 843
 844/**
 845 * kvm_mips_set_count_ctl() - Update the count control KVM register.
 846 * @vcpu:       Virtual CPU.
 847 * @count_ctl:  Count control register new value.
 848 *
 849 * Set the count control KVM register. The timer is updated accordingly.
 850 *
 851 * Returns:     -EINVAL if reserved bits are set.
 852 *              0 on success.
 853 */
 854int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
 855{
 856        struct mips_coproc *cop0 = vcpu->arch.cop0;
 857        s64 changed = count_ctl ^ vcpu->arch.count_ctl;
 858        s64 delta;
 859        ktime_t expire, now;
 860        u32 count, compare;
 861
 862        /* Only allow defined bits to be changed */
 863        if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
 864                return -EINVAL;
 865
 866        /* Apply new value */
 867        vcpu->arch.count_ctl = count_ctl;
 868
 869        /* Master CP0_Count disable */
 870        if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
 871                /* Is CP0_Cause.DC already disabling CP0_Count? */
 872                if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
 873                        if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
 874                                /* Just record the current time */
 875                                vcpu->arch.count_resume = ktime_get();
 876                } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
 877                        /* disable timer and record current time */
 878                        vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
 879                } else {
 880                        /*
 881                         * Calculate timeout relative to static count at resume
 882                         * time (wrap 0 to 2^32).
 883                         */
 884                        count = kvm_read_c0_guest_count(cop0);
 885                        compare = kvm_read_c0_guest_compare(cop0);
 886                        delta = (u64)(u32)(compare - count - 1) + 1;
 887                        delta = div_u64(delta * NSEC_PER_SEC,
 888                                        vcpu->arch.count_hz);
 889                        expire = ktime_add_ns(vcpu->arch.count_resume, delta);
 890
 891                        /* Handle pending interrupt */
 892                        now = ktime_get();
 893                        if (ktime_compare(now, expire) >= 0)
 894                                /* Nothing should be waiting on the timeout */
 895                                kvm_mips_callbacks->queue_timer_int(vcpu);
 896
 897                        /* Resume hrtimer without changing bias */
 898                        count = kvm_mips_read_count_running(vcpu, now);
 899                        kvm_mips_resume_hrtimer(vcpu, now, count);
 900                }
 901        }
 902
 903        return 0;
 904}
 905
 906/**
 907 * kvm_mips_set_count_resume() - Update the count resume KVM register.
 908 * @vcpu:               Virtual CPU.
 909 * @count_resume:       Count resume register new value.
 910 *
 911 * Set the count resume KVM register.
 912 *
 913 * Returns:     -EINVAL if out of valid range (0..now).
 914 *              0 on success.
 915 */
 916int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
 917{
 918        /*
 919         * It doesn't make sense for the resume time to be in the future, as it
 920         * would be possible for the next interrupt to be more than a full
 921         * period in the future.
 922         */
 923        if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
 924                return -EINVAL;
 925
 926        vcpu->arch.count_resume = ns_to_ktime(count_resume);
 927        return 0;
 928}
 929
 930/**
 931 * kvm_mips_count_timeout() - Push timer forward on timeout.
 932 * @vcpu:       Virtual CPU.
 933 *
 934 * Handle an hrtimer event by push the hrtimer forward a period.
 935 *
 936 * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
 937 */
 938enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
 939{
 940        /* Add the Count period to the current expiry time */
 941        hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
 942                               vcpu->arch.count_period);
 943        return HRTIMER_RESTART;
 944}
 945
 946enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
 947{
 948        struct mips_coproc *cop0 = vcpu->arch.cop0;
 949        enum emulation_result er = EMULATE_DONE;
 950
 951        if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
 952                kvm_clear_c0_guest_status(cop0, ST0_ERL);
 953                vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
 954        } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
 955                kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
 956                          kvm_read_c0_guest_epc(cop0));
 957                kvm_clear_c0_guest_status(cop0, ST0_EXL);
 958                vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
 959
 960        } else {
 961                kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
 962                        vcpu->arch.pc);
 963                er = EMULATE_FAIL;
 964        }
 965
 966        return er;
 967}
 968
 969enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
 970{
 971        kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
 972                  vcpu->arch.pending_exceptions);
 973
 974        ++vcpu->stat.wait_exits;
 975        trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
 976        if (!vcpu->arch.pending_exceptions) {
 977                kvm_vz_lose_htimer(vcpu);
 978                vcpu->arch.wait = 1;
 979                kvm_vcpu_block(vcpu);
 980
 981                /*
 982                 * We we are runnable, then definitely go off to user space to
 983                 * check if any I/O interrupts are pending.
 984                 */
 985                if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
 986                        kvm_clear_request(KVM_REQ_UNHALT, vcpu);
 987                        vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
 988                }
 989        }
 990
 991        return EMULATE_DONE;
 992}
 993
 994static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
 995                                    unsigned long entryhi)
 996{
 997        struct mips_coproc *cop0 = vcpu->arch.cop0;
 998        struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
 999        int cpu, i;
1000        u32 nasid = entryhi & KVM_ENTRYHI_ASID;
1001
1002        if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
1003                trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
1004                                      KVM_ENTRYHI_ASID, nasid);
1005
1006                /*
1007                 * Flush entries from the GVA page tables.
1008                 * Guest user page table will get flushed lazily on re-entry to
1009                 * guest user if the guest ASID actually changes.
1010                 */
1011                kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
1012
1013                /*
1014                 * Regenerate/invalidate kernel MMU context.
1015                 * The user MMU context will be regenerated lazily on re-entry
1016                 * to guest user if the guest ASID actually changes.
1017                 */
1018                preempt_disable();
1019                cpu = smp_processor_id();
1020                get_new_mmu_context(kern_mm);
1021                for_each_possible_cpu(i)
1022                        if (i != cpu)
1023                                set_cpu_context(i, kern_mm, 0);
1024                preempt_enable();
1025        }
1026        kvm_write_c0_guest_entryhi(cop0, entryhi);
1027}
1028
1029enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
1030{
1031        struct mips_coproc *cop0 = vcpu->arch.cop0;
1032        struct kvm_mips_tlb *tlb;
1033        unsigned long pc = vcpu->arch.pc;
1034        int index;
1035
1036        index = kvm_read_c0_guest_index(cop0);
1037        if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1038                /* UNDEFINED */
1039                kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
1040                index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
1041        }
1042
1043        tlb = &vcpu->arch.guest_tlb[index];
1044        kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
1045        kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
1046        kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
1047        kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
1048
1049        return EMULATE_DONE;
1050}
1051
1052/**
1053 * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1054 * @vcpu:       VCPU with changed mappings.
1055 * @tlb:        TLB entry being removed.
1056 *
1057 * This is called to indicate a single change in guest MMU mappings, so that we
1058 * can arrange TLB flushes on this and other CPUs.
1059 */
1060static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
1061                                          struct kvm_mips_tlb *tlb)
1062{
1063        struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1064        struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1065        int cpu, i;
1066        bool user;
1067
1068        /* No need to flush for entries which are already invalid */
1069        if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
1070                return;
1071        /* Don't touch host kernel page tables or TLB mappings */
1072        if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
1073                return;
1074        /* User address space doesn't need flushing for KSeg2/3 changes */
1075        user = tlb->tlb_hi < KVM_GUEST_KSEG0;
1076
1077        preempt_disable();
1078
1079        /* Invalidate page table entries */
1080        kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
1081
1082        /*
1083         * Probe the shadow host TLB for the entry being overwritten, if one
1084         * matches, invalidate it
1085         */
1086        kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
1087
1088        /* Invalidate the whole ASID on other CPUs */
1089        cpu = smp_processor_id();
1090        for_each_possible_cpu(i) {
1091                if (i == cpu)
1092                        continue;
1093                if (user)
1094                        set_cpu_context(i, user_mm, 0);
1095                set_cpu_context(i, kern_mm, 0);
1096        }
1097
1098        preempt_enable();
1099}
1100
1101/* Write Guest TLB Entry @ Index */
1102enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
1103{
1104        struct mips_coproc *cop0 = vcpu->arch.cop0;
1105        int index = kvm_read_c0_guest_index(cop0);
1106        struct kvm_mips_tlb *tlb = NULL;
1107        unsigned long pc = vcpu->arch.pc;
1108
1109        if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1110                kvm_debug("%s: illegal index: %d\n", __func__, index);
1111                kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1112                          pc, index, kvm_read_c0_guest_entryhi(cop0),
1113                          kvm_read_c0_guest_entrylo0(cop0),
1114                          kvm_read_c0_guest_entrylo1(cop0),
1115                          kvm_read_c0_guest_pagemask(cop0));
1116                index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
1117        }
1118
1119        tlb = &vcpu->arch.guest_tlb[index];
1120
1121        kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1122
1123        tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1124        tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1125        tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1126        tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1127
1128        kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1129                  pc, index, kvm_read_c0_guest_entryhi(cop0),
1130                  kvm_read_c0_guest_entrylo0(cop0),
1131                  kvm_read_c0_guest_entrylo1(cop0),
1132                  kvm_read_c0_guest_pagemask(cop0));
1133
1134        return EMULATE_DONE;
1135}
1136
1137/* Write Guest TLB Entry @ Random Index */
1138enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
1139{
1140        struct mips_coproc *cop0 = vcpu->arch.cop0;
1141        struct kvm_mips_tlb *tlb = NULL;
1142        unsigned long pc = vcpu->arch.pc;
1143        int index;
1144
1145        index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE);
1146        tlb = &vcpu->arch.guest_tlb[index];
1147
1148        kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1149
1150        tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1151        tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1152        tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1153        tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1154
1155        kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1156                  pc, index, kvm_read_c0_guest_entryhi(cop0),
1157                  kvm_read_c0_guest_entrylo0(cop0),
1158                  kvm_read_c0_guest_entrylo1(cop0));
1159
1160        return EMULATE_DONE;
1161}
1162
1163enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1164{
1165        struct mips_coproc *cop0 = vcpu->arch.cop0;
1166        long entryhi = kvm_read_c0_guest_entryhi(cop0);
1167        unsigned long pc = vcpu->arch.pc;
1168        int index = -1;
1169
1170        index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1171
1172        kvm_write_c0_guest_index(cop0, index);
1173
1174        kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1175                  index);
1176
1177        return EMULATE_DONE;
1178}
1179
1180/**
1181 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1182 * @vcpu:       Virtual CPU.
1183 *
1184 * Finds the mask of bits which are writable in the guest's Config1 CP0
1185 * register, by userland (currently read-only to the guest).
1186 */
1187unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1188{
1189        unsigned int mask = 0;
1190
1191        /* Permit FPU to be present if FPU is supported */
1192        if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1193                mask |= MIPS_CONF1_FP;
1194
1195        return mask;
1196}
1197
1198/**
1199 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1200 * @vcpu:       Virtual CPU.
1201 *
1202 * Finds the mask of bits which are writable in the guest's Config3 CP0
1203 * register, by userland (currently read-only to the guest).
1204 */
1205unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1206{
1207        /* Config4 and ULRI are optional */
1208        unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1209
1210        /* Permit MSA to be present if MSA is supported */
1211        if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1212                mask |= MIPS_CONF3_MSA;
1213
1214        return mask;
1215}
1216
1217/**
1218 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1219 * @vcpu:       Virtual CPU.
1220 *
1221 * Finds the mask of bits which are writable in the guest's Config4 CP0
1222 * register, by userland (currently read-only to the guest).
1223 */
1224unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1225{
1226        /* Config5 is optional */
1227        unsigned int mask = MIPS_CONF_M;
1228
1229        /* KScrExist */
1230        mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1231
1232        return mask;
1233}
1234
1235/**
1236 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1237 * @vcpu:       Virtual CPU.
1238 *
1239 * Finds the mask of bits which are writable in the guest's Config5 CP0
1240 * register, by the guest itself.
1241 */
1242unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1243{
1244        unsigned int mask = 0;
1245
1246        /* Permit MSAEn changes if MSA supported and enabled */
1247        if (kvm_mips_guest_has_msa(&vcpu->arch))
1248                mask |= MIPS_CONF5_MSAEN;
1249
1250        /*
1251         * Permit guest FPU mode changes if FPU is enabled and the relevant
1252         * feature exists according to FIR register.
1253         */
1254        if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1255                if (cpu_has_fre)
1256                        mask |= MIPS_CONF5_FRE;
1257                /* We don't support UFR or UFE */
1258        }
1259
1260        return mask;
1261}
1262
1263enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1264                                           u32 *opc, u32 cause,
1265                                           struct kvm_run *run,
1266                                           struct kvm_vcpu *vcpu)
1267{
1268        struct mips_coproc *cop0 = vcpu->arch.cop0;
1269        enum emulation_result er = EMULATE_DONE;
1270        u32 rt, rd, sel;
1271        unsigned long curr_pc;
1272
1273        /*
1274         * Update PC and hold onto current PC in case there is
1275         * an error and we want to rollback the PC
1276         */
1277        curr_pc = vcpu->arch.pc;
1278        er = update_pc(vcpu, cause);
1279        if (er == EMULATE_FAIL)
1280                return er;
1281
1282        if (inst.co_format.co) {
1283                switch (inst.co_format.func) {
1284                case tlbr_op:   /*  Read indexed TLB entry  */
1285                        er = kvm_mips_emul_tlbr(vcpu);
1286                        break;
1287                case tlbwi_op:  /*  Write indexed  */
1288                        er = kvm_mips_emul_tlbwi(vcpu);
1289                        break;
1290                case tlbwr_op:  /*  Write random  */
1291                        er = kvm_mips_emul_tlbwr(vcpu);
1292                        break;
1293                case tlbp_op:   /* TLB Probe */
1294                        er = kvm_mips_emul_tlbp(vcpu);
1295                        break;
1296                case rfe_op:
1297                        kvm_err("!!!COP0_RFE!!!\n");
1298                        break;
1299                case eret_op:
1300                        er = kvm_mips_emul_eret(vcpu);
1301                        goto dont_update_pc;
1302                case wait_op:
1303                        er = kvm_mips_emul_wait(vcpu);
1304                        break;
1305                case hypcall_op:
1306                        er = kvm_mips_emul_hypcall(vcpu, inst);
1307                        break;
1308                }
1309        } else {
1310                rt = inst.c0r_format.rt;
1311                rd = inst.c0r_format.rd;
1312                sel = inst.c0r_format.sel;
1313
1314                switch (inst.c0r_format.rs) {
1315                case mfc_op:
1316#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1317                        cop0->stat[rd][sel]++;
1318#endif
1319                        /* Get reg */
1320                        if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1321                                vcpu->arch.gprs[rt] =
1322                                    (s32)kvm_mips_read_count(vcpu);
1323                        } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1324                                vcpu->arch.gprs[rt] = 0x0;
1325#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1326                                kvm_mips_trans_mfc0(inst, opc, vcpu);
1327#endif
1328                        } else {
1329                                vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1330
1331#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1332                                kvm_mips_trans_mfc0(inst, opc, vcpu);
1333#endif
1334                        }
1335
1336                        trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1337                                      KVM_TRACE_COP0(rd, sel),
1338                                      vcpu->arch.gprs[rt]);
1339                        break;
1340
1341                case dmfc_op:
1342                        vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1343
1344                        trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1345                                      KVM_TRACE_COP0(rd, sel),
1346                                      vcpu->arch.gprs[rt]);
1347                        break;
1348
1349                case mtc_op:
1350#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1351                        cop0->stat[rd][sel]++;
1352#endif
1353                        trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1354                                      KVM_TRACE_COP0(rd, sel),
1355                                      vcpu->arch.gprs[rt]);
1356
1357                        if ((rd == MIPS_CP0_TLB_INDEX)
1358                            && (vcpu->arch.gprs[rt] >=
1359                                KVM_MIPS_GUEST_TLB_SIZE)) {
1360                                kvm_err("Invalid TLB Index: %ld",
1361                                        vcpu->arch.gprs[rt]);
1362                                er = EMULATE_FAIL;
1363                                break;
1364                        }
1365                        if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1366                                /*
1367                                 * Preserve core number, and keep the exception
1368                                 * base in guest KSeg0.
1369                                 */
1370                                kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1371                                                          vcpu->arch.gprs[rt]);
1372                        } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1373                                kvm_mips_change_entryhi(vcpu,
1374                                                        vcpu->arch.gprs[rt]);
1375                        }
1376                        /* Are we writing to COUNT */
1377                        else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1378                                kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1379                                goto done;
1380                        } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1381                                /* If we are writing to COMPARE */
1382                                /* Clear pending timer interrupt, if any */
1383                                kvm_mips_write_compare(vcpu,
1384                                                       vcpu->arch.gprs[rt],
1385                                                       true);
1386                        } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1387                                unsigned int old_val, val, change;
1388
1389                                old_val = kvm_read_c0_guest_status(cop0);
1390                                val = vcpu->arch.gprs[rt];
1391                                change = val ^ old_val;
1392
1393                                /* Make sure that the NMI bit is never set */
1394                                val &= ~ST0_NMI;
1395
1396                                /*
1397                                 * Don't allow CU1 or FR to be set unless FPU
1398                                 * capability enabled and exists in guest
1399                                 * configuration.
1400                                 */
1401                                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1402                                        val &= ~(ST0_CU1 | ST0_FR);
1403
1404                                /*
1405                                 * Also don't allow FR to be set if host doesn't
1406                                 * support it.
1407                                 */
1408                                if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1409                                        val &= ~ST0_FR;
1410
1411
1412                                /* Handle changes in FPU mode */
1413                                preempt_disable();
1414
1415                                /*
1416                                 * FPU and Vector register state is made
1417                                 * UNPREDICTABLE by a change of FR, so don't
1418                                 * even bother saving it.
1419                                 */
1420                                if (change & ST0_FR)
1421                                        kvm_drop_fpu(vcpu);
1422
1423                                /*
1424                                 * If MSA state is already live, it is undefined
1425                                 * how it interacts with FR=0 FPU state, and we
1426                                 * don't want to hit reserved instruction
1427                                 * exceptions trying to save the MSA state later
1428                                 * when CU=1 && FR=1, so play it safe and save
1429                                 * it first.
1430                                 */
1431                                if (change & ST0_CU1 && !(val & ST0_FR) &&
1432                                    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1433                                        kvm_lose_fpu(vcpu);
1434
1435                                /*
1436                                 * Propagate CU1 (FPU enable) changes
1437                                 * immediately if the FPU context is already
1438                                 * loaded. When disabling we leave the context
1439                                 * loaded so it can be quickly enabled again in
1440                                 * the near future.
1441                                 */
1442                                if (change & ST0_CU1 &&
1443                                    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1444                                        change_c0_status(ST0_CU1, val);
1445
1446                                preempt_enable();
1447
1448                                kvm_write_c0_guest_status(cop0, val);
1449
1450#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1451                                /*
1452                                 * If FPU present, we need CU1/FR bits to take
1453                                 * effect fairly soon.
1454                                 */
1455                                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1456                                        kvm_mips_trans_mtc0(inst, opc, vcpu);
1457#endif
1458                        } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1459                                unsigned int old_val, val, change, wrmask;
1460
1461                                old_val = kvm_read_c0_guest_config5(cop0);
1462                                val = vcpu->arch.gprs[rt];
1463
1464                                /* Only a few bits are writable in Config5 */
1465                                wrmask = kvm_mips_config5_wrmask(vcpu);
1466                                change = (val ^ old_val) & wrmask;
1467                                val = old_val ^ change;
1468
1469
1470                                /* Handle changes in FPU/MSA modes */
1471                                preempt_disable();
1472
1473                                /*
1474                                 * Propagate FRE changes immediately if the FPU
1475                                 * context is already loaded.
1476                                 */
1477                                if (change & MIPS_CONF5_FRE &&
1478                                    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1479                                        change_c0_config5(MIPS_CONF5_FRE, val);
1480
1481                                /*
1482                                 * Propagate MSAEn changes immediately if the
1483                                 * MSA context is already loaded. When disabling
1484                                 * we leave the context loaded so it can be
1485                                 * quickly enabled again in the near future.
1486                                 */
1487                                if (change & MIPS_CONF5_MSAEN &&
1488                                    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1489                                        change_c0_config5(MIPS_CONF5_MSAEN,
1490                                                          val);
1491
1492                                preempt_enable();
1493
1494                                kvm_write_c0_guest_config5(cop0, val);
1495                        } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1496                                u32 old_cause, new_cause;
1497
1498                                old_cause = kvm_read_c0_guest_cause(cop0);
1499                                new_cause = vcpu->arch.gprs[rt];
1500                                /* Update R/W bits */
1501                                kvm_change_c0_guest_cause(cop0, 0x08800300,
1502                                                          new_cause);
1503                                /* DC bit enabling/disabling timer? */
1504                                if ((old_cause ^ new_cause) & CAUSEF_DC) {
1505                                        if (new_cause & CAUSEF_DC)
1506                                                kvm_mips_count_disable_cause(vcpu);
1507                                        else
1508                                                kvm_mips_count_enable_cause(vcpu);
1509                                }
1510                        } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1511                                u32 mask = MIPS_HWRENA_CPUNUM |
1512                                           MIPS_HWRENA_SYNCISTEP |
1513                                           MIPS_HWRENA_CC |
1514                                           MIPS_HWRENA_CCRES;
1515
1516                                if (kvm_read_c0_guest_config3(cop0) &
1517                                    MIPS_CONF3_ULRI)
1518                                        mask |= MIPS_HWRENA_ULR;
1519                                cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1520                        } else {
1521                                cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1522#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1523                                kvm_mips_trans_mtc0(inst, opc, vcpu);
1524#endif
1525                        }
1526                        break;
1527
1528                case dmtc_op:
1529                        kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1530                                vcpu->arch.pc, rt, rd, sel);
1531                        trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1532                                      KVM_TRACE_COP0(rd, sel),
1533                                      vcpu->arch.gprs[rt]);
1534                        er = EMULATE_FAIL;
1535                        break;
1536
1537                case mfmc0_op:
1538#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1539                        cop0->stat[MIPS_CP0_STATUS][0]++;
1540#endif
1541                        if (rt != 0)
1542                                vcpu->arch.gprs[rt] =
1543                                    kvm_read_c0_guest_status(cop0);
1544                        /* EI */
1545                        if (inst.mfmc0_format.sc) {
1546                                kvm_debug("[%#lx] mfmc0_op: EI\n",
1547                                          vcpu->arch.pc);
1548                                kvm_set_c0_guest_status(cop0, ST0_IE);
1549                        } else {
1550                                kvm_debug("[%#lx] mfmc0_op: DI\n",
1551                                          vcpu->arch.pc);
1552                                kvm_clear_c0_guest_status(cop0, ST0_IE);
1553                        }
1554
1555                        break;
1556
1557                case wrpgpr_op:
1558                        {
1559                                u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1560                                u32 pss =
1561                                    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1562                                /*
1563                                 * We don't support any shadow register sets, so
1564                                 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1565                                 */
1566                                if (css || pss) {
1567                                        er = EMULATE_FAIL;
1568                                        break;
1569                                }
1570                                kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1571                                          vcpu->arch.gprs[rt]);
1572                                vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1573                        }
1574                        break;
1575                default:
1576                        kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1577                                vcpu->arch.pc, inst.c0r_format.rs);
1578                        er = EMULATE_FAIL;
1579                        break;
1580                }
1581        }
1582
1583done:
1584        /* Rollback PC only if emulation was unsuccessful */
1585        if (er == EMULATE_FAIL)
1586                vcpu->arch.pc = curr_pc;
1587
1588dont_update_pc:
1589        /*
1590         * This is for special instructions whose emulation
1591         * updates the PC, so do not overwrite the PC under
1592         * any circumstances
1593         */
1594
1595        return er;
1596}
1597
1598enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1599                                             u32 cause,
1600                                             struct kvm_run *run,
1601                                             struct kvm_vcpu *vcpu)
1602{
1603        enum emulation_result er;
1604        u32 rt;
1605        void *data = run->mmio.data;
1606        unsigned long curr_pc;
1607
1608        /*
1609         * Update PC and hold onto current PC in case there is
1610         * an error and we want to rollback the PC
1611         */
1612        curr_pc = vcpu->arch.pc;
1613        er = update_pc(vcpu, cause);
1614        if (er == EMULATE_FAIL)
1615                return er;
1616
1617        rt = inst.i_format.rt;
1618
1619        run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1620                                                vcpu->arch.host_cp0_badvaddr);
1621        if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1622                goto out_fail;
1623
1624        switch (inst.i_format.opcode) {
1625#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1626        case sd_op:
1627                run->mmio.len = 8;
1628                *(u64 *)data = vcpu->arch.gprs[rt];
1629
1630                kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1631                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1632                          vcpu->arch.gprs[rt], *(u64 *)data);
1633                break;
1634#endif
1635
1636        case sw_op:
1637                run->mmio.len = 4;
1638                *(u32 *)data = vcpu->arch.gprs[rt];
1639
1640                kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1641                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1642                          vcpu->arch.gprs[rt], *(u32 *)data);
1643                break;
1644
1645        case sh_op:
1646                run->mmio.len = 2;
1647                *(u16 *)data = vcpu->arch.gprs[rt];
1648
1649                kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1650                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1651                          vcpu->arch.gprs[rt], *(u16 *)data);
1652                break;
1653
1654        case sb_op:
1655                run->mmio.len = 1;
1656                *(u8 *)data = vcpu->arch.gprs[rt];
1657
1658                kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1659                          vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1660                          vcpu->arch.gprs[rt], *(u8 *)data);
1661                break;
1662
1663        default:
1664                kvm_err("Store not yet supported (inst=0x%08x)\n",
1665                        inst.word);
1666                goto out_fail;
1667        }
1668
1669        run->mmio.is_write = 1;
1670        vcpu->mmio_needed = 1;
1671        vcpu->mmio_is_write = 1;
1672        return EMULATE_DO_MMIO;
1673
1674out_fail:
1675        /* Rollback PC if emulation was unsuccessful */
1676        vcpu->arch.pc = curr_pc;
1677        return EMULATE_FAIL;
1678}
1679
1680enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1681                                            u32 cause, struct kvm_run *run,
1682                                            struct kvm_vcpu *vcpu)
1683{
1684        enum emulation_result er;
1685        unsigned long curr_pc;
1686        u32 op, rt;
1687
1688        rt = inst.i_format.rt;
1689        op = inst.i_format.opcode;
1690
1691        /*
1692         * Find the resume PC now while we have safe and easy access to the
1693         * prior branch instruction, and save it for
1694         * kvm_mips_complete_mmio_load() to restore later.
1695         */
1696        curr_pc = vcpu->arch.pc;
1697        er = update_pc(vcpu, cause);
1698        if (er == EMULATE_FAIL)
1699                return er;
1700        vcpu->arch.io_pc = vcpu->arch.pc;
1701        vcpu->arch.pc = curr_pc;
1702
1703        vcpu->arch.io_gpr = rt;
1704
1705        run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1706                                                vcpu->arch.host_cp0_badvaddr);
1707        if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1708                return EMULATE_FAIL;
1709
1710        vcpu->mmio_needed = 2;  /* signed */
1711        switch (op) {
1712#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1713        case ld_op:
1714                run->mmio.len = 8;
1715                break;
1716
1717        case lwu_op:
1718                vcpu->mmio_needed = 1;  /* unsigned */
1719                /* fall through */
1720#endif
1721        case lw_op:
1722                run->mmio.len = 4;
1723                break;
1724
1725        case lhu_op:
1726                vcpu->mmio_needed = 1;  /* unsigned */
1727                /* fall through */
1728        case lh_op:
1729                run->mmio.len = 2;
1730                break;
1731
1732        case lbu_op:
1733                vcpu->mmio_needed = 1;  /* unsigned */
1734                /* fall through */
1735        case lb_op:
1736                run->mmio.len = 1;
1737                break;
1738
1739        default:
1740                kvm_err("Load not yet supported (inst=0x%08x)\n",
1741                        inst.word);
1742                vcpu->mmio_needed = 0;
1743                return EMULATE_FAIL;
1744        }
1745
1746        run->mmio.is_write = 0;
1747        vcpu->mmio_is_write = 0;
1748        return EMULATE_DO_MMIO;
1749}
1750
1751#ifndef CONFIG_KVM_MIPS_VZ
1752static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
1753                                                     unsigned long curr_pc,
1754                                                     unsigned long addr,
1755                                                     struct kvm_run *run,
1756                                                     struct kvm_vcpu *vcpu,
1757                                                     u32 cause)
1758{
1759        int err;
1760
1761        for (;;) {
1762                /* Carefully attempt the cache operation */
1763                kvm_trap_emul_gva_lockless_begin(vcpu);
1764                err = fn(addr);
1765                kvm_trap_emul_gva_lockless_end(vcpu);
1766
1767                if (likely(!err))
1768                        return EMULATE_DONE;
1769
1770                /*
1771                 * Try to handle the fault and retry, maybe we just raced with a
1772                 * GVA invalidation.
1773                 */
1774                switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
1775                case KVM_MIPS_GVA:
1776                case KVM_MIPS_GPA:
1777                        /* bad virtual or physical address */
1778                        return EMULATE_FAIL;
1779                case KVM_MIPS_TLB:
1780                        /* no matching guest TLB */
1781                        vcpu->arch.host_cp0_badvaddr = addr;
1782                        vcpu->arch.pc = curr_pc;
1783                        kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu);
1784                        return EMULATE_EXCEPT;
1785                case KVM_MIPS_TLBINV:
1786                        /* invalid matching guest TLB */
1787                        vcpu->arch.host_cp0_badvaddr = addr;
1788                        vcpu->arch.pc = curr_pc;
1789                        kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu);
1790                        return EMULATE_EXCEPT;
1791                default:
1792                        break;
1793                };
1794        }
1795}
1796
1797enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1798                                             u32 *opc, u32 cause,
1799                                             struct kvm_run *run,
1800                                             struct kvm_vcpu *vcpu)
1801{
1802        enum emulation_result er = EMULATE_DONE;
1803        u32 cache, op_inst, op, base;
1804        s16 offset;
1805        struct kvm_vcpu_arch *arch = &vcpu->arch;
1806        unsigned long va;
1807        unsigned long curr_pc;
1808
1809        /*
1810         * Update PC and hold onto current PC in case there is
1811         * an error and we want to rollback the PC
1812         */
1813        curr_pc = vcpu->arch.pc;
1814        er = update_pc(vcpu, cause);
1815        if (er == EMULATE_FAIL)
1816                return er;
1817
1818        base = inst.i_format.rs;
1819        op_inst = inst.i_format.rt;
1820        if (cpu_has_mips_r6)
1821                offset = inst.spec3_format.simmediate;
1822        else
1823                offset = inst.i_format.simmediate;
1824        cache = op_inst & CacheOp_Cache;
1825        op = op_inst & CacheOp_Op;
1826
1827        va = arch->gprs[base] + offset;
1828
1829        kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1830                  cache, op, base, arch->gprs[base], offset);
1831
1832        /*
1833         * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1834         * invalidate the caches entirely by stepping through all the
1835         * ways/indexes
1836         */
1837        if (op == Index_Writeback_Inv) {
1838                kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1839                          vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1840                          arch->gprs[base], offset);
1841
1842                if (cache == Cache_D) {
1843#ifdef CONFIG_CPU_R4K_CACHE_TLB
1844                        r4k_blast_dcache();
1845#else
1846                        switch (boot_cpu_type()) {
1847                        case CPU_CAVIUM_OCTEON3:
1848                                /* locally flush icache */
1849                                local_flush_icache_range(0, 0);
1850                                break;
1851                        default:
1852                                __flush_cache_all();
1853                                break;
1854                        }
1855#endif
1856                } else if (cache == Cache_I) {
1857#ifdef CONFIG_CPU_R4K_CACHE_TLB
1858                        r4k_blast_icache();
1859#else
1860                        switch (boot_cpu_type()) {
1861                        case CPU_CAVIUM_OCTEON3:
1862                                /* locally flush icache */
1863                                local_flush_icache_range(0, 0);
1864                                break;
1865                        default:
1866                                flush_icache_all();
1867                                break;
1868                        }
1869#endif
1870                } else {
1871                        kvm_err("%s: unsupported CACHE INDEX operation\n",
1872                                __func__);
1873                        return EMULATE_FAIL;
1874                }
1875
1876#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1877                kvm_mips_trans_cache_index(inst, opc, vcpu);
1878#endif
1879                goto done;
1880        }
1881
1882        /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1883        if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1884                /*
1885                 * Perform the dcache part of icache synchronisation on the
1886                 * guest's behalf.
1887                 */
1888                er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1889                                             curr_pc, va, run, vcpu, cause);
1890                if (er != EMULATE_DONE)
1891                        goto done;
1892#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1893                /*
1894                 * Replace the CACHE instruction, with a SYNCI, not the same,
1895                 * but avoids a trap
1896                 */
1897                kvm_mips_trans_cache_va(inst, opc, vcpu);
1898#endif
1899        } else if (op_inst == Hit_Invalidate_I) {
1900                /* Perform the icache synchronisation on the guest's behalf */
1901                er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1902                                             curr_pc, va, run, vcpu, cause);
1903                if (er != EMULATE_DONE)
1904                        goto done;
1905                er = kvm_mips_guest_cache_op(protected_flush_icache_line,
1906                                             curr_pc, va, run, vcpu, cause);
1907                if (er != EMULATE_DONE)
1908                        goto done;
1909
1910#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1911                /* Replace the CACHE instruction, with a SYNCI */
1912                kvm_mips_trans_cache_va(inst, opc, vcpu);
1913#endif
1914        } else {
1915                kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1916                        cache, op, base, arch->gprs[base], offset);
1917                er = EMULATE_FAIL;
1918        }
1919
1920done:
1921        /* Rollback PC only if emulation was unsuccessful */
1922        if (er == EMULATE_FAIL)
1923                vcpu->arch.pc = curr_pc;
1924        /* Guest exception needs guest to resume */
1925        if (er == EMULATE_EXCEPT)
1926                er = EMULATE_DONE;
1927
1928        return er;
1929}
1930
1931enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1932                                            struct kvm_run *run,
1933                                            struct kvm_vcpu *vcpu)
1934{
1935        union mips_instruction inst;
1936        enum emulation_result er = EMULATE_DONE;
1937        int err;
1938
1939        /* Fetch the instruction. */
1940        if (cause & CAUSEF_BD)
1941                opc += 1;
1942        err = kvm_get_badinstr(opc, vcpu, &inst.word);
1943        if (err)
1944                return EMULATE_FAIL;
1945
1946        switch (inst.r_format.opcode) {
1947        case cop0_op:
1948                er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1949                break;
1950
1951#ifndef CONFIG_CPU_MIPSR6
1952        case cache_op:
1953                ++vcpu->stat.cache_exits;
1954                trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1955                er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1956                break;
1957#else
1958        case spec3_op:
1959                switch (inst.spec3_format.func) {
1960                case cache6_op:
1961                        ++vcpu->stat.cache_exits;
1962                        trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1963                        er = kvm_mips_emulate_cache(inst, opc, cause, run,
1964                                                    vcpu);
1965                        break;
1966                default:
1967                        goto unknown;
1968                };
1969                break;
1970unknown:
1971#endif
1972
1973        default:
1974                kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1975                        inst.word);
1976                kvm_arch_vcpu_dump_regs(vcpu);
1977                er = EMULATE_FAIL;
1978                break;
1979        }
1980
1981        return er;
1982}
1983#endif /* CONFIG_KVM_MIPS_VZ */
1984
1985/**
1986 * kvm_mips_guest_exception_base() - Find guest exception vector base address.
1987 *
1988 * Returns:     The base address of the current guest exception vector, taking
1989 *              both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
1990 */
1991long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
1992{
1993        struct mips_coproc *cop0 = vcpu->arch.cop0;
1994
1995        if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
1996                return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
1997        else
1998                return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
1999}
2000
2001enum emulation_result kvm_mips_emulate_syscall(u32 cause,
2002                                               u32 *opc,
2003                                               struct kvm_run *run,
2004                                               struct kvm_vcpu *vcpu)
2005{
2006        struct mips_coproc *cop0 = vcpu->arch.cop0;
2007        struct kvm_vcpu_arch *arch = &vcpu->arch;
2008        enum emulation_result er = EMULATE_DONE;
2009
2010        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2011                /* save old pc */
2012                kvm_write_c0_guest_epc(cop0, arch->pc);
2013                kvm_set_c0_guest_status(cop0, ST0_EXL);
2014
2015                if (cause & CAUSEF_BD)
2016                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2017                else
2018                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2019
2020                kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
2021
2022                kvm_change_c0_guest_cause(cop0, (0xff),
2023                                          (EXCCODE_SYS << CAUSEB_EXCCODE));
2024
2025                /* Set PC to the exception entry point */
2026                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2027
2028        } else {
2029                kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2030                er = EMULATE_FAIL;
2031        }
2032
2033        return er;
2034}
2035
2036enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
2037                                                  u32 *opc,
2038                                                  struct kvm_run *run,
2039                                                  struct kvm_vcpu *vcpu)
2040{
2041        struct mips_coproc *cop0 = vcpu->arch.cop0;
2042        struct kvm_vcpu_arch *arch = &vcpu->arch;
2043        unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
2044                        (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2045
2046        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2047                /* save old pc */
2048                kvm_write_c0_guest_epc(cop0, arch->pc);
2049                kvm_set_c0_guest_status(cop0, ST0_EXL);
2050
2051                if (cause & CAUSEF_BD)
2052                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2053                else
2054                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2055
2056                kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2057                          arch->pc);
2058
2059                /* set pc to the exception entry point */
2060                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2061
2062        } else {
2063                kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2064                          arch->pc);
2065
2066                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2067        }
2068
2069        kvm_change_c0_guest_cause(cop0, (0xff),
2070                                  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2071
2072        /* setup badvaddr, context and entryhi registers for the guest */
2073        kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2074        /* XXXKYMA: is the context register used by linux??? */
2075        kvm_write_c0_guest_entryhi(cop0, entryhi);
2076
2077        return EMULATE_DONE;
2078}
2079
2080enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2081                                                 u32 *opc,
2082                                                 struct kvm_run *run,
2083                                                 struct kvm_vcpu *vcpu)
2084{
2085        struct mips_coproc *cop0 = vcpu->arch.cop0;
2086        struct kvm_vcpu_arch *arch = &vcpu->arch;
2087        unsigned long entryhi =
2088                (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2089                (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2090
2091        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2092                /* save old pc */
2093                kvm_write_c0_guest_epc(cop0, arch->pc);
2094                kvm_set_c0_guest_status(cop0, ST0_EXL);
2095
2096                if (cause & CAUSEF_BD)
2097                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2098                else
2099                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2100
2101                kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2102                          arch->pc);
2103        } else {
2104                kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2105                          arch->pc);
2106        }
2107
2108        /* set pc to the exception entry point */
2109        arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2110
2111        kvm_change_c0_guest_cause(cop0, (0xff),
2112                                  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2113
2114        /* setup badvaddr, context and entryhi registers for the guest */
2115        kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2116        /* XXXKYMA: is the context register used by linux??? */
2117        kvm_write_c0_guest_entryhi(cop0, entryhi);
2118
2119        return EMULATE_DONE;
2120}
2121
2122enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2123                                                  u32 *opc,
2124                                                  struct kvm_run *run,
2125                                                  struct kvm_vcpu *vcpu)
2126{
2127        struct mips_coproc *cop0 = vcpu->arch.cop0;
2128        struct kvm_vcpu_arch *arch = &vcpu->arch;
2129        unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2130                        (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2131
2132        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2133                /* save old pc */
2134                kvm_write_c0_guest_epc(cop0, arch->pc);
2135                kvm_set_c0_guest_status(cop0, ST0_EXL);
2136
2137                if (cause & CAUSEF_BD)
2138                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2139                else
2140                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2141
2142                kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2143                          arch->pc);
2144
2145                /* Set PC to the exception entry point */
2146                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2147        } else {
2148                kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2149                          arch->pc);
2150                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2151        }
2152
2153        kvm_change_c0_guest_cause(cop0, (0xff),
2154                                  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2155
2156        /* setup badvaddr, context and entryhi registers for the guest */
2157        kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2158        /* XXXKYMA: is the context register used by linux??? */
2159        kvm_write_c0_guest_entryhi(cop0, entryhi);
2160
2161        return EMULATE_DONE;
2162}
2163
2164enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2165                                                 u32 *opc,
2166                                                 struct kvm_run *run,
2167                                                 struct kvm_vcpu *vcpu)
2168{
2169        struct mips_coproc *cop0 = vcpu->arch.cop0;
2170        struct kvm_vcpu_arch *arch = &vcpu->arch;
2171        unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2172                (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2173
2174        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2175                /* save old pc */
2176                kvm_write_c0_guest_epc(cop0, arch->pc);
2177                kvm_set_c0_guest_status(cop0, ST0_EXL);
2178
2179                if (cause & CAUSEF_BD)
2180                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2181                else
2182                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2183
2184                kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2185                          arch->pc);
2186        } else {
2187                kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2188                          arch->pc);
2189        }
2190
2191        /* Set PC to the exception entry point */
2192        arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2193
2194        kvm_change_c0_guest_cause(cop0, (0xff),
2195                                  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2196
2197        /* setup badvaddr, context and entryhi registers for the guest */
2198        kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2199        /* XXXKYMA: is the context register used by linux??? */
2200        kvm_write_c0_guest_entryhi(cop0, entryhi);
2201
2202        return EMULATE_DONE;
2203}
2204
2205enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2206                                              u32 *opc,
2207                                              struct kvm_run *run,
2208                                              struct kvm_vcpu *vcpu)
2209{
2210        struct mips_coproc *cop0 = vcpu->arch.cop0;
2211        unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2212                        (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2213        struct kvm_vcpu_arch *arch = &vcpu->arch;
2214
2215        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2216                /* save old pc */
2217                kvm_write_c0_guest_epc(cop0, arch->pc);
2218                kvm_set_c0_guest_status(cop0, ST0_EXL);
2219
2220                if (cause & CAUSEF_BD)
2221                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2222                else
2223                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2224
2225                kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2226                          arch->pc);
2227        } else {
2228                kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2229                          arch->pc);
2230        }
2231
2232        arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2233
2234        kvm_change_c0_guest_cause(cop0, (0xff),
2235                                  (EXCCODE_MOD << CAUSEB_EXCCODE));
2236
2237        /* setup badvaddr, context and entryhi registers for the guest */
2238        kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2239        /* XXXKYMA: is the context register used by linux??? */
2240        kvm_write_c0_guest_entryhi(cop0, entryhi);
2241
2242        return EMULATE_DONE;
2243}
2244
2245enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2246                                               u32 *opc,
2247                                               struct kvm_run *run,
2248                                               struct kvm_vcpu *vcpu)
2249{
2250        struct mips_coproc *cop0 = vcpu->arch.cop0;
2251        struct kvm_vcpu_arch *arch = &vcpu->arch;
2252
2253        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2254                /* save old pc */
2255                kvm_write_c0_guest_epc(cop0, arch->pc);
2256                kvm_set_c0_guest_status(cop0, ST0_EXL);
2257
2258                if (cause & CAUSEF_BD)
2259                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2260                else
2261                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2262
2263        }
2264
2265        arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2266
2267        kvm_change_c0_guest_cause(cop0, (0xff),
2268                                  (EXCCODE_CPU << CAUSEB_EXCCODE));
2269        kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2270
2271        return EMULATE_DONE;
2272}
2273
2274enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2275                                              u32 *opc,
2276                                              struct kvm_run *run,
2277                                              struct kvm_vcpu *vcpu)
2278{
2279        struct mips_coproc *cop0 = vcpu->arch.cop0;
2280        struct kvm_vcpu_arch *arch = &vcpu->arch;
2281        enum emulation_result er = EMULATE_DONE;
2282
2283        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2284                /* save old pc */
2285                kvm_write_c0_guest_epc(cop0, arch->pc);
2286                kvm_set_c0_guest_status(cop0, ST0_EXL);
2287
2288                if (cause & CAUSEF_BD)
2289                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2290                else
2291                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2292
2293                kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2294
2295                kvm_change_c0_guest_cause(cop0, (0xff),
2296                                          (EXCCODE_RI << CAUSEB_EXCCODE));
2297
2298                /* Set PC to the exception entry point */
2299                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2300
2301        } else {
2302                kvm_err("Trying to deliver RI when EXL is already set\n");
2303                er = EMULATE_FAIL;
2304        }
2305
2306        return er;
2307}
2308
2309enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2310                                              u32 *opc,
2311                                              struct kvm_run *run,
2312                                              struct kvm_vcpu *vcpu)
2313{
2314        struct mips_coproc *cop0 = vcpu->arch.cop0;
2315        struct kvm_vcpu_arch *arch = &vcpu->arch;
2316        enum emulation_result er = EMULATE_DONE;
2317
2318        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2319                /* save old pc */
2320                kvm_write_c0_guest_epc(cop0, arch->pc);
2321                kvm_set_c0_guest_status(cop0, ST0_EXL);
2322
2323                if (cause & CAUSEF_BD)
2324                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2325                else
2326                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2327
2328                kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2329
2330                kvm_change_c0_guest_cause(cop0, (0xff),
2331                                          (EXCCODE_BP << CAUSEB_EXCCODE));
2332
2333                /* Set PC to the exception entry point */
2334                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2335
2336        } else {
2337                kvm_err("Trying to deliver BP when EXL is already set\n");
2338                er = EMULATE_FAIL;
2339        }
2340
2341        return er;
2342}
2343
2344enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2345                                                u32 *opc,
2346                                                struct kvm_run *run,
2347                                                struct kvm_vcpu *vcpu)
2348{
2349        struct mips_coproc *cop0 = vcpu->arch.cop0;
2350        struct kvm_vcpu_arch *arch = &vcpu->arch;
2351        enum emulation_result er = EMULATE_DONE;
2352
2353        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2354                /* save old pc */
2355                kvm_write_c0_guest_epc(cop0, arch->pc);
2356                kvm_set_c0_guest_status(cop0, ST0_EXL);
2357
2358                if (cause & CAUSEF_BD)
2359                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2360                else
2361                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2362
2363                kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2364
2365                kvm_change_c0_guest_cause(cop0, (0xff),
2366                                          (EXCCODE_TR << CAUSEB_EXCCODE));
2367
2368                /* Set PC to the exception entry point */
2369                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2370
2371        } else {
2372                kvm_err("Trying to deliver TRAP when EXL is already set\n");
2373                er = EMULATE_FAIL;
2374        }
2375
2376        return er;
2377}
2378
2379enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2380                                                  u32 *opc,
2381                                                  struct kvm_run *run,
2382                                                  struct kvm_vcpu *vcpu)
2383{
2384        struct mips_coproc *cop0 = vcpu->arch.cop0;
2385        struct kvm_vcpu_arch *arch = &vcpu->arch;
2386        enum emulation_result er = EMULATE_DONE;
2387
2388        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2389                /* save old pc */
2390                kvm_write_c0_guest_epc(cop0, arch->pc);
2391                kvm_set_c0_guest_status(cop0, ST0_EXL);
2392
2393                if (cause & CAUSEF_BD)
2394                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2395                else
2396                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2397
2398                kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2399
2400                kvm_change_c0_guest_cause(cop0, (0xff),
2401                                          (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2402
2403                /* Set PC to the exception entry point */
2404                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2405
2406        } else {
2407                kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2408                er = EMULATE_FAIL;
2409        }
2410
2411        return er;
2412}
2413
2414enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2415                                               u32 *opc,
2416                                               struct kvm_run *run,
2417                                               struct kvm_vcpu *vcpu)
2418{
2419        struct mips_coproc *cop0 = vcpu->arch.cop0;
2420        struct kvm_vcpu_arch *arch = &vcpu->arch;
2421        enum emulation_result er = EMULATE_DONE;
2422
2423        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2424                /* save old pc */
2425                kvm_write_c0_guest_epc(cop0, arch->pc);
2426                kvm_set_c0_guest_status(cop0, ST0_EXL);
2427
2428                if (cause & CAUSEF_BD)
2429                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2430                else
2431                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2432
2433                kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2434
2435                kvm_change_c0_guest_cause(cop0, (0xff),
2436                                          (EXCCODE_FPE << CAUSEB_EXCCODE));
2437
2438                /* Set PC to the exception entry point */
2439                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2440
2441        } else {
2442                kvm_err("Trying to deliver FPE when EXL is already set\n");
2443                er = EMULATE_FAIL;
2444        }
2445
2446        return er;
2447}
2448
2449enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2450                                                  u32 *opc,
2451                                                  struct kvm_run *run,
2452                                                  struct kvm_vcpu *vcpu)
2453{
2454        struct mips_coproc *cop0 = vcpu->arch.cop0;
2455        struct kvm_vcpu_arch *arch = &vcpu->arch;
2456        enum emulation_result er = EMULATE_DONE;
2457
2458        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2459                /* save old pc */
2460                kvm_write_c0_guest_epc(cop0, arch->pc);
2461                kvm_set_c0_guest_status(cop0, ST0_EXL);
2462
2463                if (cause & CAUSEF_BD)
2464                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2465                else
2466                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2467
2468                kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2469
2470                kvm_change_c0_guest_cause(cop0, (0xff),
2471                                          (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2472
2473                /* Set PC to the exception entry point */
2474                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2475
2476        } else {
2477                kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2478                er = EMULATE_FAIL;
2479        }
2480
2481        return er;
2482}
2483
2484enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2485                                         struct kvm_run *run,
2486                                         struct kvm_vcpu *vcpu)
2487{
2488        struct mips_coproc *cop0 = vcpu->arch.cop0;
2489        struct kvm_vcpu_arch *arch = &vcpu->arch;
2490        enum emulation_result er = EMULATE_DONE;
2491        unsigned long curr_pc;
2492        union mips_instruction inst;
2493        int err;
2494
2495        /*
2496         * Update PC and hold onto current PC in case there is
2497         * an error and we want to rollback the PC
2498         */
2499        curr_pc = vcpu->arch.pc;
2500        er = update_pc(vcpu, cause);
2501        if (er == EMULATE_FAIL)
2502                return er;
2503
2504        /* Fetch the instruction. */
2505        if (cause & CAUSEF_BD)
2506                opc += 1;
2507        err = kvm_get_badinstr(opc, vcpu, &inst.word);
2508        if (err) {
2509                kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2510                return EMULATE_FAIL;
2511        }
2512
2513        if (inst.r_format.opcode == spec3_op &&
2514            inst.r_format.func == rdhwr_op &&
2515            inst.r_format.rs == 0 &&
2516            (inst.r_format.re >> 3) == 0) {
2517                int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2518                int rd = inst.r_format.rd;
2519                int rt = inst.r_format.rt;
2520                int sel = inst.r_format.re & 0x7;
2521
2522                /* If usermode, check RDHWR rd is allowed by guest HWREna */
2523                if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2524                        kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2525                                  rd, opc);
2526                        goto emulate_ri;
2527                }
2528                switch (rd) {
2529                case MIPS_HWR_CPUNUM:           /* CPU number */
2530                        arch->gprs[rt] = vcpu->vcpu_id;
2531                        break;
2532                case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
2533                        arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2534                                             current_cpu_data.icache.linesz);
2535                        break;
2536                case MIPS_HWR_CC:               /* Read count register */
2537                        arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2538                        break;
2539                case MIPS_HWR_CCRES:            /* Count register resolution */
2540                        switch (current_cpu_data.cputype) {
2541                        case CPU_20KC:
2542                        case CPU_25KF:
2543                                arch->gprs[rt] = 1;
2544                                break;
2545                        default:
2546                                arch->gprs[rt] = 2;
2547                        }
2548                        break;
2549                case MIPS_HWR_ULR:              /* Read UserLocal register */
2550                        arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2551                        break;
2552
2553                default:
2554                        kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2555                        goto emulate_ri;
2556                }
2557
2558                trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2559                              vcpu->arch.gprs[rt]);
2560        } else {
2561                kvm_debug("Emulate RI not supported @ %p: %#x\n",
2562                          opc, inst.word);
2563                goto emulate_ri;
2564        }
2565
2566        return EMULATE_DONE;
2567
2568emulate_ri:
2569        /*
2570         * Rollback PC (if in branch delay slot then the PC already points to
2571         * branch target), and pass the RI exception to the guest OS.
2572         */
2573        vcpu->arch.pc = curr_pc;
2574        return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2575}
2576
2577enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2578                                                  struct kvm_run *run)
2579{
2580        unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2581        enum emulation_result er = EMULATE_DONE;
2582
2583        if (run->mmio.len > sizeof(*gpr)) {
2584                kvm_err("Bad MMIO length: %d", run->mmio.len);
2585                er = EMULATE_FAIL;
2586                goto done;
2587        }
2588
2589        /* Restore saved resume PC */
2590        vcpu->arch.pc = vcpu->arch.io_pc;
2591
2592        switch (run->mmio.len) {
2593        case 8:
2594                *gpr = *(s64 *)run->mmio.data;
2595                break;
2596
2597        case 4:
2598                if (vcpu->mmio_needed == 2)
2599                        *gpr = *(s32 *)run->mmio.data;
2600                else
2601                        *gpr = *(u32 *)run->mmio.data;
2602                break;
2603
2604        case 2:
2605                if (vcpu->mmio_needed == 2)
2606                        *gpr = *(s16 *) run->mmio.data;
2607                else
2608                        *gpr = *(u16 *)run->mmio.data;
2609
2610                break;
2611        case 1:
2612                if (vcpu->mmio_needed == 2)
2613                        *gpr = *(s8 *) run->mmio.data;
2614                else
2615                        *gpr = *(u8 *) run->mmio.data;
2616                break;
2617        }
2618
2619done:
2620        return er;
2621}
2622
2623static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2624                                                  u32 *opc,
2625                                                  struct kvm_run *run,
2626                                                  struct kvm_vcpu *vcpu)
2627{
2628        u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2629        struct mips_coproc *cop0 = vcpu->arch.cop0;
2630        struct kvm_vcpu_arch *arch = &vcpu->arch;
2631        enum emulation_result er = EMULATE_DONE;
2632
2633        if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2634                /* save old pc */
2635                kvm_write_c0_guest_epc(cop0, arch->pc);
2636                kvm_set_c0_guest_status(cop0, ST0_EXL);
2637
2638                if (cause & CAUSEF_BD)
2639                        kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2640                else
2641                        kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2642
2643                kvm_change_c0_guest_cause(cop0, (0xff),
2644                                          (exccode << CAUSEB_EXCCODE));
2645
2646                /* Set PC to the exception entry point */
2647                arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2648                kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2649
2650                kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2651                          exccode, kvm_read_c0_guest_epc(cop0),
2652                          kvm_read_c0_guest_badvaddr(cop0));
2653        } else {
2654                kvm_err("Trying to deliver EXC when EXL is already set\n");
2655                er = EMULATE_FAIL;
2656        }
2657
2658        return er;
2659}
2660
2661enum emulation_result kvm_mips_check_privilege(u32 cause,
2662                                               u32 *opc,
2663                                               struct kvm_run *run,
2664                                               struct kvm_vcpu *vcpu)
2665{
2666        enum emulation_result er = EMULATE_DONE;
2667        u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2668        unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2669
2670        int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2671
2672        if (usermode) {
2673                switch (exccode) {
2674                case EXCCODE_INT:
2675                case EXCCODE_SYS:
2676                case EXCCODE_BP:
2677                case EXCCODE_RI:
2678                case EXCCODE_TR:
2679                case EXCCODE_MSAFPE:
2680                case EXCCODE_FPE:
2681                case EXCCODE_MSADIS:
2682                        break;
2683
2684                case EXCCODE_CPU:
2685                        if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2686                                er = EMULATE_PRIV_FAIL;
2687                        break;
2688
2689                case EXCCODE_MOD:
2690                        break;
2691
2692                case EXCCODE_TLBL:
2693                        /*
2694                         * We we are accessing Guest kernel space, then send an
2695                         * address error exception to the guest
2696                         */
2697                        if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2698                                kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2699                                          badvaddr);
2700                                cause &= ~0xff;
2701                                cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2702                                er = EMULATE_PRIV_FAIL;
2703                        }
2704                        break;
2705
2706                case EXCCODE_TLBS:
2707                        /*
2708                         * We we are accessing Guest kernel space, then send an
2709                         * address error exception to the guest
2710                         */
2711                        if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2712                                kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2713                                          badvaddr);
2714                                cause &= ~0xff;
2715                                cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2716                                er = EMULATE_PRIV_FAIL;
2717                        }
2718                        break;
2719
2720                case EXCCODE_ADES:
2721                        kvm_debug("%s: address error ST @ %#lx\n", __func__,
2722                                  badvaddr);
2723                        if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2724                                cause &= ~0xff;
2725                                cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2726                        }
2727                        er = EMULATE_PRIV_FAIL;
2728                        break;
2729                case EXCCODE_ADEL:
2730                        kvm_debug("%s: address error LD @ %#lx\n", __func__,
2731                                  badvaddr);
2732                        if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2733                                cause &= ~0xff;
2734                                cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2735                        }
2736                        er = EMULATE_PRIV_FAIL;
2737                        break;
2738                default:
2739                        er = EMULATE_PRIV_FAIL;
2740                        break;
2741                }
2742        }
2743
2744        if (er == EMULATE_PRIV_FAIL)
2745                kvm_mips_emulate_exc(cause, opc, run, vcpu);
2746
2747        return er;
2748}
2749
2750/*
2751 * User Address (UA) fault, this could happen if
2752 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2753 *     case we pass on the fault to the guest kernel and let it handle it.
2754 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2755 *     case we inject the TLB from the Guest TLB into the shadow host TLB
2756 */
2757enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2758                                              u32 *opc,
2759                                              struct kvm_run *run,
2760                                              struct kvm_vcpu *vcpu,
2761                                              bool write_fault)
2762{
2763        enum emulation_result er = EMULATE_DONE;
2764        u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2765        unsigned long va = vcpu->arch.host_cp0_badvaddr;
2766        int index;
2767
2768        kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2769                  vcpu->arch.host_cp0_badvaddr);
2770
2771        /*
2772         * KVM would not have got the exception if this entry was valid in the
2773         * shadow host TLB. Check the Guest TLB, if the entry is not there then
2774         * send the guest an exception. The guest exc handler should then inject
2775         * an entry into the guest TLB.
2776         */
2777        index = kvm_mips_guest_tlb_lookup(vcpu,
2778                      (va & VPN2_MASK) |
2779                      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2780                       KVM_ENTRYHI_ASID));
2781        if (index < 0) {
2782                if (exccode == EXCCODE_TLBL) {
2783                        er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2784                } else if (exccode == EXCCODE_TLBS) {
2785                        er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2786                } else {
2787                        kvm_err("%s: invalid exc code: %d\n", __func__,
2788                                exccode);
2789                        er = EMULATE_FAIL;
2790                }
2791        } else {
2792                struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2793
2794                /*
2795                 * Check if the entry is valid, if not then setup a TLB invalid
2796                 * exception to the guest
2797                 */
2798                if (!TLB_IS_VALID(*tlb, va)) {
2799                        if (exccode == EXCCODE_TLBL) {
2800                                er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2801                                                                vcpu);
2802                        } else if (exccode == EXCCODE_TLBS) {
2803                                er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2804                                                                vcpu);
2805                        } else {
2806                                kvm_err("%s: invalid exc code: %d\n", __func__,
2807                                        exccode);
2808                                er = EMULATE_FAIL;
2809                        }
2810                } else {
2811                        kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2812                                  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2813                        /*
2814                         * OK we have a Guest TLB entry, now inject it into the
2815                         * shadow host TLB
2816                         */
2817                        if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
2818                                                                 write_fault)) {
2819                                kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2820                                        __func__, va, index, vcpu,
2821                                        read_c0_entryhi());
2822                                er = EMULATE_FAIL;
2823                        }
2824                }
2825        }
2826
2827        return er;
2828}
2829