linux/arch/mips/kvm/mips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sched/signal.h>
  20#include <linux/fs.h>
  21#include <linux/memblock.h>
  22
  23#include <asm/fpu.h>
  24#include <asm/page.h>
  25#include <asm/cacheflush.h>
  26#include <asm/mmu_context.h>
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29
  30#include <linux/kvm_host.h>
  31
  32#include "interrupt.h"
  33#include "commpage.h"
  34
  35#define CREATE_TRACE_POINTS
  36#include "trace.h"
  37
  38#ifndef VECTORSPACING
  39#define VECTORSPACING 0x100     /* for EI/VI mode */
  40#endif
  41
  42#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  43struct kvm_stats_debugfs_item debugfs_entries[] = {
  44        { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
  45        { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
  46        { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
  47        { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
  48        { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  49        { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
  50        { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
  51        { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
  52        { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
  53        { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
  54        { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
  55        { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
  56        { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
  57        { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
  58        { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
  59        { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
  60        { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  61        { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  62#ifdef CONFIG_KVM_MIPS_VZ
  63        { "vz_gpsi",      VCPU_STAT(vz_gpsi_exits),      KVM_STAT_VCPU },
  64        { "vz_gsfc",      VCPU_STAT(vz_gsfc_exits),      KVM_STAT_VCPU },
  65        { "vz_hc",        VCPU_STAT(vz_hc_exits),        KVM_STAT_VCPU },
  66        { "vz_grr",       VCPU_STAT(vz_grr_exits),       KVM_STAT_VCPU },
  67        { "vz_gva",       VCPU_STAT(vz_gva_exits),       KVM_STAT_VCPU },
  68        { "vz_ghfc",      VCPU_STAT(vz_ghfc_exits),      KVM_STAT_VCPU },
  69        { "vz_gpa",       VCPU_STAT(vz_gpa_exits),       KVM_STAT_VCPU },
  70        { "vz_resvd",     VCPU_STAT(vz_resvd_exits),     KVM_STAT_VCPU },
  71#endif
  72        { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  73        { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  74        { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  75        { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
  76        {NULL}
  77};
  78
  79bool kvm_trace_guest_mode_change;
  80
  81int kvm_guest_mode_change_trace_reg(void)
  82{
  83        kvm_trace_guest_mode_change = 1;
  84        return 0;
  85}
  86
  87void kvm_guest_mode_change_trace_unreg(void)
  88{
  89        kvm_trace_guest_mode_change = 0;
  90}
  91
  92/*
  93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  94 * Config7, so we are "runnable" if interrupts are pending
  95 */
  96int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  97{
  98        return !!(vcpu->arch.pending_exceptions);
  99}
 100
 101bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 102{
 103        return false;
 104}
 105
 106int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 107{
 108        return 1;
 109}
 110
 111int kvm_arch_hardware_enable(void)
 112{
 113        return kvm_mips_callbacks->hardware_enable();
 114}
 115
 116void kvm_arch_hardware_disable(void)
 117{
 118        kvm_mips_callbacks->hardware_disable();
 119}
 120
 121int kvm_arch_hardware_setup(void)
 122{
 123        return 0;
 124}
 125
 126int kvm_arch_check_processor_compat(void)
 127{
 128        return 0;
 129}
 130
 131int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 132{
 133        switch (type) {
 134#ifdef CONFIG_KVM_MIPS_VZ
 135        case KVM_VM_MIPS_VZ:
 136#else
 137        case KVM_VM_MIPS_TE:
 138#endif
 139                break;
 140        default:
 141                /* Unsupported KVM type */
 142                return -EINVAL;
 143        };
 144
 145        /* Allocate page table to map GPA -> RPA */
 146        kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
 147        if (!kvm->arch.gpa_mm.pgd)
 148                return -ENOMEM;
 149
 150        return 0;
 151}
 152
 153void kvm_mips_free_vcpus(struct kvm *kvm)
 154{
 155        unsigned int i;
 156        struct kvm_vcpu *vcpu;
 157
 158        kvm_for_each_vcpu(i, vcpu, kvm) {
 159                kvm_arch_vcpu_free(vcpu);
 160        }
 161
 162        mutex_lock(&kvm->lock);
 163
 164        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 165                kvm->vcpus[i] = NULL;
 166
 167        atomic_set(&kvm->online_vcpus, 0);
 168
 169        mutex_unlock(&kvm->lock);
 170}
 171
 172static void kvm_mips_free_gpa_pt(struct kvm *kvm)
 173{
 174        /* It should always be safe to remove after flushing the whole range */
 175        WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
 176        pgd_free(NULL, kvm->arch.gpa_mm.pgd);
 177}
 178
 179void kvm_arch_destroy_vm(struct kvm *kvm)
 180{
 181        kvm_mips_free_vcpus(kvm);
 182        kvm_mips_free_gpa_pt(kvm);
 183}
 184
 185long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 186                        unsigned long arg)
 187{
 188        return -ENOIOCTLCMD;
 189}
 190
 191int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 192                            unsigned long npages)
 193{
 194        return 0;
 195}
 196
 197void kvm_arch_flush_shadow_all(struct kvm *kvm)
 198{
 199        /* Flush whole GPA */
 200        kvm_mips_flush_gpa_pt(kvm, 0, ~0);
 201
 202        /* Let implementation do the rest */
 203        kvm_mips_callbacks->flush_shadow_all(kvm);
 204}
 205
 206void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 207                                   struct kvm_memory_slot *slot)
 208{
 209        /*
 210         * The slot has been made invalid (ready for moving or deletion), so we
 211         * need to ensure that it can no longer be accessed by any guest VCPUs.
 212         */
 213
 214        spin_lock(&kvm->mmu_lock);
 215        /* Flush slot from GPA */
 216        kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
 217                              slot->base_gfn + slot->npages - 1);
 218        /* Let implementation do the rest */
 219        kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
 220        spin_unlock(&kvm->mmu_lock);
 221}
 222
 223int kvm_arch_prepare_memory_region(struct kvm *kvm,
 224                                   struct kvm_memory_slot *memslot,
 225                                   const struct kvm_userspace_memory_region *mem,
 226                                   enum kvm_mr_change change)
 227{
 228        return 0;
 229}
 230
 231void kvm_arch_commit_memory_region(struct kvm *kvm,
 232                                   const struct kvm_userspace_memory_region *mem,
 233                                   const struct kvm_memory_slot *old,
 234                                   const struct kvm_memory_slot *new,
 235                                   enum kvm_mr_change change)
 236{
 237        int needs_flush;
 238
 239        kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
 240                  __func__, kvm, mem->slot, mem->guest_phys_addr,
 241                  mem->memory_size, mem->userspace_addr);
 242
 243        /*
 244         * If dirty page logging is enabled, write protect all pages in the slot
 245         * ready for dirty logging.
 246         *
 247         * There is no need to do this in any of the following cases:
 248         * CREATE:      No dirty mappings will already exist.
 249         * MOVE/DELETE: The old mappings will already have been cleaned up by
 250         *              kvm_arch_flush_shadow_memslot()
 251         */
 252        if (change == KVM_MR_FLAGS_ONLY &&
 253            (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
 254             new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
 255                spin_lock(&kvm->mmu_lock);
 256                /* Write protect GPA page table entries */
 257                needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
 258                                        new->base_gfn + new->npages - 1);
 259                /* Let implementation do the rest */
 260                if (needs_flush)
 261                        kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
 262                spin_unlock(&kvm->mmu_lock);
 263        }
 264}
 265
 266static inline void dump_handler(const char *symbol, void *start, void *end)
 267{
 268        u32 *p;
 269
 270        pr_debug("LEAF(%s)\n", symbol);
 271
 272        pr_debug("\t.set push\n");
 273        pr_debug("\t.set noreorder\n");
 274
 275        for (p = start; p < (u32 *)end; ++p)
 276                pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 277
 278        pr_debug("\t.set\tpop\n");
 279
 280        pr_debug("\tEND(%s)\n", symbol);
 281}
 282
 283struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 284{
 285        int err, size;
 286        void *gebase, *p, *handler, *refill_start, *refill_end;
 287        int i;
 288
 289        struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 290
 291        if (!vcpu) {
 292                err = -ENOMEM;
 293                goto out;
 294        }
 295
 296        err = kvm_vcpu_init(vcpu, kvm, id);
 297
 298        if (err)
 299                goto out_free_cpu;
 300
 301        kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
 302
 303        /*
 304         * Allocate space for host mode exception handlers that handle
 305         * guest mode exits
 306         */
 307        if (cpu_has_veic || cpu_has_vint)
 308                size = 0x200 + VECTORSPACING * 64;
 309        else
 310                size = 0x4000;
 311
 312        gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 313
 314        if (!gebase) {
 315                err = -ENOMEM;
 316                goto out_uninit_cpu;
 317        }
 318        kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 319                  ALIGN(size, PAGE_SIZE), gebase);
 320
 321        /*
 322         * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 323         * limits us to the low 512MB of physical address space. If the memory
 324         * we allocate is out of range, just give up now.
 325         */
 326        if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 327                kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 328                        gebase);
 329                err = -ENOMEM;
 330                goto out_free_gebase;
 331        }
 332
 333        /* Save new ebase */
 334        vcpu->arch.guest_ebase = gebase;
 335
 336        /* Build guest exception vectors dynamically in unmapped memory */
 337        handler = gebase + 0x2000;
 338
 339        /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
 340        refill_start = gebase;
 341        if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
 342                refill_start += 0x080;
 343        refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
 344
 345        /* General Exception Entry point */
 346        kvm_mips_build_exception(gebase + 0x180, handler);
 347
 348        /* For vectored interrupts poke the exception code @ all offsets 0-7 */
 349        for (i = 0; i < 8; i++) {
 350                kvm_debug("L1 Vectored handler @ %p\n",
 351                          gebase + 0x200 + (i * VECTORSPACING));
 352                kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 353                                         handler);
 354        }
 355
 356        /* General exit handler */
 357        p = handler;
 358        p = kvm_mips_build_exit(p);
 359
 360        /* Guest entry routine */
 361        vcpu->arch.vcpu_run = p;
 362        p = kvm_mips_build_vcpu_run(p);
 363
 364        /* Dump the generated code */
 365        pr_debug("#include <asm/asm.h>\n");
 366        pr_debug("#include <asm/regdef.h>\n");
 367        pr_debug("\n");
 368        dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 369        dump_handler("kvm_tlb_refill", refill_start, refill_end);
 370        dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 371        dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 372
 373        /* Invalidate the icache for these ranges */
 374        flush_icache_range((unsigned long)gebase,
 375                           (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 376
 377        /*
 378         * Allocate comm page for guest kernel, a TLB will be reserved for
 379         * mapping GVA @ 0xFFFF8000 to this page
 380         */
 381        vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
 382
 383        if (!vcpu->arch.kseg0_commpage) {
 384                err = -ENOMEM;
 385                goto out_free_gebase;
 386        }
 387
 388        kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
 389        kvm_mips_commpage_init(vcpu);
 390
 391        /* Init */
 392        vcpu->arch.last_sched_cpu = -1;
 393        vcpu->arch.last_exec_cpu = -1;
 394
 395        return vcpu;
 396
 397out_free_gebase:
 398        kfree(gebase);
 399
 400out_uninit_cpu:
 401        kvm_vcpu_uninit(vcpu);
 402
 403out_free_cpu:
 404        kfree(vcpu);
 405
 406out:
 407        return ERR_PTR(err);
 408}
 409
 410void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 411{
 412        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 413
 414        kvm_vcpu_uninit(vcpu);
 415
 416        kvm_mips_dump_stats(vcpu);
 417
 418        kvm_mmu_free_memory_caches(vcpu);
 419        kfree(vcpu->arch.guest_ebase);
 420        kfree(vcpu->arch.kseg0_commpage);
 421        kfree(vcpu);
 422}
 423
 424void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 425{
 426        kvm_arch_vcpu_free(vcpu);
 427}
 428
 429int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 430                                        struct kvm_guest_debug *dbg)
 431{
 432        return -ENOIOCTLCMD;
 433}
 434
 435int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 436{
 437        int r = -EINTR;
 438
 439        vcpu_load(vcpu);
 440
 441        kvm_sigset_activate(vcpu);
 442
 443        if (vcpu->mmio_needed) {
 444                if (!vcpu->mmio_is_write)
 445                        kvm_mips_complete_mmio_load(vcpu, run);
 446                vcpu->mmio_needed = 0;
 447        }
 448
 449        if (run->immediate_exit)
 450                goto out;
 451
 452        lose_fpu(1);
 453
 454        local_irq_disable();
 455        guest_enter_irqoff();
 456        trace_kvm_enter(vcpu);
 457
 458        /*
 459         * Make sure the read of VCPU requests in vcpu_run() callback is not
 460         * reordered ahead of the write to vcpu->mode, or we could miss a TLB
 461         * flush request while the requester sees the VCPU as outside of guest
 462         * mode and not needing an IPI.
 463         */
 464        smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 465
 466        r = kvm_mips_callbacks->vcpu_run(run, vcpu);
 467
 468        trace_kvm_out(vcpu);
 469        guest_exit_irqoff();
 470        local_irq_enable();
 471
 472out:
 473        kvm_sigset_deactivate(vcpu);
 474
 475        vcpu_put(vcpu);
 476        return r;
 477}
 478
 479int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 480                             struct kvm_mips_interrupt *irq)
 481{
 482        int intr = (int)irq->irq;
 483        struct kvm_vcpu *dvcpu = NULL;
 484
 485        if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
 486                kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 487                          (int)intr);
 488
 489        if (irq->cpu == -1)
 490                dvcpu = vcpu;
 491        else
 492                dvcpu = vcpu->kvm->vcpus[irq->cpu];
 493
 494        if (intr == 2 || intr == 3 || intr == 4) {
 495                kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 496
 497        } else if (intr == -2 || intr == -3 || intr == -4) {
 498                kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 499        } else {
 500                kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 501                        irq->cpu, irq->irq);
 502                return -EINVAL;
 503        }
 504
 505        dvcpu->arch.wait = 0;
 506
 507        if (swq_has_sleeper(&dvcpu->wq))
 508                swake_up_one(&dvcpu->wq);
 509
 510        return 0;
 511}
 512
 513int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 514                                    struct kvm_mp_state *mp_state)
 515{
 516        return -ENOIOCTLCMD;
 517}
 518
 519int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 520                                    struct kvm_mp_state *mp_state)
 521{
 522        return -ENOIOCTLCMD;
 523}
 524
 525static u64 kvm_mips_get_one_regs[] = {
 526        KVM_REG_MIPS_R0,
 527        KVM_REG_MIPS_R1,
 528        KVM_REG_MIPS_R2,
 529        KVM_REG_MIPS_R3,
 530        KVM_REG_MIPS_R4,
 531        KVM_REG_MIPS_R5,
 532        KVM_REG_MIPS_R6,
 533        KVM_REG_MIPS_R7,
 534        KVM_REG_MIPS_R8,
 535        KVM_REG_MIPS_R9,
 536        KVM_REG_MIPS_R10,
 537        KVM_REG_MIPS_R11,
 538        KVM_REG_MIPS_R12,
 539        KVM_REG_MIPS_R13,
 540        KVM_REG_MIPS_R14,
 541        KVM_REG_MIPS_R15,
 542        KVM_REG_MIPS_R16,
 543        KVM_REG_MIPS_R17,
 544        KVM_REG_MIPS_R18,
 545        KVM_REG_MIPS_R19,
 546        KVM_REG_MIPS_R20,
 547        KVM_REG_MIPS_R21,
 548        KVM_REG_MIPS_R22,
 549        KVM_REG_MIPS_R23,
 550        KVM_REG_MIPS_R24,
 551        KVM_REG_MIPS_R25,
 552        KVM_REG_MIPS_R26,
 553        KVM_REG_MIPS_R27,
 554        KVM_REG_MIPS_R28,
 555        KVM_REG_MIPS_R29,
 556        KVM_REG_MIPS_R30,
 557        KVM_REG_MIPS_R31,
 558
 559#ifndef CONFIG_CPU_MIPSR6
 560        KVM_REG_MIPS_HI,
 561        KVM_REG_MIPS_LO,
 562#endif
 563        KVM_REG_MIPS_PC,
 564};
 565
 566static u64 kvm_mips_get_one_regs_fpu[] = {
 567        KVM_REG_MIPS_FCR_IR,
 568        KVM_REG_MIPS_FCR_CSR,
 569};
 570
 571static u64 kvm_mips_get_one_regs_msa[] = {
 572        KVM_REG_MIPS_MSA_IR,
 573        KVM_REG_MIPS_MSA_CSR,
 574};
 575
 576static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 577{
 578        unsigned long ret;
 579
 580        ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 581        if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 582                ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 583                /* odd doubles */
 584                if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 585                        ret += 16;
 586        }
 587        if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 588                ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 589        ret += kvm_mips_callbacks->num_regs(vcpu);
 590
 591        return ret;
 592}
 593
 594static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 595{
 596        u64 index;
 597        unsigned int i;
 598
 599        if (copy_to_user(indices, kvm_mips_get_one_regs,
 600                         sizeof(kvm_mips_get_one_regs)))
 601                return -EFAULT;
 602        indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 603
 604        if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 605                if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 606                                 sizeof(kvm_mips_get_one_regs_fpu)))
 607                        return -EFAULT;
 608                indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 609
 610                for (i = 0; i < 32; ++i) {
 611                        index = KVM_REG_MIPS_FPR_32(i);
 612                        if (copy_to_user(indices, &index, sizeof(index)))
 613                                return -EFAULT;
 614                        ++indices;
 615
 616                        /* skip odd doubles if no F64 */
 617                        if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 618                                continue;
 619
 620                        index = KVM_REG_MIPS_FPR_64(i);
 621                        if (copy_to_user(indices, &index, sizeof(index)))
 622                                return -EFAULT;
 623                        ++indices;
 624                }
 625        }
 626
 627        if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 628                if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 629                                 sizeof(kvm_mips_get_one_regs_msa)))
 630                        return -EFAULT;
 631                indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 632
 633                for (i = 0; i < 32; ++i) {
 634                        index = KVM_REG_MIPS_VEC_128(i);
 635                        if (copy_to_user(indices, &index, sizeof(index)))
 636                                return -EFAULT;
 637                        ++indices;
 638                }
 639        }
 640
 641        return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 642}
 643
 644static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 645                            const struct kvm_one_reg *reg)
 646{
 647        struct mips_coproc *cop0 = vcpu->arch.cop0;
 648        struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 649        int ret;
 650        s64 v;
 651        s64 vs[2];
 652        unsigned int idx;
 653
 654        switch (reg->id) {
 655        /* General purpose registers */
 656        case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 657                v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 658                break;
 659#ifndef CONFIG_CPU_MIPSR6
 660        case KVM_REG_MIPS_HI:
 661                v = (long)vcpu->arch.hi;
 662                break;
 663        case KVM_REG_MIPS_LO:
 664                v = (long)vcpu->arch.lo;
 665                break;
 666#endif
 667        case KVM_REG_MIPS_PC:
 668                v = (long)vcpu->arch.pc;
 669                break;
 670
 671        /* Floating point registers */
 672        case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 673                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 674                        return -EINVAL;
 675                idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 676                /* Odd singles in top of even double when FR=0 */
 677                if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 678                        v = get_fpr32(&fpu->fpr[idx], 0);
 679                else
 680                        v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 681                break;
 682        case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 683                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 684                        return -EINVAL;
 685                idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 686                /* Can't access odd doubles in FR=0 mode */
 687                if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 688                        return -EINVAL;
 689                v = get_fpr64(&fpu->fpr[idx], 0);
 690                break;
 691        case KVM_REG_MIPS_FCR_IR:
 692                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 693                        return -EINVAL;
 694                v = boot_cpu_data.fpu_id;
 695                break;
 696        case KVM_REG_MIPS_FCR_CSR:
 697                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 698                        return -EINVAL;
 699                v = fpu->fcr31;
 700                break;
 701
 702        /* MIPS SIMD Architecture (MSA) registers */
 703        case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 704                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 705                        return -EINVAL;
 706                /* Can't access MSA registers in FR=0 mode */
 707                if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 708                        return -EINVAL;
 709                idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 710#ifdef CONFIG_CPU_LITTLE_ENDIAN
 711                /* least significant byte first */
 712                vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 713                vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 714#else
 715                /* most significant byte first */
 716                vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 717                vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 718#endif
 719                break;
 720        case KVM_REG_MIPS_MSA_IR:
 721                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 722                        return -EINVAL;
 723                v = boot_cpu_data.msa_id;
 724                break;
 725        case KVM_REG_MIPS_MSA_CSR:
 726                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 727                        return -EINVAL;
 728                v = fpu->msacsr;
 729                break;
 730
 731        /* registers to be handled specially */
 732        default:
 733                ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 734                if (ret)
 735                        return ret;
 736                break;
 737        }
 738        if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 739                u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 740
 741                return put_user(v, uaddr64);
 742        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 743                u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 744                u32 v32 = (u32)v;
 745
 746                return put_user(v32, uaddr32);
 747        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 748                void __user *uaddr = (void __user *)(long)reg->addr;
 749
 750                return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 751        } else {
 752                return -EINVAL;
 753        }
 754}
 755
 756static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 757                            const struct kvm_one_reg *reg)
 758{
 759        struct mips_coproc *cop0 = vcpu->arch.cop0;
 760        struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 761        s64 v;
 762        s64 vs[2];
 763        unsigned int idx;
 764
 765        if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 766                u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 767
 768                if (get_user(v, uaddr64) != 0)
 769                        return -EFAULT;
 770        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 771                u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 772                s32 v32;
 773
 774                if (get_user(v32, uaddr32) != 0)
 775                        return -EFAULT;
 776                v = (s64)v32;
 777        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 778                void __user *uaddr = (void __user *)(long)reg->addr;
 779
 780                return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 781        } else {
 782                return -EINVAL;
 783        }
 784
 785        switch (reg->id) {
 786        /* General purpose registers */
 787        case KVM_REG_MIPS_R0:
 788                /* Silently ignore requests to set $0 */
 789                break;
 790        case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 791                vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 792                break;
 793#ifndef CONFIG_CPU_MIPSR6
 794        case KVM_REG_MIPS_HI:
 795                vcpu->arch.hi = v;
 796                break;
 797        case KVM_REG_MIPS_LO:
 798                vcpu->arch.lo = v;
 799                break;
 800#endif
 801        case KVM_REG_MIPS_PC:
 802                vcpu->arch.pc = v;
 803                break;
 804
 805        /* Floating point registers */
 806        case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 807                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 808                        return -EINVAL;
 809                idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 810                /* Odd singles in top of even double when FR=0 */
 811                if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 812                        set_fpr32(&fpu->fpr[idx], 0, v);
 813                else
 814                        set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 815                break;
 816        case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 817                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 818                        return -EINVAL;
 819                idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 820                /* Can't access odd doubles in FR=0 mode */
 821                if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 822                        return -EINVAL;
 823                set_fpr64(&fpu->fpr[idx], 0, v);
 824                break;
 825        case KVM_REG_MIPS_FCR_IR:
 826                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 827                        return -EINVAL;
 828                /* Read-only */
 829                break;
 830        case KVM_REG_MIPS_FCR_CSR:
 831                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 832                        return -EINVAL;
 833                fpu->fcr31 = v;
 834                break;
 835
 836        /* MIPS SIMD Architecture (MSA) registers */
 837        case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 838                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 839                        return -EINVAL;
 840                idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 841#ifdef CONFIG_CPU_LITTLE_ENDIAN
 842                /* least significant byte first */
 843                set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 844                set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 845#else
 846                /* most significant byte first */
 847                set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 848                set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 849#endif
 850                break;
 851        case KVM_REG_MIPS_MSA_IR:
 852                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 853                        return -EINVAL;
 854                /* Read-only */
 855                break;
 856        case KVM_REG_MIPS_MSA_CSR:
 857                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 858                        return -EINVAL;
 859                fpu->msacsr = v;
 860                break;
 861
 862        /* registers to be handled specially */
 863        default:
 864                return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 865        }
 866        return 0;
 867}
 868
 869static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 870                                     struct kvm_enable_cap *cap)
 871{
 872        int r = 0;
 873
 874        if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 875                return -EINVAL;
 876        if (cap->flags)
 877                return -EINVAL;
 878        if (cap->args[0])
 879                return -EINVAL;
 880
 881        switch (cap->cap) {
 882        case KVM_CAP_MIPS_FPU:
 883                vcpu->arch.fpu_enabled = true;
 884                break;
 885        case KVM_CAP_MIPS_MSA:
 886                vcpu->arch.msa_enabled = true;
 887                break;
 888        default:
 889                r = -EINVAL;
 890                break;
 891        }
 892
 893        return r;
 894}
 895
 896long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
 897                               unsigned long arg)
 898{
 899        struct kvm_vcpu *vcpu = filp->private_data;
 900        void __user *argp = (void __user *)arg;
 901
 902        if (ioctl == KVM_INTERRUPT) {
 903                struct kvm_mips_interrupt irq;
 904
 905                if (copy_from_user(&irq, argp, sizeof(irq)))
 906                        return -EFAULT;
 907                kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 908                          irq.irq);
 909
 910                return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 911        }
 912
 913        return -ENOIOCTLCMD;
 914}
 915
 916long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 917                         unsigned long arg)
 918{
 919        struct kvm_vcpu *vcpu = filp->private_data;
 920        void __user *argp = (void __user *)arg;
 921        long r;
 922
 923        vcpu_load(vcpu);
 924
 925        switch (ioctl) {
 926        case KVM_SET_ONE_REG:
 927        case KVM_GET_ONE_REG: {
 928                struct kvm_one_reg reg;
 929
 930                r = -EFAULT;
 931                if (copy_from_user(&reg, argp, sizeof(reg)))
 932                        break;
 933                if (ioctl == KVM_SET_ONE_REG)
 934                        r = kvm_mips_set_reg(vcpu, &reg);
 935                else
 936                        r = kvm_mips_get_reg(vcpu, &reg);
 937                break;
 938        }
 939        case KVM_GET_REG_LIST: {
 940                struct kvm_reg_list __user *user_list = argp;
 941                struct kvm_reg_list reg_list;
 942                unsigned n;
 943
 944                r = -EFAULT;
 945                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 946                        break;
 947                n = reg_list.n;
 948                reg_list.n = kvm_mips_num_regs(vcpu);
 949                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 950                        break;
 951                r = -E2BIG;
 952                if (n < reg_list.n)
 953                        break;
 954                r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
 955                break;
 956        }
 957        case KVM_ENABLE_CAP: {
 958                struct kvm_enable_cap cap;
 959
 960                r = -EFAULT;
 961                if (copy_from_user(&cap, argp, sizeof(cap)))
 962                        break;
 963                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 964                break;
 965        }
 966        default:
 967                r = -ENOIOCTLCMD;
 968        }
 969
 970        vcpu_put(vcpu);
 971        return r;
 972}
 973
 974/**
 975 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 976 * @kvm: kvm instance
 977 * @log: slot id and address to which we copy the log
 978 *
 979 * Steps 1-4 below provide general overview of dirty page logging. See
 980 * kvm_get_dirty_log_protect() function description for additional details.
 981 *
 982 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 983 * always flush the TLB (step 4) even if previous step failed  and the dirty
 984 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 985 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 986 * writes will be marked dirty for next log read.
 987 *
 988 *   1. Take a snapshot of the bit and clear it if needed.
 989 *   2. Write protect the corresponding page.
 990 *   3. Copy the snapshot to the userspace.
 991 *   4. Flush TLB's if needed.
 992 */
 993int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 994{
 995        struct kvm_memslots *slots;
 996        struct kvm_memory_slot *memslot;
 997        bool flush = false;
 998        int r;
 999
1000        mutex_lock(&kvm->slots_lock);
1001
1002        r = kvm_get_dirty_log_protect(kvm, log, &flush);
1003
1004        if (flush) {
1005                slots = kvm_memslots(kvm);
1006                memslot = id_to_memslot(slots, log->slot);
1007
1008                /* Let implementation handle TLB/GVA invalidation */
1009                kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1010        }
1011
1012        mutex_unlock(&kvm->slots_lock);
1013        return r;
1014}
1015
1016int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1017{
1018        struct kvm_memslots *slots;
1019        struct kvm_memory_slot *memslot;
1020        bool flush = false;
1021        int r;
1022
1023        mutex_lock(&kvm->slots_lock);
1024
1025        r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1026
1027        if (flush) {
1028                slots = kvm_memslots(kvm);
1029                memslot = id_to_memslot(slots, log->slot);
1030
1031                /* Let implementation handle TLB/GVA invalidation */
1032                kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1033        }
1034
1035        mutex_unlock(&kvm->slots_lock);
1036        return r;
1037}
1038
1039long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1040{
1041        long r;
1042
1043        switch (ioctl) {
1044        default:
1045                r = -ENOIOCTLCMD;
1046        }
1047
1048        return r;
1049}
1050
1051int kvm_arch_init(void *opaque)
1052{
1053        if (kvm_mips_callbacks) {
1054                kvm_err("kvm: module already exists\n");
1055                return -EEXIST;
1056        }
1057
1058        return kvm_mips_emulation_init(&kvm_mips_callbacks);
1059}
1060
1061void kvm_arch_exit(void)
1062{
1063        kvm_mips_callbacks = NULL;
1064}
1065
1066int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1067                                  struct kvm_sregs *sregs)
1068{
1069        return -ENOIOCTLCMD;
1070}
1071
1072int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1073                                  struct kvm_sregs *sregs)
1074{
1075        return -ENOIOCTLCMD;
1076}
1077
1078void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1079{
1080}
1081
1082int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1083{
1084        return -ENOIOCTLCMD;
1085}
1086
1087int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1088{
1089        return -ENOIOCTLCMD;
1090}
1091
1092vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1093{
1094        return VM_FAULT_SIGBUS;
1095}
1096
1097int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1098{
1099        int r;
1100
1101        switch (ext) {
1102        case KVM_CAP_ONE_REG:
1103        case KVM_CAP_ENABLE_CAP:
1104        case KVM_CAP_READONLY_MEM:
1105        case KVM_CAP_SYNC_MMU:
1106        case KVM_CAP_IMMEDIATE_EXIT:
1107                r = 1;
1108                break;
1109        case KVM_CAP_NR_VCPUS:
1110                r = num_online_cpus();
1111                break;
1112        case KVM_CAP_MAX_VCPUS:
1113                r = KVM_MAX_VCPUS;
1114                break;
1115        case KVM_CAP_MAX_VCPU_ID:
1116                r = KVM_MAX_VCPU_ID;
1117                break;
1118        case KVM_CAP_MIPS_FPU:
1119                /* We don't handle systems with inconsistent cpu_has_fpu */
1120                r = !!raw_cpu_has_fpu;
1121                break;
1122        case KVM_CAP_MIPS_MSA:
1123                /*
1124                 * We don't support MSA vector partitioning yet:
1125                 * 1) It would require explicit support which can't be tested
1126                 *    yet due to lack of support in current hardware.
1127                 * 2) It extends the state that would need to be saved/restored
1128                 *    by e.g. QEMU for migration.
1129                 *
1130                 * When vector partitioning hardware becomes available, support
1131                 * could be added by requiring a flag when enabling
1132                 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1133                 * to save/restore the appropriate extra state.
1134                 */
1135                r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1136                break;
1137        default:
1138                r = kvm_mips_callbacks->check_extension(kvm, ext);
1139                break;
1140        }
1141        return r;
1142}
1143
1144int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1145{
1146        return kvm_mips_pending_timer(vcpu) ||
1147                kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1148}
1149
1150int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1151{
1152        int i;
1153        struct mips_coproc *cop0;
1154
1155        if (!vcpu)
1156                return -1;
1157
1158        kvm_debug("VCPU Register Dump:\n");
1159        kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1160        kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1161
1162        for (i = 0; i < 32; i += 4) {
1163                kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1164                       vcpu->arch.gprs[i],
1165                       vcpu->arch.gprs[i + 1],
1166                       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1167        }
1168        kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1169        kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1170
1171        cop0 = vcpu->arch.cop0;
1172        kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1173                  kvm_read_c0_guest_status(cop0),
1174                  kvm_read_c0_guest_cause(cop0));
1175
1176        kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1177
1178        return 0;
1179}
1180
1181int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1182{
1183        int i;
1184
1185        vcpu_load(vcpu);
1186
1187        for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1188                vcpu->arch.gprs[i] = regs->gpr[i];
1189        vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1190        vcpu->arch.hi = regs->hi;
1191        vcpu->arch.lo = regs->lo;
1192        vcpu->arch.pc = regs->pc;
1193
1194        vcpu_put(vcpu);
1195        return 0;
1196}
1197
1198int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1199{
1200        int i;
1201
1202        vcpu_load(vcpu);
1203
1204        for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1205                regs->gpr[i] = vcpu->arch.gprs[i];
1206
1207        regs->hi = vcpu->arch.hi;
1208        regs->lo = vcpu->arch.lo;
1209        regs->pc = vcpu->arch.pc;
1210
1211        vcpu_put(vcpu);
1212        return 0;
1213}
1214
1215static void kvm_mips_comparecount_func(unsigned long data)
1216{
1217        struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1218
1219        kvm_mips_callbacks->queue_timer_int(vcpu);
1220
1221        vcpu->arch.wait = 0;
1222        if (swq_has_sleeper(&vcpu->wq))
1223                swake_up_one(&vcpu->wq);
1224}
1225
1226/* low level hrtimer wake routine */
1227static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1228{
1229        struct kvm_vcpu *vcpu;
1230
1231        vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1232        kvm_mips_comparecount_func((unsigned long) vcpu);
1233        return kvm_mips_count_timeout(vcpu);
1234}
1235
1236int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1237{
1238        int err;
1239
1240        err = kvm_mips_callbacks->vcpu_init(vcpu);
1241        if (err)
1242                return err;
1243
1244        hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1245                     HRTIMER_MODE_REL);
1246        vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1247        return 0;
1248}
1249
1250void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1251{
1252        kvm_mips_callbacks->vcpu_uninit(vcpu);
1253}
1254
1255int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1256                                  struct kvm_translation *tr)
1257{
1258        return 0;
1259}
1260
1261/* Initial guest state */
1262int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1263{
1264        return kvm_mips_callbacks->vcpu_setup(vcpu);
1265}
1266
1267static void kvm_mips_set_c0_status(void)
1268{
1269        u32 status = read_c0_status();
1270
1271        if (cpu_has_dsp)
1272                status |= (ST0_MX);
1273
1274        write_c0_status(status);
1275        ehb();
1276}
1277
1278/*
1279 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1280 */
1281int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1282{
1283        u32 cause = vcpu->arch.host_cp0_cause;
1284        u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1285        u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1286        unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1287        enum emulation_result er = EMULATE_DONE;
1288        u32 inst;
1289        int ret = RESUME_GUEST;
1290
1291        vcpu->mode = OUTSIDE_GUEST_MODE;
1292
1293        /* re-enable HTW before enabling interrupts */
1294        if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1295                htw_start();
1296
1297        /* Set a default exit reason */
1298        run->exit_reason = KVM_EXIT_UNKNOWN;
1299        run->ready_for_interrupt_injection = 1;
1300
1301        /*
1302         * Set the appropriate status bits based on host CPU features,
1303         * before we hit the scheduler
1304         */
1305        kvm_mips_set_c0_status();
1306
1307        local_irq_enable();
1308
1309        kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1310                        cause, opc, run, vcpu);
1311        trace_kvm_exit(vcpu, exccode);
1312
1313        if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1314                /*
1315                 * Do a privilege check, if in UM most of these exit conditions
1316                 * end up causing an exception to be delivered to the Guest
1317                 * Kernel
1318                 */
1319                er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1320                if (er == EMULATE_PRIV_FAIL) {
1321                        goto skip_emul;
1322                } else if (er == EMULATE_FAIL) {
1323                        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1324                        ret = RESUME_HOST;
1325                        goto skip_emul;
1326                }
1327        }
1328
1329        switch (exccode) {
1330        case EXCCODE_INT:
1331                kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1332
1333                ++vcpu->stat.int_exits;
1334
1335                if (need_resched())
1336                        cond_resched();
1337
1338                ret = RESUME_GUEST;
1339                break;
1340
1341        case EXCCODE_CPU:
1342                kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1343
1344                ++vcpu->stat.cop_unusable_exits;
1345                ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1346                /* XXXKYMA: Might need to return to user space */
1347                if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1348                        ret = RESUME_HOST;
1349                break;
1350
1351        case EXCCODE_MOD:
1352                ++vcpu->stat.tlbmod_exits;
1353                ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1354                break;
1355
1356        case EXCCODE_TLBS:
1357                kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1358                          cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1359                          badvaddr);
1360
1361                ++vcpu->stat.tlbmiss_st_exits;
1362                ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1363                break;
1364
1365        case EXCCODE_TLBL:
1366                kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1367                          cause, opc, badvaddr);
1368
1369                ++vcpu->stat.tlbmiss_ld_exits;
1370                ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1371                break;
1372
1373        case EXCCODE_ADES:
1374                ++vcpu->stat.addrerr_st_exits;
1375                ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1376                break;
1377
1378        case EXCCODE_ADEL:
1379                ++vcpu->stat.addrerr_ld_exits;
1380                ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1381                break;
1382
1383        case EXCCODE_SYS:
1384                ++vcpu->stat.syscall_exits;
1385                ret = kvm_mips_callbacks->handle_syscall(vcpu);
1386                break;
1387
1388        case EXCCODE_RI:
1389                ++vcpu->stat.resvd_inst_exits;
1390                ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1391                break;
1392
1393        case EXCCODE_BP:
1394                ++vcpu->stat.break_inst_exits;
1395                ret = kvm_mips_callbacks->handle_break(vcpu);
1396                break;
1397
1398        case EXCCODE_TR:
1399                ++vcpu->stat.trap_inst_exits;
1400                ret = kvm_mips_callbacks->handle_trap(vcpu);
1401                break;
1402
1403        case EXCCODE_MSAFPE:
1404                ++vcpu->stat.msa_fpe_exits;
1405                ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1406                break;
1407
1408        case EXCCODE_FPE:
1409                ++vcpu->stat.fpe_exits;
1410                ret = kvm_mips_callbacks->handle_fpe(vcpu);
1411                break;
1412
1413        case EXCCODE_MSADIS:
1414                ++vcpu->stat.msa_disabled_exits;
1415                ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1416                break;
1417
1418        case EXCCODE_GE:
1419                /* defer exit accounting to handler */
1420                ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1421                break;
1422
1423        default:
1424                if (cause & CAUSEF_BD)
1425                        opc += 1;
1426                inst = 0;
1427                kvm_get_badinstr(opc, vcpu, &inst);
1428                kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1429                        exccode, opc, inst, badvaddr,
1430                        kvm_read_c0_guest_status(vcpu->arch.cop0));
1431                kvm_arch_vcpu_dump_regs(vcpu);
1432                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1433                ret = RESUME_HOST;
1434                break;
1435
1436        }
1437
1438skip_emul:
1439        local_irq_disable();
1440
1441        if (ret == RESUME_GUEST)
1442                kvm_vz_acquire_htimer(vcpu);
1443
1444        if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1445                kvm_mips_deliver_interrupts(vcpu, cause);
1446
1447        if (!(ret & RESUME_HOST)) {
1448                /* Only check for signals if not already exiting to userspace */
1449                if (signal_pending(current)) {
1450                        run->exit_reason = KVM_EXIT_INTR;
1451                        ret = (-EINTR << 2) | RESUME_HOST;
1452                        ++vcpu->stat.signal_exits;
1453                        trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1454                }
1455        }
1456
1457        if (ret == RESUME_GUEST) {
1458                trace_kvm_reenter(vcpu);
1459
1460                /*
1461                 * Make sure the read of VCPU requests in vcpu_reenter()
1462                 * callback is not reordered ahead of the write to vcpu->mode,
1463                 * or we could miss a TLB flush request while the requester sees
1464                 * the VCPU as outside of guest mode and not needing an IPI.
1465                 */
1466                smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1467
1468                kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1469
1470                /*
1471                 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1472                 * is live), restore FCR31 / MSACSR.
1473                 *
1474                 * This should be before returning to the guest exception
1475                 * vector, as it may well cause an [MSA] FP exception if there
1476                 * are pending exception bits unmasked. (see
1477                 * kvm_mips_csr_die_notifier() for how that is handled).
1478                 */
1479                if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1480                    read_c0_status() & ST0_CU1)
1481                        __kvm_restore_fcsr(&vcpu->arch);
1482
1483                if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1484                    read_c0_config5() & MIPS_CONF5_MSAEN)
1485                        __kvm_restore_msacsr(&vcpu->arch);
1486        }
1487
1488        /* Disable HTW before returning to guest or host */
1489        if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1490                htw_stop();
1491
1492        return ret;
1493}
1494
1495/* Enable FPU for guest and restore context */
1496void kvm_own_fpu(struct kvm_vcpu *vcpu)
1497{
1498        struct mips_coproc *cop0 = vcpu->arch.cop0;
1499        unsigned int sr, cfg5;
1500
1501        preempt_disable();
1502
1503        sr = kvm_read_c0_guest_status(cop0);
1504
1505        /*
1506         * If MSA state is already live, it is undefined how it interacts with
1507         * FR=0 FPU state, and we don't want to hit reserved instruction
1508         * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1509         * play it safe and save it first.
1510         *
1511         * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1512         * get called when guest CU1 is set, however we can't trust the guest
1513         * not to clobber the status register directly via the commpage.
1514         */
1515        if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1516            vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1517                kvm_lose_fpu(vcpu);
1518
1519        /*
1520         * Enable FPU for guest
1521         * We set FR and FRE according to guest context
1522         */
1523        change_c0_status(ST0_CU1 | ST0_FR, sr);
1524        if (cpu_has_fre) {
1525                cfg5 = kvm_read_c0_guest_config5(cop0);
1526                change_c0_config5(MIPS_CONF5_FRE, cfg5);
1527        }
1528        enable_fpu_hazard();
1529
1530        /* If guest FPU state not active, restore it now */
1531        if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1532                __kvm_restore_fpu(&vcpu->arch);
1533                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1534                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1535        } else {
1536                trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1537        }
1538
1539        preempt_enable();
1540}
1541
1542#ifdef CONFIG_CPU_HAS_MSA
1543/* Enable MSA for guest and restore context */
1544void kvm_own_msa(struct kvm_vcpu *vcpu)
1545{
1546        struct mips_coproc *cop0 = vcpu->arch.cop0;
1547        unsigned int sr, cfg5;
1548
1549        preempt_disable();
1550
1551        /*
1552         * Enable FPU if enabled in guest, since we're restoring FPU context
1553         * anyway. We set FR and FRE according to guest context.
1554         */
1555        if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1556                sr = kvm_read_c0_guest_status(cop0);
1557
1558                /*
1559                 * If FR=0 FPU state is already live, it is undefined how it
1560                 * interacts with MSA state, so play it safe and save it first.
1561                 */
1562                if (!(sr & ST0_FR) &&
1563                    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1564                                KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1565                        kvm_lose_fpu(vcpu);
1566
1567                change_c0_status(ST0_CU1 | ST0_FR, sr);
1568                if (sr & ST0_CU1 && cpu_has_fre) {
1569                        cfg5 = kvm_read_c0_guest_config5(cop0);
1570                        change_c0_config5(MIPS_CONF5_FRE, cfg5);
1571                }
1572        }
1573
1574        /* Enable MSA for guest */
1575        set_c0_config5(MIPS_CONF5_MSAEN);
1576        enable_fpu_hazard();
1577
1578        switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1579        case KVM_MIPS_AUX_FPU:
1580                /*
1581                 * Guest FPU state already loaded, only restore upper MSA state
1582                 */
1583                __kvm_restore_msa_upper(&vcpu->arch);
1584                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1585                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1586                break;
1587        case 0:
1588                /* Neither FPU or MSA already active, restore full MSA state */
1589                __kvm_restore_msa(&vcpu->arch);
1590                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1591                if (kvm_mips_guest_has_fpu(&vcpu->arch))
1592                        vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1593                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1594                              KVM_TRACE_AUX_FPU_MSA);
1595                break;
1596        default:
1597                trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1598                break;
1599        }
1600
1601        preempt_enable();
1602}
1603#endif
1604
1605/* Drop FPU & MSA without saving it */
1606void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1607{
1608        preempt_disable();
1609        if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1610                disable_msa();
1611                trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1612                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1613        }
1614        if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1615                clear_c0_status(ST0_CU1 | ST0_FR);
1616                trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1617                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1618        }
1619        preempt_enable();
1620}
1621
1622/* Save and disable FPU & MSA */
1623void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1624{
1625        /*
1626         * With T&E, FPU & MSA get disabled in root context (hardware) when it
1627         * is disabled in guest context (software), but the register state in
1628         * the hardware may still be in use.
1629         * This is why we explicitly re-enable the hardware before saving.
1630         */
1631
1632        preempt_disable();
1633        if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1634                if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1635                        set_c0_config5(MIPS_CONF5_MSAEN);
1636                        enable_fpu_hazard();
1637                }
1638
1639                __kvm_save_msa(&vcpu->arch);
1640                trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1641
1642                /* Disable MSA & FPU */
1643                disable_msa();
1644                if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1645                        clear_c0_status(ST0_CU1 | ST0_FR);
1646                        disable_fpu_hazard();
1647                }
1648                vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1649        } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1650                if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1651                        set_c0_status(ST0_CU1);
1652                        enable_fpu_hazard();
1653                }
1654
1655                __kvm_save_fpu(&vcpu->arch);
1656                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1657                trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1658
1659                /* Disable FPU */
1660                clear_c0_status(ST0_CU1 | ST0_FR);
1661                disable_fpu_hazard();
1662        }
1663        preempt_enable();
1664}
1665
1666/*
1667 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1668 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1669 * exception if cause bits are set in the value being written.
1670 */
1671static int kvm_mips_csr_die_notify(struct notifier_block *self,
1672                                   unsigned long cmd, void *ptr)
1673{
1674        struct die_args *args = (struct die_args *)ptr;
1675        struct pt_regs *regs = args->regs;
1676        unsigned long pc;
1677
1678        /* Only interested in FPE and MSAFPE */
1679        if (cmd != DIE_FP && cmd != DIE_MSAFP)
1680                return NOTIFY_DONE;
1681
1682        /* Return immediately if guest context isn't active */
1683        if (!(current->flags & PF_VCPU))
1684                return NOTIFY_DONE;
1685
1686        /* Should never get here from user mode */
1687        BUG_ON(user_mode(regs));
1688
1689        pc = instruction_pointer(regs);
1690        switch (cmd) {
1691        case DIE_FP:
1692                /* match 2nd instruction in __kvm_restore_fcsr */
1693                if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1694                        return NOTIFY_DONE;
1695                break;
1696        case DIE_MSAFP:
1697                /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1698                if (!cpu_has_msa ||
1699                    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1700                    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1701                        return NOTIFY_DONE;
1702                break;
1703        }
1704
1705        /* Move PC forward a little and continue executing */
1706        instruction_pointer(regs) += 4;
1707
1708        return NOTIFY_STOP;
1709}
1710
1711static struct notifier_block kvm_mips_csr_die_notifier = {
1712        .notifier_call = kvm_mips_csr_die_notify,
1713};
1714
1715static int __init kvm_mips_init(void)
1716{
1717        int ret;
1718
1719        if (cpu_has_mmid) {
1720                pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1721                return -EOPNOTSUPP;
1722        }
1723
1724        ret = kvm_mips_entry_setup();
1725        if (ret)
1726                return ret;
1727
1728        ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1729
1730        if (ret)
1731                return ret;
1732
1733        register_die_notifier(&kvm_mips_csr_die_notifier);
1734
1735        return 0;
1736}
1737
1738static void __exit kvm_mips_exit(void)
1739{
1740        kvm_exit();
1741
1742        unregister_die_notifier(&kvm_mips_csr_die_notifier);
1743}
1744
1745module_init(kvm_mips_init);
1746module_exit(kvm_mips_exit);
1747
1748EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1749