linux/arch/parisc/kernel/firmware.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *      PDC == Processor Dependent Code
   6 *
   7 * See http://www.parisc-linux.org/documentation/index.html
   8 * for documentation describing the entry points and calling
   9 * conventions defined below.
  10 *
  11 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  12 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  13 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  14 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  15 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  16 */
  17
  18/*      I think it would be in everyone's best interest to follow this
  19 *      guidelines when writing PDC wrappers:
  20 *
  21 *       - the name of the pdc wrapper should match one of the macros
  22 *         used for the first two arguments
  23 *       - don't use caps for random parts of the name
  24 *       - use the static PDC result buffers and "copyout" to structs
  25 *         supplied by the caller to encapsulate alignment restrictions
  26 *       - hold pdc_lock while in PDC or using static result buffers
  27 *       - use __pa() to convert virtual (kernel) pointers to physical
  28 *         ones.
  29 *       - the name of the struct used for pdc return values should equal
  30 *         one of the macros used for the first two arguments to the
  31 *         corresponding PDC call
  32 *       - keep the order of arguments
  33 *       - don't be smart (setting trailing NUL bytes for strings, return
  34 *         something useful even if the call failed) unless you are sure
  35 *         it's not going to affect functionality or performance
  36 *
  37 *      Example:
  38 *      int pdc_cache_info(struct pdc_cache_info *cache_info )
  39 *      {
  40 *              int retval;
  41 *
  42 *              spin_lock_irq(&pdc_lock);
  43 *              retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  44 *              convert_to_wide(pdc_result);
  45 *              memcpy(cache_info, pdc_result, sizeof(*cache_info));
  46 *              spin_unlock_irq(&pdc_lock);
  47 *
  48 *              return retval;
  49 *      }
  50 *                                      prumpf  991016  
  51 */
  52
  53#include <stdarg.h>
  54
  55#include <linux/delay.h>
  56#include <linux/init.h>
  57#include <linux/kernel.h>
  58#include <linux/module.h>
  59#include <linux/string.h>
  60#include <linux/spinlock.h>
  61
  62#include <asm/page.h>
  63#include <asm/pdc.h>
  64#include <asm/pdcpat.h>
  65#include <asm/processor.h>      /* for boot_cpu_data */
  66
  67#if defined(BOOTLOADER)
  68# undef  spin_lock_irqsave
  69# define spin_lock_irqsave(a, b) { b = 1; }
  70# undef  spin_unlock_irqrestore
  71# define spin_unlock_irqrestore(a, b)
  72#else
  73static DEFINE_SPINLOCK(pdc_lock);
  74#endif
  75
  76extern unsigned long pdc_result[NUM_PDC_RESULT];
  77extern unsigned long pdc_result2[NUM_PDC_RESULT];
  78
  79#ifdef CONFIG_64BIT
  80#define WIDE_FIRMWARE 0x1
  81#define NARROW_FIRMWARE 0x2
  82
  83/* Firmware needs to be initially set to narrow to determine the 
  84 * actual firmware width. */
  85int parisc_narrow_firmware __ro_after_init = 1;
  86#endif
  87
  88/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  89 * and MEM_PDC calls are always the same width as the OS.
  90 * Some PAT boxes may have 64-bit IODC I/O.
  91 *
  92 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  93 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  94 * This allowed wide kernels to run on Cxxx boxes.
  95 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  96 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  97 */
  98
  99#ifdef CONFIG_64BIT
 100long real64_call(unsigned long function, ...);
 101#endif
 102long real32_call(unsigned long function, ...);
 103
 104#ifdef CONFIG_64BIT
 105#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 107#else
 108#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 109#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 110#endif
 111
 112
 113/**
 114 * f_extend - Convert PDC addresses to kernel addresses.
 115 * @address: Address returned from PDC.
 116 *
 117 * This function is used to convert PDC addresses into kernel addresses
 118 * when the PDC address size and kernel address size are different.
 119 */
 120static unsigned long f_extend(unsigned long address)
 121{
 122#ifdef CONFIG_64BIT
 123        if(unlikely(parisc_narrow_firmware)) {
 124                if((address & 0xff000000) == 0xf0000000)
 125                        return 0xf0f0f0f000000000UL | (u32)address;
 126
 127                if((address & 0xf0000000) == 0xf0000000)
 128                        return 0xffffffff00000000UL | (u32)address;
 129        }
 130#endif
 131        return address;
 132}
 133
 134/**
 135 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 136 * @address: The return buffer from PDC.
 137 *
 138 * This function is used to convert the return buffer addresses retrieved from PDC
 139 * into kernel addresses when the PDC address size and kernel address size are
 140 * different.
 141 */
 142static void convert_to_wide(unsigned long *addr)
 143{
 144#ifdef CONFIG_64BIT
 145        int i;
 146        unsigned int *p = (unsigned int *)addr;
 147
 148        if (unlikely(parisc_narrow_firmware)) {
 149                for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 150                        addr[i] = p[i];
 151        }
 152#endif
 153}
 154
 155#ifdef CONFIG_64BIT
 156void set_firmware_width_unlocked(void)
 157{
 158        int ret;
 159
 160        ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 161                __pa(pdc_result), 0);
 162        convert_to_wide(pdc_result);
 163        if (pdc_result[0] != NARROW_FIRMWARE)
 164                parisc_narrow_firmware = 0;
 165}
 166        
 167/**
 168 * set_firmware_width - Determine if the firmware is wide or narrow.
 169 * 
 170 * This function must be called before any pdc_* function that uses the
 171 * convert_to_wide function.
 172 */
 173void set_firmware_width(void)
 174{
 175        unsigned long flags;
 176        spin_lock_irqsave(&pdc_lock, flags);
 177        set_firmware_width_unlocked();
 178        spin_unlock_irqrestore(&pdc_lock, flags);
 179}
 180#else
 181void set_firmware_width_unlocked(void)
 182{
 183        return;
 184}
 185
 186void set_firmware_width(void)
 187{
 188        return;
 189}
 190#endif /*CONFIG_64BIT*/
 191
 192
 193#if !defined(BOOTLOADER)
 194/**
 195 * pdc_emergency_unlock - Unlock the linux pdc lock
 196 *
 197 * This call unlocks the linux pdc lock in case we need some PDC functions
 198 * (like pdc_add_valid) during kernel stack dump.
 199 */
 200void pdc_emergency_unlock(void)
 201{
 202        /* Spinlock DEBUG code freaks out if we unconditionally unlock */
 203        if (spin_is_locked(&pdc_lock))
 204                spin_unlock(&pdc_lock);
 205}
 206
 207
 208/**
 209 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 210 * @address: Address to be verified.
 211 *
 212 * This PDC call attempts to read from the specified address and verifies
 213 * if the address is valid.
 214 * 
 215 * The return value is PDC_OK (0) in case accessing this address is valid.
 216 */
 217int pdc_add_valid(unsigned long address)
 218{
 219        int retval;
 220        unsigned long flags;
 221
 222        spin_lock_irqsave(&pdc_lock, flags);
 223        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 224        spin_unlock_irqrestore(&pdc_lock, flags);
 225
 226        return retval;
 227}
 228EXPORT_SYMBOL(pdc_add_valid);
 229
 230/**
 231 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 232 * @instr: Pointer to variable which will get instruction opcode.
 233 *
 234 * The return value is PDC_OK (0) in case call succeeded.
 235 */
 236int __init pdc_instr(unsigned int *instr)
 237{
 238        int retval;
 239        unsigned long flags;
 240
 241        spin_lock_irqsave(&pdc_lock, flags);
 242        retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 243        convert_to_wide(pdc_result);
 244        *instr = pdc_result[0];
 245        spin_unlock_irqrestore(&pdc_lock, flags);
 246
 247        return retval;
 248}
 249
 250/**
 251 * pdc_chassis_info - Return chassis information.
 252 * @result: The return buffer.
 253 * @chassis_info: The memory buffer address.
 254 * @len: The size of the memory buffer address.
 255 *
 256 * An HVERSION dependent call for returning the chassis information.
 257 */
 258int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 259{
 260        int retval;
 261        unsigned long flags;
 262
 263        spin_lock_irqsave(&pdc_lock, flags);
 264        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 265        memcpy(&pdc_result2, led_info, len);
 266        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 267                              __pa(pdc_result), __pa(pdc_result2), len);
 268        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 269        memcpy(led_info, pdc_result2, len);
 270        spin_unlock_irqrestore(&pdc_lock, flags);
 271
 272        return retval;
 273}
 274
 275/**
 276 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 277 * @retval: -1 on error, 0 on success. Other value are PDC errors
 278 * 
 279 * Must be correctly formatted or expect system crash
 280 */
 281#ifdef CONFIG_64BIT
 282int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 283{
 284        int retval = 0;
 285        unsigned long flags;
 286        
 287        if (!is_pdc_pat())
 288                return -1;
 289
 290        spin_lock_irqsave(&pdc_lock, flags);
 291        retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 292        spin_unlock_irqrestore(&pdc_lock, flags);
 293
 294        return retval;
 295}
 296#endif
 297
 298/**
 299 * pdc_chassis_disp - Updates chassis code
 300 * @retval: -1 on error, 0 on success
 301 */
 302int pdc_chassis_disp(unsigned long disp)
 303{
 304        int retval = 0;
 305        unsigned long flags;
 306
 307        spin_lock_irqsave(&pdc_lock, flags);
 308        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 309        spin_unlock_irqrestore(&pdc_lock, flags);
 310
 311        return retval;
 312}
 313
 314/**
 315 * pdc_chassis_warn - Fetches chassis warnings
 316 * @retval: -1 on error, 0 on success
 317 */
 318int pdc_chassis_warn(unsigned long *warn)
 319{
 320        int retval = 0;
 321        unsigned long flags;
 322
 323        spin_lock_irqsave(&pdc_lock, flags);
 324        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 325        *warn = pdc_result[0];
 326        spin_unlock_irqrestore(&pdc_lock, flags);
 327
 328        return retval;
 329}
 330
 331int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 332{
 333        int ret;
 334
 335        ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 336        convert_to_wide(pdc_result);
 337        pdc_coproc_info->ccr_functional = pdc_result[0];
 338        pdc_coproc_info->ccr_present = pdc_result[1];
 339        pdc_coproc_info->revision = pdc_result[17];
 340        pdc_coproc_info->model = pdc_result[18];
 341
 342        return ret;
 343}
 344
 345/**
 346 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 347 * @pdc_coproc_info: Return buffer address.
 348 *
 349 * This PDC call returns the presence and status of all the coprocessors
 350 * attached to the processor.
 351 */
 352int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 353{
 354        int ret;
 355        unsigned long flags;
 356
 357        spin_lock_irqsave(&pdc_lock, flags);
 358        ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 359        spin_unlock_irqrestore(&pdc_lock, flags);
 360
 361        return ret;
 362}
 363
 364/**
 365 * pdc_iodc_read - Read data from the modules IODC.
 366 * @actcnt: The actual number of bytes.
 367 * @hpa: The HPA of the module for the iodc read.
 368 * @index: The iodc entry point.
 369 * @iodc_data: A buffer memory for the iodc options.
 370 * @iodc_data_size: Size of the memory buffer.
 371 *
 372 * This PDC call reads from the IODC of the module specified by the hpa
 373 * argument.
 374 */
 375int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 376                  void *iodc_data, unsigned int iodc_data_size)
 377{
 378        int retval;
 379        unsigned long flags;
 380
 381        spin_lock_irqsave(&pdc_lock, flags);
 382        retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 383                              index, __pa(pdc_result2), iodc_data_size);
 384        convert_to_wide(pdc_result);
 385        *actcnt = pdc_result[0];
 386        memcpy(iodc_data, pdc_result2, iodc_data_size);
 387        spin_unlock_irqrestore(&pdc_lock, flags);
 388
 389        return retval;
 390}
 391EXPORT_SYMBOL(pdc_iodc_read);
 392
 393/**
 394 * pdc_system_map_find_mods - Locate unarchitected modules.
 395 * @pdc_mod_info: Return buffer address.
 396 * @mod_path: pointer to dev path structure.
 397 * @mod_index: fixed address module index.
 398 *
 399 * To locate and identify modules which reside at fixed I/O addresses, which
 400 * do not self-identify via architected bus walks.
 401 */
 402int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 403                             struct pdc_module_path *mod_path, long mod_index)
 404{
 405        int retval;
 406        unsigned long flags;
 407
 408        spin_lock_irqsave(&pdc_lock, flags);
 409        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 410                              __pa(pdc_result2), mod_index);
 411        convert_to_wide(pdc_result);
 412        memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 413        memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 414        spin_unlock_irqrestore(&pdc_lock, flags);
 415
 416        pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 417        return retval;
 418}
 419
 420/**
 421 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 422 * @pdc_addr_info: Return buffer address.
 423 * @mod_index: Fixed address module index.
 424 * @addr_index: Address range index.
 425 * 
 426 * Retrieve additional information about subsequent address ranges for modules
 427 * with multiple address ranges.  
 428 */
 429int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 430                              long mod_index, long addr_index)
 431{
 432        int retval;
 433        unsigned long flags;
 434
 435        spin_lock_irqsave(&pdc_lock, flags);
 436        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 437                              mod_index, addr_index);
 438        convert_to_wide(pdc_result);
 439        memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 440        spin_unlock_irqrestore(&pdc_lock, flags);
 441
 442        pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 443        return retval;
 444}
 445
 446/**
 447 * pdc_model_info - Return model information about the processor.
 448 * @model: The return buffer.
 449 *
 450 * Returns the version numbers, identifiers, and capabilities from the processor module.
 451 */
 452int pdc_model_info(struct pdc_model *model) 
 453{
 454        int retval;
 455        unsigned long flags;
 456
 457        spin_lock_irqsave(&pdc_lock, flags);
 458        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 459        convert_to_wide(pdc_result);
 460        memcpy(model, pdc_result, sizeof(*model));
 461        spin_unlock_irqrestore(&pdc_lock, flags);
 462
 463        return retval;
 464}
 465
 466/**
 467 * pdc_model_sysmodel - Get the system model name.
 468 * @name: A char array of at least 81 characters.
 469 *
 470 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 471 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 472 * on HP/UX.
 473 */
 474int pdc_model_sysmodel(char *name)
 475{
 476        int retval;
 477        unsigned long flags;
 478
 479        spin_lock_irqsave(&pdc_lock, flags);
 480        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 481                              OS_ID_HPUX, __pa(name));
 482        convert_to_wide(pdc_result);
 483
 484        if (retval == PDC_OK) {
 485                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 486        } else {
 487                name[0] = 0;
 488        }
 489        spin_unlock_irqrestore(&pdc_lock, flags);
 490
 491        return retval;
 492}
 493
 494/**
 495 * pdc_model_versions - Identify the version number of each processor.
 496 * @cpu_id: The return buffer.
 497 * @id: The id of the processor to check.
 498 *
 499 * Returns the version number for each processor component.
 500 *
 501 * This comment was here before, but I do not know what it means :( -RB
 502 * id: 0 = cpu revision, 1 = boot-rom-version
 503 */
 504int pdc_model_versions(unsigned long *versions, int id)
 505{
 506        int retval;
 507        unsigned long flags;
 508
 509        spin_lock_irqsave(&pdc_lock, flags);
 510        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 511        convert_to_wide(pdc_result);
 512        *versions = pdc_result[0];
 513        spin_unlock_irqrestore(&pdc_lock, flags);
 514
 515        return retval;
 516}
 517
 518/**
 519 * pdc_model_cpuid - Returns the CPU_ID.
 520 * @cpu_id: The return buffer.
 521 *
 522 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 523 * the processor module.
 524 */
 525int pdc_model_cpuid(unsigned long *cpu_id)
 526{
 527        int retval;
 528        unsigned long flags;
 529
 530        spin_lock_irqsave(&pdc_lock, flags);
 531        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 532        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 533        convert_to_wide(pdc_result);
 534        *cpu_id = pdc_result[0];
 535        spin_unlock_irqrestore(&pdc_lock, flags);
 536
 537        return retval;
 538}
 539
 540/**
 541 * pdc_model_capabilities - Returns the platform capabilities.
 542 * @capabilities: The return buffer.
 543 *
 544 * Returns information about platform support for 32- and/or 64-bit
 545 * OSes, IO-PDIR coherency, and virtual aliasing.
 546 */
 547int pdc_model_capabilities(unsigned long *capabilities)
 548{
 549        int retval;
 550        unsigned long flags;
 551
 552        spin_lock_irqsave(&pdc_lock, flags);
 553        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 554        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 555        convert_to_wide(pdc_result);
 556        if (retval == PDC_OK) {
 557                *capabilities = pdc_result[0];
 558        } else {
 559                *capabilities = PDC_MODEL_OS32;
 560        }
 561        spin_unlock_irqrestore(&pdc_lock, flags);
 562
 563        return retval;
 564}
 565
 566/**
 567 * pdc_model_platform_info - Returns machine product and serial number.
 568 * @orig_prod_num: Return buffer for original product number.
 569 * @current_prod_num: Return buffer for current product number.
 570 * @serial_no: Return buffer for serial number.
 571 *
 572 * Returns strings containing the original and current product numbers and the
 573 * serial number of the system.
 574 */
 575int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 576                char *serial_no)
 577{
 578        int retval;
 579        unsigned long flags;
 580
 581        spin_lock_irqsave(&pdc_lock, flags);
 582        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 583                __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 584        convert_to_wide(pdc_result);
 585        spin_unlock_irqrestore(&pdc_lock, flags);
 586
 587        return retval;
 588}
 589
 590/**
 591 * pdc_cache_info - Return cache and TLB information.
 592 * @cache_info: The return buffer.
 593 *
 594 * Returns information about the processor's cache and TLB.
 595 */
 596int pdc_cache_info(struct pdc_cache_info *cache_info)
 597{
 598        int retval;
 599        unsigned long flags;
 600
 601        spin_lock_irqsave(&pdc_lock, flags);
 602        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 603        convert_to_wide(pdc_result);
 604        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 605        spin_unlock_irqrestore(&pdc_lock, flags);
 606
 607        return retval;
 608}
 609
 610/**
 611 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 612 * @space_bits: Should be 0, if not, bad mojo!
 613 *
 614 * Returns information about Space ID hashing.
 615 */
 616int pdc_spaceid_bits(unsigned long *space_bits)
 617{
 618        int retval;
 619        unsigned long flags;
 620
 621        spin_lock_irqsave(&pdc_lock, flags);
 622        pdc_result[0] = 0;
 623        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 624        convert_to_wide(pdc_result);
 625        *space_bits = pdc_result[0];
 626        spin_unlock_irqrestore(&pdc_lock, flags);
 627
 628        return retval;
 629}
 630
 631#ifndef CONFIG_PA20
 632/**
 633 * pdc_btlb_info - Return block TLB information.
 634 * @btlb: The return buffer.
 635 *
 636 * Returns information about the hardware Block TLB.
 637 */
 638int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 639{
 640        int retval;
 641        unsigned long flags;
 642
 643        spin_lock_irqsave(&pdc_lock, flags);
 644        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 645        memcpy(btlb, pdc_result, sizeof(*btlb));
 646        spin_unlock_irqrestore(&pdc_lock, flags);
 647
 648        if(retval < 0) {
 649                btlb->max_size = 0;
 650        }
 651        return retval;
 652}
 653
 654/**
 655 * pdc_mem_map_hpa - Find fixed module information.  
 656 * @address: The return buffer
 657 * @mod_path: pointer to dev path structure.
 658 *
 659 * This call was developed for S700 workstations to allow the kernel to find
 660 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 661 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 662 * call.
 663 *
 664 * This call is supported by all existing S700 workstations (up to  Gecko).
 665 */
 666int pdc_mem_map_hpa(struct pdc_memory_map *address,
 667                struct pdc_module_path *mod_path)
 668{
 669        int retval;
 670        unsigned long flags;
 671
 672        spin_lock_irqsave(&pdc_lock, flags);
 673        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 674        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 675                                __pa(pdc_result2));
 676        memcpy(address, pdc_result, sizeof(*address));
 677        spin_unlock_irqrestore(&pdc_lock, flags);
 678
 679        return retval;
 680}
 681#endif  /* !CONFIG_PA20 */
 682
 683/**
 684 * pdc_lan_station_id - Get the LAN address.
 685 * @lan_addr: The return buffer.
 686 * @hpa: The network device HPA.
 687 *
 688 * Get the LAN station address when it is not directly available from the LAN hardware.
 689 */
 690int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 691{
 692        int retval;
 693        unsigned long flags;
 694
 695        spin_lock_irqsave(&pdc_lock, flags);
 696        retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 697                        __pa(pdc_result), hpa);
 698        if (retval < 0) {
 699                /* FIXME: else read MAC from NVRAM */
 700                memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 701        } else {
 702                memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 703        }
 704        spin_unlock_irqrestore(&pdc_lock, flags);
 705
 706        return retval;
 707}
 708EXPORT_SYMBOL(pdc_lan_station_id);
 709
 710/**
 711 * pdc_stable_read - Read data from Stable Storage.
 712 * @staddr: Stable Storage address to access.
 713 * @memaddr: The memory address where Stable Storage data shall be copied.
 714 * @count: number of bytes to transfer. count is multiple of 4.
 715 *
 716 * This PDC call reads from the Stable Storage address supplied in staddr
 717 * and copies count bytes to the memory address memaddr.
 718 * The call will fail if staddr+count > PDC_STABLE size.
 719 */
 720int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 721{
 722       int retval;
 723        unsigned long flags;
 724
 725       spin_lock_irqsave(&pdc_lock, flags);
 726       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 727               __pa(pdc_result), count);
 728       convert_to_wide(pdc_result);
 729       memcpy(memaddr, pdc_result, count);
 730       spin_unlock_irqrestore(&pdc_lock, flags);
 731
 732       return retval;
 733}
 734EXPORT_SYMBOL(pdc_stable_read);
 735
 736/**
 737 * pdc_stable_write - Write data to Stable Storage.
 738 * @staddr: Stable Storage address to access.
 739 * @memaddr: The memory address where Stable Storage data shall be read from.
 740 * @count: number of bytes to transfer. count is multiple of 4.
 741 *
 742 * This PDC call reads count bytes from the supplied memaddr address,
 743 * and copies count bytes to the Stable Storage address staddr.
 744 * The call will fail if staddr+count > PDC_STABLE size.
 745 */
 746int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 747{
 748       int retval;
 749        unsigned long flags;
 750
 751       spin_lock_irqsave(&pdc_lock, flags);
 752       memcpy(pdc_result, memaddr, count);
 753       convert_to_wide(pdc_result);
 754       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 755               __pa(pdc_result), count);
 756       spin_unlock_irqrestore(&pdc_lock, flags);
 757
 758       return retval;
 759}
 760EXPORT_SYMBOL(pdc_stable_write);
 761
 762/**
 763 * pdc_stable_get_size - Get Stable Storage size in bytes.
 764 * @size: pointer where the size will be stored.
 765 *
 766 * This PDC call returns the number of bytes in the processor's Stable
 767 * Storage, which is the number of contiguous bytes implemented in Stable
 768 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 769 * which is a multiple of four.
 770 */
 771int pdc_stable_get_size(unsigned long *size)
 772{
 773       int retval;
 774        unsigned long flags;
 775
 776       spin_lock_irqsave(&pdc_lock, flags);
 777       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 778       *size = pdc_result[0];
 779       spin_unlock_irqrestore(&pdc_lock, flags);
 780
 781       return retval;
 782}
 783EXPORT_SYMBOL(pdc_stable_get_size);
 784
 785/**
 786 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 787 *
 788 * This PDC call is meant to be used to check the integrity of the current
 789 * contents of Stable Storage.
 790 */
 791int pdc_stable_verify_contents(void)
 792{
 793       int retval;
 794        unsigned long flags;
 795
 796       spin_lock_irqsave(&pdc_lock, flags);
 797       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 798       spin_unlock_irqrestore(&pdc_lock, flags);
 799
 800       return retval;
 801}
 802EXPORT_SYMBOL(pdc_stable_verify_contents);
 803
 804/**
 805 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 806 * the validity indicator.
 807 *
 808 * This PDC call will erase all contents of Stable Storage. Use with care!
 809 */
 810int pdc_stable_initialize(void)
 811{
 812       int retval;
 813        unsigned long flags;
 814
 815       spin_lock_irqsave(&pdc_lock, flags);
 816       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 817       spin_unlock_irqrestore(&pdc_lock, flags);
 818
 819       return retval;
 820}
 821EXPORT_SYMBOL(pdc_stable_initialize);
 822
 823/**
 824 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 825 * @hwpath: fully bc.mod style path to the device.
 826 * @initiator: the array to return the result into
 827 *
 828 * Get the SCSI operational parameters from PDC.
 829 * Needed since HPUX never used BIOS or symbios card NVRAM.
 830 * Most ncr/sym cards won't have an entry and just use whatever
 831 * capabilities of the card are (eg Ultra, LVD). But there are
 832 * several cases where it's useful:
 833 *    o set SCSI id for Multi-initiator clusters,
 834 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 835 *    o bus width exported is less than what the interface chip supports.
 836 */
 837int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 838{
 839        int retval;
 840        unsigned long flags;
 841
 842        spin_lock_irqsave(&pdc_lock, flags);
 843
 844/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 845#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 846        strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 847
 848        retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 849                              __pa(pdc_result), __pa(hwpath));
 850        if (retval < PDC_OK)
 851                goto out;
 852
 853        if (pdc_result[0] < 16) {
 854                initiator->host_id = pdc_result[0];
 855        } else {
 856                initiator->host_id = -1;
 857        }
 858
 859        /*
 860         * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 861         * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 862         */
 863        switch (pdc_result[1]) {
 864                case  1: initiator->factor = 50; break;
 865                case  2: initiator->factor = 25; break;
 866                case  5: initiator->factor = 12; break;
 867                case 25: initiator->factor = 10; break;
 868                case 20: initiator->factor = 12; break;
 869                case 40: initiator->factor = 10; break;
 870                default: initiator->factor = -1; break;
 871        }
 872
 873        if (IS_SPROCKETS()) {
 874                initiator->width = pdc_result[4];
 875                initiator->mode = pdc_result[5];
 876        } else {
 877                initiator->width = -1;
 878                initiator->mode = -1;
 879        }
 880
 881 out:
 882        spin_unlock_irqrestore(&pdc_lock, flags);
 883
 884        return (retval >= PDC_OK);
 885}
 886EXPORT_SYMBOL(pdc_get_initiator);
 887
 888
 889/**
 890 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 891 * @num_entries: The return value.
 892 * @hpa: The HPA for the device.
 893 *
 894 * This PDC function returns the number of entries in the specified cell's
 895 * interrupt table.
 896 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 897 */ 
 898int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 899{
 900        int retval;
 901        unsigned long flags;
 902
 903        spin_lock_irqsave(&pdc_lock, flags);
 904        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 905                              __pa(pdc_result), hpa);
 906        convert_to_wide(pdc_result);
 907        *num_entries = pdc_result[0];
 908        spin_unlock_irqrestore(&pdc_lock, flags);
 909
 910        return retval;
 911}
 912
 913/** 
 914 * pdc_pci_irt - Get the PCI interrupt routing table.
 915 * @num_entries: The number of entries in the table.
 916 * @hpa: The Hard Physical Address of the device.
 917 * @tbl: 
 918 *
 919 * Get the PCI interrupt routing table for the device at the given HPA.
 920 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 921 */
 922int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 923{
 924        int retval;
 925        unsigned long flags;
 926
 927        BUG_ON((unsigned long)tbl & 0x7);
 928
 929        spin_lock_irqsave(&pdc_lock, flags);
 930        pdc_result[0] = num_entries;
 931        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 932                              __pa(pdc_result), hpa, __pa(tbl));
 933        spin_unlock_irqrestore(&pdc_lock, flags);
 934
 935        return retval;
 936}
 937
 938
 939#if 0   /* UNTEST CODE - left here in case someone needs it */
 940
 941/** 
 942 * pdc_pci_config_read - read PCI config space.
 943 * @hpa         token from PDC to indicate which PCI device
 944 * @pci_addr    configuration space address to read from
 945 *
 946 * Read PCI Configuration space *before* linux PCI subsystem is running.
 947 */
 948unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 949{
 950        int retval;
 951        unsigned long flags;
 952
 953        spin_lock_irqsave(&pdc_lock, flags);
 954        pdc_result[0] = 0;
 955        pdc_result[1] = 0;
 956        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 957                              __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 958        spin_unlock_irqrestore(&pdc_lock, flags);
 959
 960        return retval ? ~0 : (unsigned int) pdc_result[0];
 961}
 962
 963
 964/** 
 965 * pdc_pci_config_write - read PCI config space.
 966 * @hpa         token from PDC to indicate which PCI device
 967 * @pci_addr    configuration space address to write
 968 * @val         value we want in the 32-bit register
 969 *
 970 * Write PCI Configuration space *before* linux PCI subsystem is running.
 971 */
 972void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 973{
 974        int retval;
 975        unsigned long flags;
 976
 977        spin_lock_irqsave(&pdc_lock, flags);
 978        pdc_result[0] = 0;
 979        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 980                              __pa(pdc_result), hpa,
 981                              cfg_addr&~3UL, 4UL, (unsigned long) val);
 982        spin_unlock_irqrestore(&pdc_lock, flags);
 983
 984        return retval;
 985}
 986#endif /* UNTESTED CODE */
 987
 988/**
 989 * pdc_tod_read - Read the Time-Of-Day clock.
 990 * @tod: The return buffer:
 991 *
 992 * Read the Time-Of-Day clock
 993 */
 994int pdc_tod_read(struct pdc_tod *tod)
 995{
 996        int retval;
 997        unsigned long flags;
 998
 999        spin_lock_irqsave(&pdc_lock, flags);
1000        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1001        convert_to_wide(pdc_result);
1002        memcpy(tod, pdc_result, sizeof(*tod));
1003        spin_unlock_irqrestore(&pdc_lock, flags);
1004
1005        return retval;
1006}
1007EXPORT_SYMBOL(pdc_tod_read);
1008
1009int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1010{
1011        int retval;
1012        unsigned long flags;
1013
1014        spin_lock_irqsave(&pdc_lock, flags);
1015        retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1016        convert_to_wide(pdc_result);
1017        memcpy(rinfo, pdc_result, sizeof(*rinfo));
1018        spin_unlock_irqrestore(&pdc_lock, flags);
1019
1020        return retval;
1021}
1022
1023int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1024                unsigned long *pdt_entries_ptr)
1025{
1026        int retval;
1027        unsigned long flags;
1028
1029        spin_lock_irqsave(&pdc_lock, flags);
1030        retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1031                        __pa(pdt_entries_ptr));
1032        if (retval == PDC_OK) {
1033                convert_to_wide(pdc_result);
1034                memcpy(pret, pdc_result, sizeof(*pret));
1035        }
1036        spin_unlock_irqrestore(&pdc_lock, flags);
1037
1038#ifdef CONFIG_64BIT
1039        /*
1040         * 64-bit kernels should not call this PDT function in narrow mode.
1041         * The pdt_entries_ptr array above will now contain 32-bit values
1042         */
1043        if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1044                return PDC_ERROR;
1045#endif
1046
1047        return retval;
1048}
1049
1050/**
1051 * pdc_tod_set - Set the Time-Of-Day clock.
1052 * @sec: The number of seconds since epoch.
1053 * @usec: The number of micro seconds.
1054 *
1055 * Set the Time-Of-Day clock.
1056 */ 
1057int pdc_tod_set(unsigned long sec, unsigned long usec)
1058{
1059        int retval;
1060        unsigned long flags;
1061
1062        spin_lock_irqsave(&pdc_lock, flags);
1063        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1064        spin_unlock_irqrestore(&pdc_lock, flags);
1065
1066        return retval;
1067}
1068EXPORT_SYMBOL(pdc_tod_set);
1069
1070#ifdef CONFIG_64BIT
1071int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1072                struct pdc_memory_table *tbl, unsigned long entries)
1073{
1074        int retval;
1075        unsigned long flags;
1076
1077        spin_lock_irqsave(&pdc_lock, flags);
1078        retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1079        convert_to_wide(pdc_result);
1080        memcpy(r_addr, pdc_result, sizeof(*r_addr));
1081        memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1082        spin_unlock_irqrestore(&pdc_lock, flags);
1083
1084        return retval;
1085}
1086#endif /* CONFIG_64BIT */
1087
1088/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1089 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1090 * it later. :)
1091 */
1092int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1093{
1094        int retval;
1095        unsigned long flags;
1096
1097        spin_lock_irqsave(&pdc_lock, flags);
1098        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1099                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1100        spin_unlock_irqrestore(&pdc_lock, flags);
1101
1102        return retval;
1103}
1104
1105/*
1106 * pdc_do_reset - Reset the system.
1107 *
1108 * Reset the system.
1109 */
1110int pdc_do_reset(void)
1111{
1112        int retval;
1113        unsigned long flags;
1114
1115        spin_lock_irqsave(&pdc_lock, flags);
1116        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1117        spin_unlock_irqrestore(&pdc_lock, flags);
1118
1119        return retval;
1120}
1121
1122/*
1123 * pdc_soft_power_info - Enable soft power switch.
1124 * @power_reg: address of soft power register
1125 *
1126 * Return the absolute address of the soft power switch register
1127 */
1128int __init pdc_soft_power_info(unsigned long *power_reg)
1129{
1130        int retval;
1131        unsigned long flags;
1132
1133        *power_reg = (unsigned long) (-1);
1134        
1135        spin_lock_irqsave(&pdc_lock, flags);
1136        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1137        if (retval == PDC_OK) {
1138                convert_to_wide(pdc_result);
1139                *power_reg = f_extend(pdc_result[0]);
1140        }
1141        spin_unlock_irqrestore(&pdc_lock, flags);
1142
1143        return retval;
1144}
1145
1146/*
1147 * pdc_soft_power_button - Control the soft power button behaviour
1148 * @sw_control: 0 for hardware control, 1 for software control 
1149 *
1150 *
1151 * This PDC function places the soft power button under software or
1152 * hardware control.
1153 * Under software control the OS may control to when to allow to shut 
1154 * down the system. Under hardware control pressing the power button 
1155 * powers off the system immediately.
1156 */
1157int pdc_soft_power_button(int sw_control)
1158{
1159        int retval;
1160        unsigned long flags;
1161
1162        spin_lock_irqsave(&pdc_lock, flags);
1163        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1164        spin_unlock_irqrestore(&pdc_lock, flags);
1165
1166        return retval;
1167}
1168
1169/*
1170 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1171 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1172 * who knows what other platform firmware might do with this OS "hook".
1173 */
1174void pdc_io_reset(void)
1175{
1176        unsigned long flags;
1177
1178        spin_lock_irqsave(&pdc_lock, flags);
1179        mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1180        spin_unlock_irqrestore(&pdc_lock, flags);
1181}
1182
1183/*
1184 * pdc_io_reset_devices - Hack to Stop USB controller
1185 *
1186 * If PDC used the usb controller, the usb controller
1187 * is still running and will crash the machines during iommu 
1188 * setup, because of still running DMA. This PDC call
1189 * stops the USB controller.
1190 * Normally called after calling pdc_io_reset().
1191 */
1192void pdc_io_reset_devices(void)
1193{
1194        unsigned long flags;
1195
1196        spin_lock_irqsave(&pdc_lock, flags);
1197        mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1198        spin_unlock_irqrestore(&pdc_lock, flags);
1199}
1200
1201#endif /* defined(BOOTLOADER) */
1202
1203/* locked by pdc_console_lock */
1204static int __attribute__((aligned(8)))   iodc_retbuf[32];
1205static char __attribute__((aligned(64))) iodc_dbuf[4096];
1206
1207/**
1208 * pdc_iodc_print - Console print using IODC.
1209 * @str: the string to output.
1210 * @count: length of str
1211 *
1212 * Note that only these special chars are architected for console IODC io:
1213 * BEL, BS, CR, and LF. Others are passed through.
1214 * Since the HP console requires CR+LF to perform a 'newline', we translate
1215 * "\n" to "\r\n".
1216 */
1217int pdc_iodc_print(const unsigned char *str, unsigned count)
1218{
1219        unsigned int i;
1220        unsigned long flags;
1221
1222        for (i = 0; i < count;) {
1223                switch(str[i]) {
1224                case '\n':
1225                        iodc_dbuf[i+0] = '\r';
1226                        iodc_dbuf[i+1] = '\n';
1227                        i += 2;
1228                        goto print;
1229                default:
1230                        iodc_dbuf[i] = str[i];
1231                        i++;
1232                        break;
1233                }
1234        }
1235
1236print:
1237        spin_lock_irqsave(&pdc_lock, flags);
1238        real32_call(PAGE0->mem_cons.iodc_io,
1239                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1240                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1241                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1242        spin_unlock_irqrestore(&pdc_lock, flags);
1243
1244        return i;
1245}
1246
1247#if !defined(BOOTLOADER)
1248/**
1249 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1250 *
1251 * Read a character (non-blocking) from the PDC console, returns -1 if
1252 * key is not present.
1253 */
1254int pdc_iodc_getc(void)
1255{
1256        int ch;
1257        int status;
1258        unsigned long flags;
1259
1260        /* Bail if no console input device. */
1261        if (!PAGE0->mem_kbd.iodc_io)
1262                return 0;
1263        
1264        /* wait for a keyboard (rs232)-input */
1265        spin_lock_irqsave(&pdc_lock, flags);
1266        real32_call(PAGE0->mem_kbd.iodc_io,
1267                    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1268                    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1269                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1270
1271        ch = *iodc_dbuf;
1272        status = *iodc_retbuf;
1273        spin_unlock_irqrestore(&pdc_lock, flags);
1274
1275        if (status == 0)
1276            return -1;
1277        
1278        return ch;
1279}
1280
1281int pdc_sti_call(unsigned long func, unsigned long flags,
1282                 unsigned long inptr, unsigned long outputr,
1283                 unsigned long glob_cfg)
1284{
1285        int retval;
1286        unsigned long irqflags;
1287
1288        spin_lock_irqsave(&pdc_lock, irqflags);  
1289        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1290        spin_unlock_irqrestore(&pdc_lock, irqflags);
1291
1292        return retval;
1293}
1294EXPORT_SYMBOL(pdc_sti_call);
1295
1296#ifdef CONFIG_64BIT
1297/**
1298 * pdc_pat_cell_get_number - Returns the cell number.
1299 * @cell_info: The return buffer.
1300 *
1301 * This PDC call returns the cell number of the cell from which the call
1302 * is made.
1303 */
1304int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1305{
1306        int retval;
1307        unsigned long flags;
1308
1309        spin_lock_irqsave(&pdc_lock, flags);
1310        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1311        memcpy(cell_info, pdc_result, sizeof(*cell_info));
1312        spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314        return retval;
1315}
1316
1317/**
1318 * pdc_pat_cell_module - Retrieve the cell's module information.
1319 * @actcnt: The number of bytes written to mem_addr.
1320 * @ploc: The physical location.
1321 * @mod: The module index.
1322 * @view_type: The view of the address type.
1323 * @mem_addr: The return buffer.
1324 *
1325 * This PDC call returns information about each module attached to the cell
1326 * at the specified location.
1327 */
1328int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1329                        unsigned long view_type, void *mem_addr)
1330{
1331        int retval;
1332        unsigned long flags;
1333        static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1334
1335        spin_lock_irqsave(&pdc_lock, flags);
1336        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1337                              ploc, mod, view_type, __pa(&result));
1338        if(!retval) {
1339                *actcnt = pdc_result[0];
1340                memcpy(mem_addr, &result, *actcnt);
1341        }
1342        spin_unlock_irqrestore(&pdc_lock, flags);
1343
1344        return retval;
1345}
1346
1347/**
1348 * pdc_pat_cell_info - Retrieve the cell's information.
1349 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1350 * @actcnt: The number of bytes which should be written to info.
1351 * @offset: offset of the structure.
1352 * @cell_number: The cell number which should be asked, or -1 for current cell.
1353 *
1354 * This PDC call returns information about the given cell (or all cells).
1355 */
1356int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1357                unsigned long *actcnt, unsigned long offset,
1358                unsigned long cell_number)
1359{
1360        int retval;
1361        unsigned long flags;
1362        struct pdc_pat_cell_info_rtn_block result;
1363
1364        spin_lock_irqsave(&pdc_lock, flags);
1365        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1366                        __pa(pdc_result), __pa(&result), *actcnt,
1367                        offset, cell_number);
1368        if (!retval) {
1369                *actcnt = pdc_result[0];
1370                memcpy(info, &result, *actcnt);
1371        }
1372        spin_unlock_irqrestore(&pdc_lock, flags);
1373
1374        return retval;
1375}
1376
1377/**
1378 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1379 * @cpu_info: The return buffer.
1380 * @hpa: The Hard Physical Address of the CPU.
1381 *
1382 * Retrieve the cpu number for the cpu at the specified HPA.
1383 */
1384int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1385{
1386        int retval;
1387        unsigned long flags;
1388
1389        spin_lock_irqsave(&pdc_lock, flags);
1390        retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1391                              __pa(&pdc_result), hpa);
1392        memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1393        spin_unlock_irqrestore(&pdc_lock, flags);
1394
1395        return retval;
1396}
1397
1398/**
1399 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1400 * @num_entries: The return value.
1401 * @cell_num: The target cell.
1402 *
1403 * This PDC function returns the number of entries in the specified cell's
1404 * interrupt table.
1405 */
1406int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1407{
1408        int retval;
1409        unsigned long flags;
1410
1411        spin_lock_irqsave(&pdc_lock, flags);
1412        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1413                              __pa(pdc_result), cell_num);
1414        *num_entries = pdc_result[0];
1415        spin_unlock_irqrestore(&pdc_lock, flags);
1416
1417        return retval;
1418}
1419
1420/**
1421 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1422 * @r_addr: The return buffer.
1423 * @cell_num: The target cell.
1424 *
1425 * This PDC function returns the actual interrupt table for the specified cell.
1426 */
1427int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1428{
1429        int retval;
1430        unsigned long flags;
1431
1432        spin_lock_irqsave(&pdc_lock, flags);
1433        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1434                              __pa(r_addr), cell_num);
1435        spin_unlock_irqrestore(&pdc_lock, flags);
1436
1437        return retval;
1438}
1439
1440/**
1441 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1442 * @actlen: The return buffer.
1443 * @mem_addr: Pointer to the memory buffer.
1444 * @count: The number of bytes to read from the buffer.
1445 * @offset: The offset with respect to the beginning of the buffer.
1446 *
1447 */
1448int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1449                            unsigned long count, unsigned long offset)
1450{
1451        int retval;
1452        unsigned long flags;
1453
1454        spin_lock_irqsave(&pdc_lock, flags);
1455        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1456                              __pa(pdc_result2), count, offset);
1457        *actual_len = pdc_result[0];
1458        memcpy(mem_addr, pdc_result2, *actual_len);
1459        spin_unlock_irqrestore(&pdc_lock, flags);
1460
1461        return retval;
1462}
1463
1464/**
1465 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1466 * @legacy_rev: The legacy revision.
1467 * @pat_rev: The PAT revision.
1468 * @pdc_cap: The PDC capabilities.
1469 *
1470 */
1471int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1472                unsigned long *pat_rev, unsigned long *pdc_cap)
1473{
1474        int retval;
1475        unsigned long flags;
1476
1477        spin_lock_irqsave(&pdc_lock, flags);
1478        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1479                                __pa(pdc_result));
1480        if (retval == PDC_OK) {
1481                *legacy_rev = pdc_result[0];
1482                *pat_rev = pdc_result[1];
1483                *pdc_cap = pdc_result[2];
1484        }
1485        spin_unlock_irqrestore(&pdc_lock, flags);
1486
1487        return retval;
1488}
1489
1490
1491/**
1492 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1493 * @pci_addr: PCI configuration space address for which the read request is being made.
1494 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1495 * @mem_addr: Pointer to return memory buffer.
1496 *
1497 */
1498int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1499{
1500        int retval;
1501        unsigned long flags;
1502
1503        spin_lock_irqsave(&pdc_lock, flags);
1504        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1505                                        __pa(pdc_result), pci_addr, pci_size);
1506        switch(pci_size) {
1507                case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1508                case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1509                case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1510        }
1511        spin_unlock_irqrestore(&pdc_lock, flags);
1512
1513        return retval;
1514}
1515
1516/**
1517 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1518 * @pci_addr: PCI configuration space address for which the write  request is being made.
1519 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1520 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1521 *         written to PCI Config space.
1522 *
1523 */
1524int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1525{
1526        int retval;
1527        unsigned long flags;
1528
1529        spin_lock_irqsave(&pdc_lock, flags);
1530        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1531                                pci_addr, pci_size, val);
1532        spin_unlock_irqrestore(&pdc_lock, flags);
1533
1534        return retval;
1535}
1536
1537/**
1538 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1539 * @rinfo: memory pdt information
1540 *
1541 */
1542int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1543{
1544        int retval;
1545        unsigned long flags;
1546
1547        spin_lock_irqsave(&pdc_lock, flags);
1548        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1549                        __pa(&pdc_result));
1550        if (retval == PDC_OK)
1551                memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1552        spin_unlock_irqrestore(&pdc_lock, flags);
1553
1554        return retval;
1555}
1556
1557/**
1558 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1559 *                              table of a cell
1560 * @rinfo: memory pdt information
1561 * @cell: cell number
1562 *
1563 */
1564int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1565                unsigned long cell)
1566{
1567        int retval;
1568        unsigned long flags;
1569
1570        spin_lock_irqsave(&pdc_lock, flags);
1571        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1572                        __pa(&pdc_result), cell);
1573        if (retval == PDC_OK)
1574                memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1575        spin_unlock_irqrestore(&pdc_lock, flags);
1576
1577        return retval;
1578}
1579
1580/**
1581 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1582 * @pret: array of PDT entries
1583 * @pdt_entries_ptr: ptr to hold number of PDT entries
1584 * @max_entries: maximum number of entries to be read
1585 *
1586 */
1587int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1588                unsigned long *pdt_entries_ptr, unsigned long max_entries)
1589{
1590        int retval;
1591        unsigned long flags, entries;
1592
1593        spin_lock_irqsave(&pdc_lock, flags);
1594        /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1595        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1596                        __pa(&pdc_result), parisc_cell_num,
1597                        __pa(pdt_entries_ptr));
1598
1599        if (retval == PDC_OK) {
1600                /* build up return value as for PDC_PAT_MEM_PD_READ */
1601                entries = min(pdc_result[0], max_entries);
1602                pret->pdt_entries = entries;
1603                pret->actual_count_bytes = entries * sizeof(unsigned long);
1604        }
1605
1606        spin_unlock_irqrestore(&pdc_lock, flags);
1607        WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1608
1609        return retval;
1610}
1611/**
1612 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1613 * @pret: array of PDT entries
1614 * @pdt_entries_ptr: ptr to hold number of PDT entries
1615 * @count: number of bytes to read
1616 * @offset: offset to start (in bytes)
1617 *
1618 */
1619int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1620                unsigned long *pdt_entries_ptr, unsigned long count,
1621                unsigned long offset)
1622{
1623        int retval;
1624        unsigned long flags, entries;
1625
1626        spin_lock_irqsave(&pdc_lock, flags);
1627        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1628                __pa(&pdc_result), __pa(pdt_entries_ptr),
1629                count, offset);
1630
1631        if (retval == PDC_OK) {
1632                entries = min(pdc_result[0], count);
1633                pret->actual_count_bytes = entries;
1634                pret->pdt_entries = entries / sizeof(unsigned long);
1635        }
1636
1637        spin_unlock_irqrestore(&pdc_lock, flags);
1638
1639        return retval;
1640}
1641
1642/**
1643 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1644 * @pret: ptr to hold returned information
1645 * @phys_addr: physical address to examine
1646 *
1647 */
1648int pdc_pat_mem_get_dimm_phys_location(
1649                struct pdc_pat_mem_phys_mem_location *pret,
1650                unsigned long phys_addr)
1651{
1652        int retval;
1653        unsigned long flags;
1654
1655        spin_lock_irqsave(&pdc_lock, flags);
1656        retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1657                __pa(&pdc_result), phys_addr);
1658
1659        if (retval == PDC_OK)
1660                memcpy(pret, &pdc_result, sizeof(*pret));
1661
1662        spin_unlock_irqrestore(&pdc_lock, flags);
1663
1664        return retval;
1665}
1666#endif /* CONFIG_64BIT */
1667#endif /* defined(BOOTLOADER) */
1668
1669
1670/***************** 32-bit real-mode calls ***********/
1671/* The struct below is used
1672 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1673 * real32_call_asm() then uses this stack in narrow real mode
1674 */
1675
1676struct narrow_stack {
1677        /* use int, not long which is 64 bits */
1678        unsigned int arg13;
1679        unsigned int arg12;
1680        unsigned int arg11;
1681        unsigned int arg10;
1682        unsigned int arg9;
1683        unsigned int arg8;
1684        unsigned int arg7;
1685        unsigned int arg6;
1686        unsigned int arg5;
1687        unsigned int arg4;
1688        unsigned int arg3;
1689        unsigned int arg2;
1690        unsigned int arg1;
1691        unsigned int arg0;
1692        unsigned int frame_marker[8];
1693        unsigned int sp;
1694        /* in reality, there's nearly 8k of stack after this */
1695};
1696
1697long real32_call(unsigned long fn, ...)
1698{
1699        va_list args;
1700        extern struct narrow_stack real_stack;
1701        extern unsigned long real32_call_asm(unsigned int *,
1702                                             unsigned int *, 
1703                                             unsigned int);
1704        
1705        va_start(args, fn);
1706        real_stack.arg0 = va_arg(args, unsigned int);
1707        real_stack.arg1 = va_arg(args, unsigned int);
1708        real_stack.arg2 = va_arg(args, unsigned int);
1709        real_stack.arg3 = va_arg(args, unsigned int);
1710        real_stack.arg4 = va_arg(args, unsigned int);
1711        real_stack.arg5 = va_arg(args, unsigned int);
1712        real_stack.arg6 = va_arg(args, unsigned int);
1713        real_stack.arg7 = va_arg(args, unsigned int);
1714        real_stack.arg8 = va_arg(args, unsigned int);
1715        real_stack.arg9 = va_arg(args, unsigned int);
1716        real_stack.arg10 = va_arg(args, unsigned int);
1717        real_stack.arg11 = va_arg(args, unsigned int);
1718        real_stack.arg12 = va_arg(args, unsigned int);
1719        real_stack.arg13 = va_arg(args, unsigned int);
1720        va_end(args);
1721        
1722        return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1723}
1724
1725#ifdef CONFIG_64BIT
1726/***************** 64-bit real-mode calls ***********/
1727
1728struct wide_stack {
1729        unsigned long arg0;
1730        unsigned long arg1;
1731        unsigned long arg2;
1732        unsigned long arg3;
1733        unsigned long arg4;
1734        unsigned long arg5;
1735        unsigned long arg6;
1736        unsigned long arg7;
1737        unsigned long arg8;
1738        unsigned long arg9;
1739        unsigned long arg10;
1740        unsigned long arg11;
1741        unsigned long arg12;
1742        unsigned long arg13;
1743        unsigned long frame_marker[2];  /* rp, previous sp */
1744        unsigned long sp;
1745        /* in reality, there's nearly 8k of stack after this */
1746};
1747
1748long real64_call(unsigned long fn, ...)
1749{
1750        va_list args;
1751        extern struct wide_stack real64_stack;
1752        extern unsigned long real64_call_asm(unsigned long *,
1753                                             unsigned long *, 
1754                                             unsigned long);
1755    
1756        va_start(args, fn);
1757        real64_stack.arg0 = va_arg(args, unsigned long);
1758        real64_stack.arg1 = va_arg(args, unsigned long);
1759        real64_stack.arg2 = va_arg(args, unsigned long);
1760        real64_stack.arg3 = va_arg(args, unsigned long);
1761        real64_stack.arg4 = va_arg(args, unsigned long);
1762        real64_stack.arg5 = va_arg(args, unsigned long);
1763        real64_stack.arg6 = va_arg(args, unsigned long);
1764        real64_stack.arg7 = va_arg(args, unsigned long);
1765        real64_stack.arg8 = va_arg(args, unsigned long);
1766        real64_stack.arg9 = va_arg(args, unsigned long);
1767        real64_stack.arg10 = va_arg(args, unsigned long);
1768        real64_stack.arg11 = va_arg(args, unsigned long);
1769        real64_stack.arg12 = va_arg(args, unsigned long);
1770        real64_stack.arg13 = va_arg(args, unsigned long);
1771        va_end(args);
1772        
1773        return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1774}
1775
1776#endif /* CONFIG_64BIT */
1777