linux/arch/parisc/mm/init.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/arch/parisc/mm/init.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 *  Copyright 1999 SuSE GmbH
   7 *    changed by Philipp Rumpf
   8 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   9 *  Copyright 2004 Randolph Chung (tausq@debian.org)
  10 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  11 *
  12 */
  13
  14
  15#include <linux/module.h>
  16#include <linux/mm.h>
  17#include <linux/memblock.h>
  18#include <linux/gfp.h>
  19#include <linux/delay.h>
  20#include <linux/init.h>
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>     /* for node_online_map */
  25#include <linux/pagemap.h>      /* for release_pages */
  26#include <linux/compat.h>
  27
  28#include <asm/pgalloc.h>
  29#include <asm/pgtable.h>
  30#include <asm/tlb.h>
  31#include <asm/pdc_chassis.h>
  32#include <asm/mmzone.h>
  33#include <asm/sections.h>
  34#include <asm/msgbuf.h>
  35#include <asm/sparsemem.h>
  36
  37extern int  data_start;
  38extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
  39
  40#if CONFIG_PGTABLE_LEVELS == 3
  41/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
  42 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
  43 * guarantee that global objects will be laid out in memory in the same order
  44 * as the order of declaration, so put these in different sections and use
  45 * the linker script to order them. */
  46pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
  47#endif
  48
  49pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
  50pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
  51
  52static struct resource data_resource = {
  53        .name   = "Kernel data",
  54        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  55};
  56
  57static struct resource code_resource = {
  58        .name   = "Kernel code",
  59        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  60};
  61
  62static struct resource pdcdata_resource = {
  63        .name   = "PDC data (Page Zero)",
  64        .start  = 0,
  65        .end    = 0x9ff,
  66        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  67};
  68
  69static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
  70
  71/* The following array is initialized from the firmware specific
  72 * information retrieved in kernel/inventory.c.
  73 */
  74
  75physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
  76int npmem_ranges __initdata;
  77
  78#ifdef CONFIG_64BIT
  79#define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
  80#else /* !CONFIG_64BIT */
  81#define MAX_MEM         (3584U*1024U*1024U)
  82#endif /* !CONFIG_64BIT */
  83
  84static unsigned long mem_limit __read_mostly = MAX_MEM;
  85
  86static void __init mem_limit_func(void)
  87{
  88        char *cp, *end;
  89        unsigned long limit;
  90
  91        /* We need this before __setup() functions are called */
  92
  93        limit = MAX_MEM;
  94        for (cp = boot_command_line; *cp; ) {
  95                if (memcmp(cp, "mem=", 4) == 0) {
  96                        cp += 4;
  97                        limit = memparse(cp, &end);
  98                        if (end != cp)
  99                                break;
 100                        cp = end;
 101                } else {
 102                        while (*cp != ' ' && *cp)
 103                                ++cp;
 104                        while (*cp == ' ')
 105                                ++cp;
 106                }
 107        }
 108
 109        if (limit < mem_limit)
 110                mem_limit = limit;
 111}
 112
 113#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 114
 115static void __init setup_bootmem(void)
 116{
 117        unsigned long mem_max;
 118#ifndef CONFIG_SPARSEMEM
 119        physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 120        int npmem_holes;
 121#endif
 122        int i, sysram_resource_count;
 123
 124        disable_sr_hashing(); /* Turn off space register hashing */
 125
 126        /*
 127         * Sort the ranges. Since the number of ranges is typically
 128         * small, and performance is not an issue here, just do
 129         * a simple insertion sort.
 130         */
 131
 132        for (i = 1; i < npmem_ranges; i++) {
 133                int j;
 134
 135                for (j = i; j > 0; j--) {
 136                        physmem_range_t tmp;
 137
 138                        if (pmem_ranges[j-1].start_pfn <
 139                            pmem_ranges[j].start_pfn) {
 140
 141                                break;
 142                        }
 143                        tmp = pmem_ranges[j-1];
 144                        pmem_ranges[j-1] = pmem_ranges[j];
 145                        pmem_ranges[j] = tmp;
 146                }
 147        }
 148
 149#ifndef CONFIG_SPARSEMEM
 150        /*
 151         * Throw out ranges that are too far apart (controlled by
 152         * MAX_GAP).
 153         */
 154
 155        for (i = 1; i < npmem_ranges; i++) {
 156                if (pmem_ranges[i].start_pfn -
 157                        (pmem_ranges[i-1].start_pfn +
 158                         pmem_ranges[i-1].pages) > MAX_GAP) {
 159                        npmem_ranges = i;
 160                        printk("Large gap in memory detected (%ld pages). "
 161                               "Consider turning on CONFIG_SPARSEMEM\n",
 162                               pmem_ranges[i].start_pfn -
 163                               (pmem_ranges[i-1].start_pfn +
 164                                pmem_ranges[i-1].pages));
 165                        break;
 166                }
 167        }
 168#endif
 169
 170        /* Print the memory ranges */
 171        pr_info("Memory Ranges:\n");
 172
 173        for (i = 0; i < npmem_ranges; i++) {
 174                struct resource *res = &sysram_resources[i];
 175                unsigned long start;
 176                unsigned long size;
 177
 178                size = (pmem_ranges[i].pages << PAGE_SHIFT);
 179                start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 180                pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 181                        i, start, start + (size - 1), size >> 20);
 182
 183                /* request memory resource */
 184                res->name = "System RAM";
 185                res->start = start;
 186                res->end = start + size - 1;
 187                res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 188                request_resource(&iomem_resource, res);
 189        }
 190
 191        sysram_resource_count = npmem_ranges;
 192
 193        /*
 194         * For 32 bit kernels we limit the amount of memory we can
 195         * support, in order to preserve enough kernel address space
 196         * for other purposes. For 64 bit kernels we don't normally
 197         * limit the memory, but this mechanism can be used to
 198         * artificially limit the amount of memory (and it is written
 199         * to work with multiple memory ranges).
 200         */
 201
 202        mem_limit_func();       /* check for "mem=" argument */
 203
 204        mem_max = 0;
 205        for (i = 0; i < npmem_ranges; i++) {
 206                unsigned long rsize;
 207
 208                rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 209                if ((mem_max + rsize) > mem_limit) {
 210                        printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 211                        if (mem_max == mem_limit)
 212                                npmem_ranges = i;
 213                        else {
 214                                pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 215                                                       - (mem_max >> PAGE_SHIFT);
 216                                npmem_ranges = i + 1;
 217                                mem_max = mem_limit;
 218                        }
 219                        break;
 220                }
 221                mem_max += rsize;
 222        }
 223
 224        printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 225
 226#ifndef CONFIG_SPARSEMEM
 227        /* Merge the ranges, keeping track of the holes */
 228        {
 229                unsigned long end_pfn;
 230                unsigned long hole_pages;
 231
 232                npmem_holes = 0;
 233                end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 234                for (i = 1; i < npmem_ranges; i++) {
 235
 236                        hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 237                        if (hole_pages) {
 238                                pmem_holes[npmem_holes].start_pfn = end_pfn;
 239                                pmem_holes[npmem_holes++].pages = hole_pages;
 240                                end_pfn += hole_pages;
 241                        }
 242                        end_pfn += pmem_ranges[i].pages;
 243                }
 244
 245                pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 246                npmem_ranges = 1;
 247        }
 248#endif
 249
 250        /*
 251         * Initialize and free the full range of memory in each range.
 252         */
 253
 254        max_pfn = 0;
 255        for (i = 0; i < npmem_ranges; i++) {
 256                unsigned long start_pfn;
 257                unsigned long npages;
 258                unsigned long start;
 259                unsigned long size;
 260
 261                start_pfn = pmem_ranges[i].start_pfn;
 262                npages = pmem_ranges[i].pages;
 263
 264                start = start_pfn << PAGE_SHIFT;
 265                size = npages << PAGE_SHIFT;
 266
 267                /* add system RAM memblock */
 268                memblock_add(start, size);
 269
 270                if ((start_pfn + npages) > max_pfn)
 271                        max_pfn = start_pfn + npages;
 272        }
 273
 274        /*
 275         * We can't use memblock top-down allocations because we only
 276         * created the initial mapping up to KERNEL_INITIAL_SIZE in
 277         * the assembly bootup code.
 278         */
 279        memblock_set_bottom_up(true);
 280
 281        /* IOMMU is always used to access "high mem" on those boxes
 282         * that can support enough mem that a PCI device couldn't
 283         * directly DMA to any physical addresses.
 284         * ISA DMA support will need to revisit this.
 285         */
 286        max_low_pfn = max_pfn;
 287
 288        /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 289
 290#define PDC_CONSOLE_IO_IODC_SIZE 32768
 291
 292        memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
 293                                PDC_CONSOLE_IO_IODC_SIZE));
 294        memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
 295                        (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
 296
 297#ifndef CONFIG_SPARSEMEM
 298
 299        /* reserve the holes */
 300
 301        for (i = 0; i < npmem_holes; i++) {
 302                memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
 303                                (pmem_holes[i].pages << PAGE_SHIFT));
 304        }
 305#endif
 306
 307#ifdef CONFIG_BLK_DEV_INITRD
 308        if (initrd_start) {
 309                printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 310                if (__pa(initrd_start) < mem_max) {
 311                        unsigned long initrd_reserve;
 312
 313                        if (__pa(initrd_end) > mem_max) {
 314                                initrd_reserve = mem_max - __pa(initrd_start);
 315                        } else {
 316                                initrd_reserve = initrd_end - initrd_start;
 317                        }
 318                        initrd_below_start_ok = 1;
 319                        printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 320
 321                        memblock_reserve(__pa(initrd_start), initrd_reserve);
 322                }
 323        }
 324#endif
 325
 326        data_resource.start =  virt_to_phys(&data_start);
 327        data_resource.end = virt_to_phys(_end) - 1;
 328        code_resource.start = virt_to_phys(_text);
 329        code_resource.end = virt_to_phys(&data_start)-1;
 330
 331        /* We don't know which region the kernel will be in, so try
 332         * all of them.
 333         */
 334        for (i = 0; i < sysram_resource_count; i++) {
 335                struct resource *res = &sysram_resources[i];
 336                request_resource(res, &code_resource);
 337                request_resource(res, &data_resource);
 338        }
 339        request_resource(&sysram_resources[0], &pdcdata_resource);
 340
 341        /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
 342        pdc_pdt_init();
 343
 344        memblock_allow_resize();
 345        memblock_dump_all();
 346}
 347
 348static bool kernel_set_to_readonly;
 349
 350static void __init map_pages(unsigned long start_vaddr,
 351                             unsigned long start_paddr, unsigned long size,
 352                             pgprot_t pgprot, int force)
 353{
 354        pgd_t *pg_dir;
 355        pmd_t *pmd;
 356        pte_t *pg_table;
 357        unsigned long end_paddr;
 358        unsigned long start_pmd;
 359        unsigned long start_pte;
 360        unsigned long tmp1;
 361        unsigned long tmp2;
 362        unsigned long address;
 363        unsigned long vaddr;
 364        unsigned long ro_start;
 365        unsigned long ro_end;
 366        unsigned long kernel_start, kernel_end;
 367
 368        ro_start = __pa((unsigned long)_text);
 369        ro_end   = __pa((unsigned long)&data_start);
 370        kernel_start = __pa((unsigned long)&__init_begin);
 371        kernel_end  = __pa((unsigned long)&_end);
 372
 373        end_paddr = start_paddr + size;
 374
 375        pg_dir = pgd_offset_k(start_vaddr);
 376
 377#if PTRS_PER_PMD == 1
 378        start_pmd = 0;
 379#else
 380        start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 381#endif
 382        start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 383
 384        address = start_paddr;
 385        vaddr = start_vaddr;
 386        while (address < end_paddr) {
 387#if PTRS_PER_PMD == 1
 388                pmd = (pmd_t *)__pa(pg_dir);
 389#else
 390                pmd = (pmd_t *)pgd_address(*pg_dir);
 391
 392                /*
 393                 * pmd is physical at this point
 394                 */
 395
 396                if (!pmd) {
 397                        pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
 398                                             PAGE_SIZE << PMD_ORDER);
 399                        if (!pmd)
 400                                panic("pmd allocation failed.\n");
 401                        pmd = (pmd_t *) __pa(pmd);
 402                }
 403
 404                pgd_populate(NULL, pg_dir, __va(pmd));
 405#endif
 406                pg_dir++;
 407
 408                /* now change pmd to kernel virtual addresses */
 409
 410                pmd = (pmd_t *)__va(pmd) + start_pmd;
 411                for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 412
 413                        /*
 414                         * pg_table is physical at this point
 415                         */
 416
 417                        pg_table = (pte_t *)pmd_address(*pmd);
 418                        if (!pg_table) {
 419                                pg_table = memblock_alloc(PAGE_SIZE,
 420                                                          PAGE_SIZE);
 421                                if (!pg_table)
 422                                        panic("page table allocation failed\n");
 423                                pg_table = (pte_t *) __pa(pg_table);
 424                        }
 425
 426                        pmd_populate_kernel(NULL, pmd, __va(pg_table));
 427
 428                        /* now change pg_table to kernel virtual addresses */
 429
 430                        pg_table = (pte_t *) __va(pg_table) + start_pte;
 431                        for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 432                                pte_t pte;
 433                                pgprot_t prot;
 434                                bool huge = false;
 435
 436                                if (force) {
 437                                        prot = pgprot;
 438                                } else if (address < kernel_start || address >= kernel_end) {
 439                                        /* outside kernel memory */
 440                                        prot = PAGE_KERNEL;
 441                                } else if (!kernel_set_to_readonly) {
 442                                        /* still initializing, allow writing to RO memory */
 443                                        prot = PAGE_KERNEL_RWX;
 444                                        huge = true;
 445                                } else if (address >= ro_start) {
 446                                        /* Code (ro) and Data areas */
 447                                        prot = (address < ro_end) ?
 448                                                PAGE_KERNEL_EXEC : PAGE_KERNEL;
 449                                        huge = true;
 450                                } else {
 451                                        prot = PAGE_KERNEL;
 452                                }
 453
 454                                pte = __mk_pte(address, prot);
 455                                if (huge)
 456                                        pte = pte_mkhuge(pte);
 457
 458                                if (address >= end_paddr)
 459                                        break;
 460
 461                                set_pte(pg_table, pte);
 462
 463                                address += PAGE_SIZE;
 464                                vaddr += PAGE_SIZE;
 465                        }
 466                        start_pte = 0;
 467
 468                        if (address >= end_paddr)
 469                            break;
 470                }
 471                start_pmd = 0;
 472        }
 473}
 474
 475void __init set_kernel_text_rw(int enable_read_write)
 476{
 477        unsigned long start = (unsigned long) __init_begin;
 478        unsigned long end   = (unsigned long) &data_start;
 479
 480        map_pages(start, __pa(start), end-start,
 481                PAGE_KERNEL_RWX, enable_read_write ? 1:0);
 482
 483        /* force the kernel to see the new page table entries */
 484        flush_cache_all();
 485        flush_tlb_all();
 486}
 487
 488void __ref free_initmem(void)
 489{
 490        unsigned long init_begin = (unsigned long)__init_begin;
 491        unsigned long init_end = (unsigned long)__init_end;
 492        unsigned long kernel_end  = (unsigned long)&_end;
 493
 494        /* Remap kernel text and data, but do not touch init section yet. */
 495        kernel_set_to_readonly = true;
 496        map_pages(init_end, __pa(init_end), kernel_end - init_end,
 497                  PAGE_KERNEL, 0);
 498
 499        /* The init text pages are marked R-X.  We have to
 500         * flush the icache and mark them RW-
 501         *
 502         * This is tricky, because map_pages is in the init section.
 503         * Do a dummy remap of the data section first (the data
 504         * section is already PAGE_KERNEL) to pull in the TLB entries
 505         * for map_kernel */
 506        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 507                  PAGE_KERNEL_RWX, 1);
 508        /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 509         * map_pages */
 510        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 511                  PAGE_KERNEL, 1);
 512
 513        /* force the kernel to see the new TLB entries */
 514        __flush_tlb_range(0, init_begin, kernel_end);
 515
 516        /* finally dump all the instructions which were cached, since the
 517         * pages are no-longer executable */
 518        flush_icache_range(init_begin, init_end);
 519        
 520        free_initmem_default(POISON_FREE_INITMEM);
 521
 522        /* set up a new led state on systems shipped LED State panel */
 523        pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 524}
 525
 526
 527#ifdef CONFIG_STRICT_KERNEL_RWX
 528void mark_rodata_ro(void)
 529{
 530        /* rodata memory was already mapped with KERNEL_RO access rights by
 531           pagetable_init() and map_pages(). No need to do additional stuff here */
 532        unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
 533
 534        pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
 535}
 536#endif
 537
 538
 539/*
 540 * Just an arbitrary offset to serve as a "hole" between mapping areas
 541 * (between top of physical memory and a potential pcxl dma mapping
 542 * area, and below the vmalloc mapping area).
 543 *
 544 * The current 32K value just means that there will be a 32K "hole"
 545 * between mapping areas. That means that  any out-of-bounds memory
 546 * accesses will hopefully be caught. The vmalloc() routines leaves
 547 * a hole of 4kB between each vmalloced area for the same reason.
 548 */
 549
 550 /* Leave room for gateway page expansion */
 551#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 552#error KERNEL_MAP_START is in gateway reserved region
 553#endif
 554#define MAP_START (KERNEL_MAP_START)
 555
 556#define VM_MAP_OFFSET  (32*1024)
 557#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 558                                     & ~(VM_MAP_OFFSET-1)))
 559
 560void *parisc_vmalloc_start __ro_after_init;
 561EXPORT_SYMBOL(parisc_vmalloc_start);
 562
 563#ifdef CONFIG_PA11
 564unsigned long pcxl_dma_start __ro_after_init;
 565#endif
 566
 567void __init mem_init(void)
 568{
 569        /* Do sanity checks on IPC (compat) structures */
 570        BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
 571#ifndef CONFIG_64BIT
 572        BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
 573        BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
 574        BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
 575#endif
 576#ifdef CONFIG_COMPAT
 577        BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
 578        BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
 579        BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
 580        BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
 581#endif
 582
 583        /* Do sanity checks on page table constants */
 584        BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 585        BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 586        BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 587        BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 588                        > BITS_PER_LONG);
 589
 590        high_memory = __va((max_pfn << PAGE_SHIFT));
 591        set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
 592        memblock_free_all();
 593
 594#ifdef CONFIG_PA11
 595        if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
 596                pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 597                parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 598                                                + PCXL_DMA_MAP_SIZE);
 599        } else
 600#endif
 601                parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 602
 603        mem_init_print_info(NULL);
 604
 605#if 0
 606        /*
 607         * Do not expose the virtual kernel memory layout to userspace.
 608         * But keep code for debugging purposes.
 609         */
 610        printk("virtual kernel memory layout:\n"
 611               "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
 612               "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
 613               "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
 614               "       .init : 0x%px - 0x%px   (%4ld kB)\n"
 615               "       .data : 0x%px - 0x%px   (%4ld kB)\n"
 616               "       .text : 0x%px - 0x%px   (%4ld kB)\n",
 617
 618               (void*)VMALLOC_START, (void*)VMALLOC_END,
 619               (VMALLOC_END - VMALLOC_START) >> 20,
 620
 621               (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
 622               (unsigned long)(FIXMAP_SIZE / 1024),
 623
 624               __va(0), high_memory,
 625               ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 626
 627               __init_begin, __init_end,
 628               ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 629
 630               _etext, _edata,
 631               ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 632
 633               _text, _etext,
 634               ((unsigned long)_etext - (unsigned long)_text) >> 10);
 635#endif
 636}
 637
 638unsigned long *empty_zero_page __ro_after_init;
 639EXPORT_SYMBOL(empty_zero_page);
 640
 641/*
 642 * pagetable_init() sets up the page tables
 643 *
 644 * Note that gateway_init() places the Linux gateway page at page 0.
 645 * Since gateway pages cannot be dereferenced this has the desirable
 646 * side effect of trapping those pesky NULL-reference errors in the
 647 * kernel.
 648 */
 649static void __init pagetable_init(void)
 650{
 651        int range;
 652
 653        /* Map each physical memory range to its kernel vaddr */
 654
 655        for (range = 0; range < npmem_ranges; range++) {
 656                unsigned long start_paddr;
 657                unsigned long end_paddr;
 658                unsigned long size;
 659
 660                start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 661                size = pmem_ranges[range].pages << PAGE_SHIFT;
 662                end_paddr = start_paddr + size;
 663
 664                map_pages((unsigned long)__va(start_paddr), start_paddr,
 665                          size, PAGE_KERNEL, 0);
 666        }
 667
 668#ifdef CONFIG_BLK_DEV_INITRD
 669        if (initrd_end && initrd_end > mem_limit) {
 670                printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 671                map_pages(initrd_start, __pa(initrd_start),
 672                          initrd_end - initrd_start, PAGE_KERNEL, 0);
 673        }
 674#endif
 675
 676        empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 677        if (!empty_zero_page)
 678                panic("zero page allocation failed.\n");
 679
 680}
 681
 682static void __init gateway_init(void)
 683{
 684        unsigned long linux_gateway_page_addr;
 685        /* FIXME: This is 'const' in order to trick the compiler
 686           into not treating it as DP-relative data. */
 687        extern void * const linux_gateway_page;
 688
 689        linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 690
 691        /*
 692         * Setup Linux Gateway page.
 693         *
 694         * The Linux gateway page will reside in kernel space (on virtual
 695         * page 0), so it doesn't need to be aliased into user space.
 696         */
 697
 698        map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 699                  PAGE_SIZE, PAGE_GATEWAY, 1);
 700}
 701
 702static void __init parisc_bootmem_free(void)
 703{
 704        unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 705        unsigned long holes_size[MAX_NR_ZONES] = { 0, };
 706        unsigned long mem_start_pfn = ~0UL, mem_end_pfn = 0, mem_size_pfn = 0;
 707        int i;
 708
 709        for (i = 0; i < npmem_ranges; i++) {
 710                unsigned long start = pmem_ranges[i].start_pfn;
 711                unsigned long size = pmem_ranges[i].pages;
 712                unsigned long end = start + size;
 713
 714                if (mem_start_pfn > start)
 715                        mem_start_pfn = start;
 716                if (mem_end_pfn < end)
 717                        mem_end_pfn = end;
 718                mem_size_pfn += size;
 719        }
 720
 721        zones_size[0] = mem_end_pfn - mem_start_pfn;
 722        holes_size[0] = zones_size[0] - mem_size_pfn;
 723
 724        free_area_init_node(0, zones_size, mem_start_pfn, holes_size);
 725}
 726
 727void __init paging_init(void)
 728{
 729        setup_bootmem();
 730        pagetable_init();
 731        gateway_init();
 732        flush_cache_all_local(); /* start with known state */
 733        flush_tlb_all_local(NULL);
 734
 735        /*
 736         * Mark all memblocks as present for sparsemem using
 737         * memory_present() and then initialize sparsemem.
 738         */
 739        memblocks_present();
 740        sparse_init();
 741        parisc_bootmem_free();
 742}
 743
 744#ifdef CONFIG_PA20
 745
 746/*
 747 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 748 * limiting factor (space ids are 32 bits).
 749 */
 750
 751#define NR_SPACE_IDS 262144
 752
 753#else
 754
 755/*
 756 * Currently we have a one-to-one relationship between space IDs and
 757 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 758 * support 15 bit protection IDs, so that is the limiting factor.
 759 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 760 * probably not worth the effort for a special case here.
 761 */
 762
 763#define NR_SPACE_IDS 32768
 764
 765#endif  /* !CONFIG_PA20 */
 766
 767#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 768#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 769
 770static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 771static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 772static unsigned long space_id_index;
 773static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 774static unsigned long dirty_space_ids = 0;
 775
 776static DEFINE_SPINLOCK(sid_lock);
 777
 778unsigned long alloc_sid(void)
 779{
 780        unsigned long index;
 781
 782        spin_lock(&sid_lock);
 783
 784        if (free_space_ids == 0) {
 785                if (dirty_space_ids != 0) {
 786                        spin_unlock(&sid_lock);
 787                        flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 788                        spin_lock(&sid_lock);
 789                }
 790                BUG_ON(free_space_ids == 0);
 791        }
 792
 793        free_space_ids--;
 794
 795        index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 796        space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 797        space_id_index = index;
 798
 799        spin_unlock(&sid_lock);
 800
 801        return index << SPACEID_SHIFT;
 802}
 803
 804void free_sid(unsigned long spaceid)
 805{
 806        unsigned long index = spaceid >> SPACEID_SHIFT;
 807        unsigned long *dirty_space_offset;
 808
 809        dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 810        index &= (BITS_PER_LONG - 1);
 811
 812        spin_lock(&sid_lock);
 813
 814        BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
 815
 816        *dirty_space_offset |= (1L << index);
 817        dirty_space_ids++;
 818
 819        spin_unlock(&sid_lock);
 820}
 821
 822
 823#ifdef CONFIG_SMP
 824static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
 825{
 826        int i;
 827
 828        /* NOTE: sid_lock must be held upon entry */
 829
 830        *ndirtyptr = dirty_space_ids;
 831        if (dirty_space_ids != 0) {
 832            for (i = 0; i < SID_ARRAY_SIZE; i++) {
 833                dirty_array[i] = dirty_space_id[i];
 834                dirty_space_id[i] = 0;
 835            }
 836            dirty_space_ids = 0;
 837        }
 838
 839        return;
 840}
 841
 842static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
 843{
 844        int i;
 845
 846        /* NOTE: sid_lock must be held upon entry */
 847
 848        if (ndirty != 0) {
 849                for (i = 0; i < SID_ARRAY_SIZE; i++) {
 850                        space_id[i] ^= dirty_array[i];
 851                }
 852
 853                free_space_ids += ndirty;
 854                space_id_index = 0;
 855        }
 856}
 857
 858#else /* CONFIG_SMP */
 859
 860static void recycle_sids(void)
 861{
 862        int i;
 863
 864        /* NOTE: sid_lock must be held upon entry */
 865
 866        if (dirty_space_ids != 0) {
 867                for (i = 0; i < SID_ARRAY_SIZE; i++) {
 868                        space_id[i] ^= dirty_space_id[i];
 869                        dirty_space_id[i] = 0;
 870                }
 871
 872                free_space_ids += dirty_space_ids;
 873                dirty_space_ids = 0;
 874                space_id_index = 0;
 875        }
 876}
 877#endif
 878
 879/*
 880 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
 881 * purged, we can safely reuse the space ids that were released but
 882 * not flushed from the tlb.
 883 */
 884
 885#ifdef CONFIG_SMP
 886
 887static unsigned long recycle_ndirty;
 888static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
 889static unsigned int recycle_inuse;
 890
 891void flush_tlb_all(void)
 892{
 893        int do_recycle;
 894
 895        __inc_irq_stat(irq_tlb_count);
 896        do_recycle = 0;
 897        spin_lock(&sid_lock);
 898        if (dirty_space_ids > RECYCLE_THRESHOLD) {
 899            BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
 900            get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
 901            recycle_inuse++;
 902            do_recycle++;
 903        }
 904        spin_unlock(&sid_lock);
 905        on_each_cpu(flush_tlb_all_local, NULL, 1);
 906        if (do_recycle) {
 907            spin_lock(&sid_lock);
 908            recycle_sids(recycle_ndirty,recycle_dirty_array);
 909            recycle_inuse = 0;
 910            spin_unlock(&sid_lock);
 911        }
 912}
 913#else
 914void flush_tlb_all(void)
 915{
 916        __inc_irq_stat(irq_tlb_count);
 917        spin_lock(&sid_lock);
 918        flush_tlb_all_local(NULL);
 919        recycle_sids();
 920        spin_unlock(&sid_lock);
 921}
 922#endif
 923