linux/arch/powerpc/include/asm/kvm_book3s_64.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 *
   4 * Copyright SUSE Linux Products GmbH 2010
   5 *
   6 * Authors: Alexander Graf <agraf@suse.de>
   7 */
   8
   9#ifndef __ASM_KVM_BOOK3S_64_H__
  10#define __ASM_KVM_BOOK3S_64_H__
  11
  12#include <linux/string.h>
  13#include <asm/bitops.h>
  14#include <asm/book3s/64/mmu-hash.h>
  15#include <asm/cpu_has_feature.h>
  16#include <asm/ppc-opcode.h>
  17
  18#ifdef CONFIG_PPC_PSERIES
  19static inline bool kvmhv_on_pseries(void)
  20{
  21        return !cpu_has_feature(CPU_FTR_HVMODE);
  22}
  23#else
  24static inline bool kvmhv_on_pseries(void)
  25{
  26        return false;
  27}
  28#endif
  29
  30/*
  31 * Structure for a nested guest, that is, for a guest that is managed by
  32 * one of our guests.
  33 */
  34struct kvm_nested_guest {
  35        struct kvm *l1_host;            /* L1 VM that owns this nested guest */
  36        int l1_lpid;                    /* lpid L1 guest thinks this guest is */
  37        int shadow_lpid;                /* real lpid of this nested guest */
  38        pgd_t *shadow_pgtable;          /* our page table for this guest */
  39        u64 l1_gr_to_hr;                /* L1's addr of part'n-scoped table */
  40        u64 process_table;              /* process table entry for this guest */
  41        long refcnt;                    /* number of pointers to this struct */
  42        struct mutex tlb_lock;          /* serialize page faults and tlbies */
  43        struct kvm_nested_guest *next;
  44        cpumask_t need_tlb_flush;
  45        cpumask_t cpu_in_guest;
  46        short prev_cpu[NR_CPUS];
  47        u8 radix;                       /* is this nested guest radix */
  48};
  49
  50/*
  51 * We define a nested rmap entry as a single 64-bit quantity
  52 * 0xFFF0000000000000   12-bit lpid field
  53 * 0x000FFFFFFFFFF000   40-bit guest 4k page frame number
  54 * 0x0000000000000001   1-bit  single entry flag
  55 */
  56#define RMAP_NESTED_LPID_MASK           0xFFF0000000000000UL
  57#define RMAP_NESTED_LPID_SHIFT          (52)
  58#define RMAP_NESTED_GPA_MASK            0x000FFFFFFFFFF000UL
  59#define RMAP_NESTED_IS_SINGLE_ENTRY     0x0000000000000001UL
  60
  61/* Structure for a nested guest rmap entry */
  62struct rmap_nested {
  63        struct llist_node list;
  64        u64 rmap;
  65};
  66
  67/*
  68 * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
  69 *                           safe against removal of the list entry or NULL list
  70 * @pos:        a (struct rmap_nested *) to use as a loop cursor
  71 * @node:       pointer to the first entry
  72 *              NOTE: this can be NULL
  73 * @rmapp:      an (unsigned long *) in which to return the rmap entries on each
  74 *              iteration
  75 *              NOTE: this must point to already allocated memory
  76 *
  77 * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
  78 * rmap entry in the memslot. The list is always terminated by a "single entry"
  79 * stored in the list element of the final entry of the llist. If there is ONLY
  80 * a single entry then this is itself in the rmap entry of the memslot, not a
  81 * llist head pointer.
  82 *
  83 * Note that the iterator below assumes that a nested rmap entry is always
  84 * non-zero.  This is true for our usage because the LPID field is always
  85 * non-zero (zero is reserved for the host).
  86 *
  87 * This should be used to iterate over the list of rmap_nested entries with
  88 * processing done on the u64 rmap value given by each iteration. This is safe
  89 * against removal of list entries and it is always safe to call free on (pos).
  90 *
  91 * e.g.
  92 * struct rmap_nested *cursor;
  93 * struct llist_node *first;
  94 * unsigned long rmap;
  95 * for_each_nest_rmap_safe(cursor, first, &rmap) {
  96 *      do_something(rmap);
  97 *      free(cursor);
  98 * }
  99 */
 100#define for_each_nest_rmap_safe(pos, node, rmapp)                              \
 101        for ((pos) = llist_entry((node), typeof(*(pos)), list);                \
 102             (node) &&                                                         \
 103             (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \
 104                          ((u64) (node)) : ((pos)->rmap))) &&                  \
 105             (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \
 106                         ((struct llist_node *) ((pos) = NULL)) :              \
 107                         (pos)->list.next)), true);                            \
 108             (pos) = llist_entry((node), typeof(*(pos)), list))
 109
 110struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
 111                                          bool create);
 112void kvmhv_put_nested(struct kvm_nested_guest *gp);
 113int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
 114
 115/* Encoding of first parameter for H_TLB_INVALIDATE */
 116#define H_TLBIE_P1_ENC(ric, prs, r)     (___PPC_RIC(ric) | ___PPC_PRS(prs) | \
 117                                         ___PPC_R(r))
 118
 119/* Power architecture requires HPT is at least 256kiB, at most 64TiB */
 120#define PPC_MIN_HPT_ORDER       18
 121#define PPC_MAX_HPT_ORDER       46
 122
 123#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
 124static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
 125{
 126        preempt_disable();
 127        return &get_paca()->shadow_vcpu;
 128}
 129
 130static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
 131{
 132        preempt_enable();
 133}
 134#endif
 135
 136#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 137
 138static inline bool kvm_is_radix(struct kvm *kvm)
 139{
 140        return kvm->arch.radix;
 141}
 142
 143static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
 144{
 145        bool radix;
 146
 147        if (vcpu->arch.nested)
 148                radix = vcpu->arch.nested->radix;
 149        else
 150                radix = kvm_is_radix(vcpu->kvm);
 151
 152        return radix;
 153}
 154
 155#define KVM_DEFAULT_HPT_ORDER   24      /* 16MB HPT by default */
 156#endif
 157
 158/*
 159 * We use a lock bit in HPTE dword 0 to synchronize updates and
 160 * accesses to each HPTE, and another bit to indicate non-present
 161 * HPTEs.
 162 */
 163#define HPTE_V_HVLOCK   0x40UL
 164#define HPTE_V_ABSENT   0x20UL
 165
 166/*
 167 * We use this bit in the guest_rpte field of the revmap entry
 168 * to indicate a modified HPTE.
 169 */
 170#define HPTE_GR_MODIFIED        (1ul << 62)
 171
 172/* These bits are reserved in the guest view of the HPTE */
 173#define HPTE_GR_RESERVED        HPTE_GR_MODIFIED
 174
 175static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
 176{
 177        unsigned long tmp, old;
 178        __be64 be_lockbit, be_bits;
 179
 180        /*
 181         * We load/store in native endian, but the HTAB is in big endian. If
 182         * we byte swap all data we apply on the PTE we're implicitly correct
 183         * again.
 184         */
 185        be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
 186        be_bits = cpu_to_be64(bits);
 187
 188        asm volatile("  ldarx   %0,0,%2\n"
 189                     "  and.    %1,%0,%3\n"
 190                     "  bne     2f\n"
 191                     "  or      %0,%0,%4\n"
 192                     "  stdcx.  %0,0,%2\n"
 193                     "  beq+    2f\n"
 194                     "  mr      %1,%3\n"
 195                     "2:        isync"
 196                     : "=&r" (tmp), "=&r" (old)
 197                     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
 198                     : "cc", "memory");
 199        return old == 0;
 200}
 201
 202static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
 203{
 204        hpte_v &= ~HPTE_V_HVLOCK;
 205        asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
 206        hpte[0] = cpu_to_be64(hpte_v);
 207}
 208
 209/* Without barrier */
 210static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
 211{
 212        hpte_v &= ~HPTE_V_HVLOCK;
 213        hpte[0] = cpu_to_be64(hpte_v);
 214}
 215
 216/*
 217 * These functions encode knowledge of the POWER7/8/9 hardware
 218 * interpretations of the HPTE LP (large page size) field.
 219 */
 220static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
 221{
 222        unsigned int lphi;
 223
 224        if (!(h & HPTE_V_LARGE))
 225                return 12;      /* 4kB */
 226        lphi = (l >> 16) & 0xf;
 227        switch ((l >> 12) & 0xf) {
 228        case 0:
 229                return !lphi ? 24 : 0;          /* 16MB */
 230                break;
 231        case 1:
 232                return 16;                      /* 64kB */
 233                break;
 234        case 3:
 235                return !lphi ? 34 : 0;          /* 16GB */
 236                break;
 237        case 7:
 238                return (16 << 8) + 12;          /* 64kB in 4kB */
 239                break;
 240        case 8:
 241                if (!lphi)
 242                        return (24 << 8) + 16;  /* 16MB in 64kkB */
 243                if (lphi == 3)
 244                        return (24 << 8) + 12;  /* 16MB in 4kB */
 245                break;
 246        }
 247        return 0;
 248}
 249
 250static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
 251{
 252        return kvmppc_hpte_page_shifts(h, l) & 0xff;
 253}
 254
 255static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
 256{
 257        int tmp = kvmppc_hpte_page_shifts(h, l);
 258
 259        if (tmp >= 0x100)
 260                tmp >>= 8;
 261        return tmp;
 262}
 263
 264static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
 265{
 266        int shift = kvmppc_hpte_actual_page_shift(v, r);
 267
 268        if (shift)
 269                return 1ul << shift;
 270        return 0;
 271}
 272
 273static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
 274{
 275        switch (base_shift) {
 276        case 12:
 277                switch (actual_shift) {
 278                case 12:
 279                        return 0;
 280                case 16:
 281                        return 7;
 282                case 24:
 283                        return 0x38;
 284                }
 285                break;
 286        case 16:
 287                switch (actual_shift) {
 288                case 16:
 289                        return 1;
 290                case 24:
 291                        return 8;
 292                }
 293                break;
 294        case 24:
 295                return 0;
 296        }
 297        return -1;
 298}
 299
 300static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
 301                                             unsigned long pte_index)
 302{
 303        int a_pgshift, b_pgshift;
 304        unsigned long rb = 0, va_low, sllp;
 305
 306        b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
 307        if (a_pgshift >= 0x100) {
 308                b_pgshift &= 0xff;
 309                a_pgshift >>= 8;
 310        }
 311
 312        /*
 313         * Ignore the top 14 bits of va
 314         * v have top two bits covering segment size, hence move
 315         * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
 316         * AVA field in v also have the lower 23 bits ignored.
 317         * For base page size 4K we need 14 .. 65 bits (so need to
 318         * collect extra 11 bits)
 319         * For others we need 14..14+i
 320         */
 321        /* This covers 14..54 bits of va*/
 322        rb = (v & ~0x7fUL) << 16;               /* AVA field */
 323
 324        /*
 325         * AVA in v had cleared lower 23 bits. We need to derive
 326         * that from pteg index
 327         */
 328        va_low = pte_index >> 3;
 329        if (v & HPTE_V_SECONDARY)
 330                va_low = ~va_low;
 331        /*
 332         * get the vpn bits from va_low using reverse of hashing.
 333         * In v we have va with 23 bits dropped and then left shifted
 334         * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
 335         * right shift it with (SID_SHIFT - (23 - 7))
 336         */
 337        if (!(v & HPTE_V_1TB_SEG))
 338                va_low ^= v >> (SID_SHIFT - 16);
 339        else
 340                va_low ^= v >> (SID_SHIFT_1T - 16);
 341        va_low &= 0x7ff;
 342
 343        if (b_pgshift <= 12) {
 344                if (a_pgshift > 12) {
 345                        sllp = (a_pgshift == 16) ? 5 : 4;
 346                        rb |= sllp << 5;        /*  AP field */
 347                }
 348                rb |= (va_low & 0x7ff) << 12;   /* remaining 11 bits of AVA */
 349        } else {
 350                int aval_shift;
 351                /*
 352                 * remaining bits of AVA/LP fields
 353                 * Also contain the rr bits of LP
 354                 */
 355                rb |= (va_low << b_pgshift) & 0x7ff000;
 356                /*
 357                 * Now clear not needed LP bits based on actual psize
 358                 */
 359                rb &= ~((1ul << a_pgshift) - 1);
 360                /*
 361                 * AVAL field 58..77 - base_page_shift bits of va
 362                 * we have space for 58..64 bits, Missing bits should
 363                 * be zero filled. +1 is to take care of L bit shift
 364                 */
 365                aval_shift = 64 - (77 - b_pgshift) + 1;
 366                rb |= ((va_low << aval_shift) & 0xfe);
 367
 368                rb |= 1;                /* L field */
 369                rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
 370        }
 371        rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;   /* B field */
 372        return rb;
 373}
 374
 375static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
 376{
 377        return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
 378}
 379
 380static inline int hpte_is_writable(unsigned long ptel)
 381{
 382        unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
 383
 384        return pp != PP_RXRX && pp != PP_RXXX;
 385}
 386
 387static inline unsigned long hpte_make_readonly(unsigned long ptel)
 388{
 389        if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
 390                ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
 391        else
 392                ptel |= PP_RXRX;
 393        return ptel;
 394}
 395
 396static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
 397{
 398        unsigned int wimg = hptel & HPTE_R_WIMG;
 399
 400        /* Handle SAO */
 401        if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
 402            cpu_has_feature(CPU_FTR_ARCH_206))
 403                wimg = HPTE_R_M;
 404
 405        if (!is_ci)
 406                return wimg == HPTE_R_M;
 407        /*
 408         * if host is mapped cache inhibited, make sure hptel also have
 409         * cache inhibited.
 410         */
 411        if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
 412                return false;
 413        return !!(wimg & HPTE_R_I);
 414}
 415
 416/*
 417 * If it's present and writable, atomically set dirty and referenced bits and
 418 * return the PTE, otherwise return 0.
 419 */
 420static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
 421{
 422        pte_t old_pte, new_pte = __pte(0);
 423
 424        while (1) {
 425                /*
 426                 * Make sure we don't reload from ptep
 427                 */
 428                old_pte = READ_ONCE(*ptep);
 429                /*
 430                 * wait until H_PAGE_BUSY is clear then set it atomically
 431                 */
 432                if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
 433                        cpu_relax();
 434                        continue;
 435                }
 436                /* If pte is not present return None */
 437                if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
 438                        return __pte(0);
 439
 440                new_pte = pte_mkyoung(old_pte);
 441                if (writing && pte_write(old_pte))
 442                        new_pte = pte_mkdirty(new_pte);
 443
 444                if (pte_xchg(ptep, old_pte, new_pte))
 445                        break;
 446        }
 447        return new_pte;
 448}
 449
 450static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
 451{
 452        if (key)
 453                return PP_RWRX <= pp && pp <= PP_RXRX;
 454        return true;
 455}
 456
 457static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
 458{
 459        if (key)
 460                return pp == PP_RWRW;
 461        return pp <= PP_RWRW;
 462}
 463
 464static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
 465{
 466        unsigned long skey;
 467
 468        skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
 469                ((hpte_r & HPTE_R_KEY_LO) >> 9);
 470        return (amr >> (62 - 2 * skey)) & 3;
 471}
 472
 473static inline void lock_rmap(unsigned long *rmap)
 474{
 475        do {
 476                while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
 477                        cpu_relax();
 478        } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
 479}
 480
 481static inline void unlock_rmap(unsigned long *rmap)
 482{
 483        __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
 484}
 485
 486static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
 487                                   unsigned long pagesize)
 488{
 489        unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
 490
 491        if (pagesize <= PAGE_SIZE)
 492                return true;
 493        return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
 494}
 495
 496/*
 497 * This works for 4k, 64k and 16M pages on POWER7,
 498 * and 4k and 16M pages on PPC970.
 499 */
 500static inline unsigned long slb_pgsize_encoding(unsigned long psize)
 501{
 502        unsigned long senc = 0;
 503
 504        if (psize > 0x1000) {
 505                senc = SLB_VSID_L;
 506                if (psize == 0x10000)
 507                        senc |= SLB_VSID_LP_01;
 508        }
 509        return senc;
 510}
 511
 512static inline int is_vrma_hpte(unsigned long hpte_v)
 513{
 514        return (hpte_v & ~0xffffffUL) ==
 515                (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
 516}
 517
 518#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 519/*
 520 * Note modification of an HPTE; set the HPTE modified bit
 521 * if anyone is interested.
 522 */
 523static inline void note_hpte_modification(struct kvm *kvm,
 524                                          struct revmap_entry *rev)
 525{
 526        if (atomic_read(&kvm->arch.hpte_mod_interest))
 527                rev->guest_rpte |= HPTE_GR_MODIFIED;
 528}
 529
 530/*
 531 * Like kvm_memslots(), but for use in real mode when we can't do
 532 * any RCU stuff (since the secondary threads are offline from the
 533 * kernel's point of view), and we can't print anything.
 534 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
 535 */
 536static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
 537{
 538        return rcu_dereference_raw_notrace(kvm->memslots[0]);
 539}
 540
 541extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
 542extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
 543
 544extern void kvmhv_rm_send_ipi(int cpu);
 545
 546static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
 547{
 548        /* HPTEs are 2**4 bytes long */
 549        return 1UL << (hpt->order - 4);
 550}
 551
 552static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
 553{
 554        /* 128 (2**7) bytes in each HPTEG */
 555        return (1UL << (hpt->order - 7)) - 1;
 556}
 557
 558/* Set bits in a dirty bitmap, which is in LE format */
 559static inline void set_dirty_bits(unsigned long *map, unsigned long i,
 560                                  unsigned long npages)
 561{
 562
 563        if (npages >= 8)
 564                memset((char *)map + i / 8, 0xff, npages / 8);
 565        else
 566                for (; npages; ++i, --npages)
 567                        __set_bit_le(i, map);
 568}
 569
 570static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
 571                                         unsigned long npages)
 572{
 573        if (npages >= 8)
 574                memset((char *)map + i / 8, 0xff, npages / 8);
 575        else
 576                for (; npages; ++i, --npages)
 577                        set_bit_le(i, map);
 578}
 579
 580static inline u64 sanitize_msr(u64 msr)
 581{
 582        msr &= ~MSR_HV;
 583        msr |= MSR_ME;
 584        return msr;
 585}
 586
 587#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 588static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
 589{
 590        vcpu->arch.regs.ccr  = vcpu->arch.cr_tm;
 591        vcpu->arch.regs.xer = vcpu->arch.xer_tm;
 592        vcpu->arch.regs.link  = vcpu->arch.lr_tm;
 593        vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
 594        vcpu->arch.amr = vcpu->arch.amr_tm;
 595        vcpu->arch.ppr = vcpu->arch.ppr_tm;
 596        vcpu->arch.dscr = vcpu->arch.dscr_tm;
 597        vcpu->arch.tar = vcpu->arch.tar_tm;
 598        memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
 599               sizeof(vcpu->arch.regs.gpr));
 600        vcpu->arch.fp  = vcpu->arch.fp_tm;
 601        vcpu->arch.vr  = vcpu->arch.vr_tm;
 602        vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
 603}
 604
 605static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
 606{
 607        vcpu->arch.cr_tm  = vcpu->arch.regs.ccr;
 608        vcpu->arch.xer_tm = vcpu->arch.regs.xer;
 609        vcpu->arch.lr_tm  = vcpu->arch.regs.link;
 610        vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
 611        vcpu->arch.amr_tm = vcpu->arch.amr;
 612        vcpu->arch.ppr_tm = vcpu->arch.ppr;
 613        vcpu->arch.dscr_tm = vcpu->arch.dscr;
 614        vcpu->arch.tar_tm = vcpu->arch.tar;
 615        memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
 616               sizeof(vcpu->arch.regs.gpr));
 617        vcpu->arch.fp_tm  = vcpu->arch.fp;
 618        vcpu->arch.vr_tm  = vcpu->arch.vr;
 619        vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
 620}
 621#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 622
 623extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
 624                             unsigned long gpa, unsigned int level,
 625                             unsigned long mmu_seq, unsigned int lpid,
 626                             unsigned long *rmapp, struct rmap_nested **n_rmap);
 627extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
 628                                   struct rmap_nested **n_rmap);
 629extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
 630                                           unsigned long clr, unsigned long set,
 631                                           unsigned long hpa, unsigned long nbytes);
 632extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
 633                                const struct kvm_memory_slot *memslot,
 634                                unsigned long gpa, unsigned long hpa,
 635                                unsigned long nbytes);
 636
 637#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
 638
 639#endif /* __ASM_KVM_BOOK3S_64_H__ */
 640