linux/arch/powerpc/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Derived from "arch/i386/kernel/process.c"
   4 *    Copyright (C) 1995  Linus Torvalds
   5 *
   6 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   7 *  Paul Mackerras (paulus@cs.anu.edu.au)
   8 *
   9 *  PowerPC version
  10 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  11 */
  12
  13#include <linux/errno.h>
  14#include <linux/sched.h>
  15#include <linux/sched/debug.h>
  16#include <linux/sched/task.h>
  17#include <linux/sched/task_stack.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/smp.h>
  21#include <linux/stddef.h>
  22#include <linux/unistd.h>
  23#include <linux/ptrace.h>
  24#include <linux/slab.h>
  25#include <linux/user.h>
  26#include <linux/elf.h>
  27#include <linux/prctl.h>
  28#include <linux/init_task.h>
  29#include <linux/export.h>
  30#include <linux/kallsyms.h>
  31#include <linux/mqueue.h>
  32#include <linux/hardirq.h>
  33#include <linux/utsname.h>
  34#include <linux/ftrace.h>
  35#include <linux/kernel_stat.h>
  36#include <linux/personality.h>
  37#include <linux/random.h>
  38#include <linux/hw_breakpoint.h>
  39#include <linux/uaccess.h>
  40#include <linux/elf-randomize.h>
  41#include <linux/pkeys.h>
  42#include <linux/seq_buf.h>
  43
  44#include <asm/pgtable.h>
  45#include <asm/io.h>
  46#include <asm/processor.h>
  47#include <asm/mmu.h>
  48#include <asm/prom.h>
  49#include <asm/machdep.h>
  50#include <asm/time.h>
  51#include <asm/runlatch.h>
  52#include <asm/syscalls.h>
  53#include <asm/switch_to.h>
  54#include <asm/tm.h>
  55#include <asm/debug.h>
  56#ifdef CONFIG_PPC64
  57#include <asm/firmware.h>
  58#include <asm/hw_irq.h>
  59#endif
  60#include <asm/code-patching.h>
  61#include <asm/exec.h>
  62#include <asm/livepatch.h>
  63#include <asm/cpu_has_feature.h>
  64#include <asm/asm-prototypes.h>
  65#include <asm/stacktrace.h>
  66#include <asm/hw_breakpoint.h>
  67
  68#include <linux/kprobes.h>
  69#include <linux/kdebug.h>
  70
  71/* Transactional Memory debug */
  72#ifdef TM_DEBUG_SW
  73#define TM_DEBUG(x...) printk(KERN_INFO x)
  74#else
  75#define TM_DEBUG(x...) do { } while(0)
  76#endif
  77
  78extern unsigned long _get_SP(void);
  79
  80#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  81/*
  82 * Are we running in "Suspend disabled" mode? If so we have to block any
  83 * sigreturn that would get us into suspended state, and we also warn in some
  84 * other paths that we should never reach with suspend disabled.
  85 */
  86bool tm_suspend_disabled __ro_after_init = false;
  87
  88static void check_if_tm_restore_required(struct task_struct *tsk)
  89{
  90        /*
  91         * If we are saving the current thread's registers, and the
  92         * thread is in a transactional state, set the TIF_RESTORE_TM
  93         * bit so that we know to restore the registers before
  94         * returning to userspace.
  95         */
  96        if (tsk == current && tsk->thread.regs &&
  97            MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  98            !test_thread_flag(TIF_RESTORE_TM)) {
  99                tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
 100                set_thread_flag(TIF_RESTORE_TM);
 101        }
 102}
 103
 104#else
 105static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
 106#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 107
 108bool strict_msr_control;
 109EXPORT_SYMBOL(strict_msr_control);
 110
 111static int __init enable_strict_msr_control(char *str)
 112{
 113        strict_msr_control = true;
 114        pr_info("Enabling strict facility control\n");
 115
 116        return 0;
 117}
 118early_param("ppc_strict_facility_enable", enable_strict_msr_control);
 119
 120/* notrace because it's called by restore_math */
 121unsigned long notrace msr_check_and_set(unsigned long bits)
 122{
 123        unsigned long oldmsr = mfmsr();
 124        unsigned long newmsr;
 125
 126        newmsr = oldmsr | bits;
 127
 128#ifdef CONFIG_VSX
 129        if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 130                newmsr |= MSR_VSX;
 131#endif
 132
 133        if (oldmsr != newmsr)
 134                mtmsr_isync(newmsr);
 135
 136        return newmsr;
 137}
 138EXPORT_SYMBOL_GPL(msr_check_and_set);
 139
 140/* notrace because it's called by restore_math */
 141void notrace __msr_check_and_clear(unsigned long bits)
 142{
 143        unsigned long oldmsr = mfmsr();
 144        unsigned long newmsr;
 145
 146        newmsr = oldmsr & ~bits;
 147
 148#ifdef CONFIG_VSX
 149        if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 150                newmsr &= ~MSR_VSX;
 151#endif
 152
 153        if (oldmsr != newmsr)
 154                mtmsr_isync(newmsr);
 155}
 156EXPORT_SYMBOL(__msr_check_and_clear);
 157
 158#ifdef CONFIG_PPC_FPU
 159static void __giveup_fpu(struct task_struct *tsk)
 160{
 161        unsigned long msr;
 162
 163        save_fpu(tsk);
 164        msr = tsk->thread.regs->msr;
 165        msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
 166#ifdef CONFIG_VSX
 167        if (cpu_has_feature(CPU_FTR_VSX))
 168                msr &= ~MSR_VSX;
 169#endif
 170        tsk->thread.regs->msr = msr;
 171}
 172
 173void giveup_fpu(struct task_struct *tsk)
 174{
 175        check_if_tm_restore_required(tsk);
 176
 177        msr_check_and_set(MSR_FP);
 178        __giveup_fpu(tsk);
 179        msr_check_and_clear(MSR_FP);
 180}
 181EXPORT_SYMBOL(giveup_fpu);
 182
 183/*
 184 * Make sure the floating-point register state in the
 185 * the thread_struct is up to date for task tsk.
 186 */
 187void flush_fp_to_thread(struct task_struct *tsk)
 188{
 189        if (tsk->thread.regs) {
 190                /*
 191                 * We need to disable preemption here because if we didn't,
 192                 * another process could get scheduled after the regs->msr
 193                 * test but before we have finished saving the FP registers
 194                 * to the thread_struct.  That process could take over the
 195                 * FPU, and then when we get scheduled again we would store
 196                 * bogus values for the remaining FP registers.
 197                 */
 198                preempt_disable();
 199                if (tsk->thread.regs->msr & MSR_FP) {
 200                        /*
 201                         * This should only ever be called for current or
 202                         * for a stopped child process.  Since we save away
 203                         * the FP register state on context switch,
 204                         * there is something wrong if a stopped child appears
 205                         * to still have its FP state in the CPU registers.
 206                         */
 207                        BUG_ON(tsk != current);
 208                        giveup_fpu(tsk);
 209                }
 210                preempt_enable();
 211        }
 212}
 213EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 214
 215void enable_kernel_fp(void)
 216{
 217        unsigned long cpumsr;
 218
 219        WARN_ON(preemptible());
 220
 221        cpumsr = msr_check_and_set(MSR_FP);
 222
 223        if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
 224                check_if_tm_restore_required(current);
 225                /*
 226                 * If a thread has already been reclaimed then the
 227                 * checkpointed registers are on the CPU but have definitely
 228                 * been saved by the reclaim code. Don't need to and *cannot*
 229                 * giveup as this would save  to the 'live' structure not the
 230                 * checkpointed structure.
 231                 */
 232                if (!MSR_TM_ACTIVE(cpumsr) &&
 233                     MSR_TM_ACTIVE(current->thread.regs->msr))
 234                        return;
 235                __giveup_fpu(current);
 236        }
 237}
 238EXPORT_SYMBOL(enable_kernel_fp);
 239
 240static int restore_fp(struct task_struct *tsk)
 241{
 242        if (tsk->thread.load_fp) {
 243                load_fp_state(&current->thread.fp_state);
 244                current->thread.load_fp++;
 245                return 1;
 246        }
 247        return 0;
 248}
 249#else
 250static int restore_fp(struct task_struct *tsk) { return 0; }
 251#endif /* CONFIG_PPC_FPU */
 252
 253#ifdef CONFIG_ALTIVEC
 254#define loadvec(thr) ((thr).load_vec)
 255
 256static void __giveup_altivec(struct task_struct *tsk)
 257{
 258        unsigned long msr;
 259
 260        save_altivec(tsk);
 261        msr = tsk->thread.regs->msr;
 262        msr &= ~MSR_VEC;
 263#ifdef CONFIG_VSX
 264        if (cpu_has_feature(CPU_FTR_VSX))
 265                msr &= ~MSR_VSX;
 266#endif
 267        tsk->thread.regs->msr = msr;
 268}
 269
 270void giveup_altivec(struct task_struct *tsk)
 271{
 272        check_if_tm_restore_required(tsk);
 273
 274        msr_check_and_set(MSR_VEC);
 275        __giveup_altivec(tsk);
 276        msr_check_and_clear(MSR_VEC);
 277}
 278EXPORT_SYMBOL(giveup_altivec);
 279
 280void enable_kernel_altivec(void)
 281{
 282        unsigned long cpumsr;
 283
 284        WARN_ON(preemptible());
 285
 286        cpumsr = msr_check_and_set(MSR_VEC);
 287
 288        if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
 289                check_if_tm_restore_required(current);
 290                /*
 291                 * If a thread has already been reclaimed then the
 292                 * checkpointed registers are on the CPU but have definitely
 293                 * been saved by the reclaim code. Don't need to and *cannot*
 294                 * giveup as this would save  to the 'live' structure not the
 295                 * checkpointed structure.
 296                 */
 297                if (!MSR_TM_ACTIVE(cpumsr) &&
 298                     MSR_TM_ACTIVE(current->thread.regs->msr))
 299                        return;
 300                __giveup_altivec(current);
 301        }
 302}
 303EXPORT_SYMBOL(enable_kernel_altivec);
 304
 305/*
 306 * Make sure the VMX/Altivec register state in the
 307 * the thread_struct is up to date for task tsk.
 308 */
 309void flush_altivec_to_thread(struct task_struct *tsk)
 310{
 311        if (tsk->thread.regs) {
 312                preempt_disable();
 313                if (tsk->thread.regs->msr & MSR_VEC) {
 314                        BUG_ON(tsk != current);
 315                        giveup_altivec(tsk);
 316                }
 317                preempt_enable();
 318        }
 319}
 320EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 321
 322static int restore_altivec(struct task_struct *tsk)
 323{
 324        if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
 325                load_vr_state(&tsk->thread.vr_state);
 326                tsk->thread.used_vr = 1;
 327                tsk->thread.load_vec++;
 328
 329                return 1;
 330        }
 331        return 0;
 332}
 333#else
 334#define loadvec(thr) 0
 335static inline int restore_altivec(struct task_struct *tsk) { return 0; }
 336#endif /* CONFIG_ALTIVEC */
 337
 338#ifdef CONFIG_VSX
 339static void __giveup_vsx(struct task_struct *tsk)
 340{
 341        unsigned long msr = tsk->thread.regs->msr;
 342
 343        /*
 344         * We should never be ssetting MSR_VSX without also setting
 345         * MSR_FP and MSR_VEC
 346         */
 347        WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
 348
 349        /* __giveup_fpu will clear MSR_VSX */
 350        if (msr & MSR_FP)
 351                __giveup_fpu(tsk);
 352        if (msr & MSR_VEC)
 353                __giveup_altivec(tsk);
 354}
 355
 356static void giveup_vsx(struct task_struct *tsk)
 357{
 358        check_if_tm_restore_required(tsk);
 359
 360        msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 361        __giveup_vsx(tsk);
 362        msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
 363}
 364
 365void enable_kernel_vsx(void)
 366{
 367        unsigned long cpumsr;
 368
 369        WARN_ON(preemptible());
 370
 371        cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 372
 373        if (current->thread.regs &&
 374            (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
 375                check_if_tm_restore_required(current);
 376                /*
 377                 * If a thread has already been reclaimed then the
 378                 * checkpointed registers are on the CPU but have definitely
 379                 * been saved by the reclaim code. Don't need to and *cannot*
 380                 * giveup as this would save  to the 'live' structure not the
 381                 * checkpointed structure.
 382                 */
 383                if (!MSR_TM_ACTIVE(cpumsr) &&
 384                     MSR_TM_ACTIVE(current->thread.regs->msr))
 385                        return;
 386                __giveup_vsx(current);
 387        }
 388}
 389EXPORT_SYMBOL(enable_kernel_vsx);
 390
 391void flush_vsx_to_thread(struct task_struct *tsk)
 392{
 393        if (tsk->thread.regs) {
 394                preempt_disable();
 395                if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
 396                        BUG_ON(tsk != current);
 397                        giveup_vsx(tsk);
 398                }
 399                preempt_enable();
 400        }
 401}
 402EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 403
 404static int restore_vsx(struct task_struct *tsk)
 405{
 406        if (cpu_has_feature(CPU_FTR_VSX)) {
 407                tsk->thread.used_vsr = 1;
 408                return 1;
 409        }
 410
 411        return 0;
 412}
 413#else
 414static inline int restore_vsx(struct task_struct *tsk) { return 0; }
 415#endif /* CONFIG_VSX */
 416
 417#ifdef CONFIG_SPE
 418void giveup_spe(struct task_struct *tsk)
 419{
 420        check_if_tm_restore_required(tsk);
 421
 422        msr_check_and_set(MSR_SPE);
 423        __giveup_spe(tsk);
 424        msr_check_and_clear(MSR_SPE);
 425}
 426EXPORT_SYMBOL(giveup_spe);
 427
 428void enable_kernel_spe(void)
 429{
 430        WARN_ON(preemptible());
 431
 432        msr_check_and_set(MSR_SPE);
 433
 434        if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
 435                check_if_tm_restore_required(current);
 436                __giveup_spe(current);
 437        }
 438}
 439EXPORT_SYMBOL(enable_kernel_spe);
 440
 441void flush_spe_to_thread(struct task_struct *tsk)
 442{
 443        if (tsk->thread.regs) {
 444                preempt_disable();
 445                if (tsk->thread.regs->msr & MSR_SPE) {
 446                        BUG_ON(tsk != current);
 447                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 448                        giveup_spe(tsk);
 449                }
 450                preempt_enable();
 451        }
 452}
 453#endif /* CONFIG_SPE */
 454
 455static unsigned long msr_all_available;
 456
 457static int __init init_msr_all_available(void)
 458{
 459#ifdef CONFIG_PPC_FPU
 460        msr_all_available |= MSR_FP;
 461#endif
 462#ifdef CONFIG_ALTIVEC
 463        if (cpu_has_feature(CPU_FTR_ALTIVEC))
 464                msr_all_available |= MSR_VEC;
 465#endif
 466#ifdef CONFIG_VSX
 467        if (cpu_has_feature(CPU_FTR_VSX))
 468                msr_all_available |= MSR_VSX;
 469#endif
 470#ifdef CONFIG_SPE
 471        if (cpu_has_feature(CPU_FTR_SPE))
 472                msr_all_available |= MSR_SPE;
 473#endif
 474
 475        return 0;
 476}
 477early_initcall(init_msr_all_available);
 478
 479void giveup_all(struct task_struct *tsk)
 480{
 481        unsigned long usermsr;
 482
 483        if (!tsk->thread.regs)
 484                return;
 485
 486        check_if_tm_restore_required(tsk);
 487
 488        usermsr = tsk->thread.regs->msr;
 489
 490        if ((usermsr & msr_all_available) == 0)
 491                return;
 492
 493        msr_check_and_set(msr_all_available);
 494
 495        WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 496
 497#ifdef CONFIG_PPC_FPU
 498        if (usermsr & MSR_FP)
 499                __giveup_fpu(tsk);
 500#endif
 501#ifdef CONFIG_ALTIVEC
 502        if (usermsr & MSR_VEC)
 503                __giveup_altivec(tsk);
 504#endif
 505#ifdef CONFIG_SPE
 506        if (usermsr & MSR_SPE)
 507                __giveup_spe(tsk);
 508#endif
 509
 510        msr_check_and_clear(msr_all_available);
 511}
 512EXPORT_SYMBOL(giveup_all);
 513
 514/*
 515 * The exception exit path calls restore_math() with interrupts hard disabled
 516 * but the soft irq state not "reconciled". ftrace code that calls
 517 * local_irq_save/restore causes warnings.
 518 *
 519 * Rather than complicate the exit path, just don't trace restore_math. This
 520 * could be done by having ftrace entry code check for this un-reconciled
 521 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
 522 * temporarily fix it up for the duration of the ftrace call.
 523 */
 524void notrace restore_math(struct pt_regs *regs)
 525{
 526        unsigned long msr;
 527
 528        if (!MSR_TM_ACTIVE(regs->msr) &&
 529                !current->thread.load_fp && !loadvec(current->thread))
 530                return;
 531
 532        msr = regs->msr;
 533        msr_check_and_set(msr_all_available);
 534
 535        /*
 536         * Only reload if the bit is not set in the user MSR, the bit BEING set
 537         * indicates that the registers are hot
 538         */
 539        if ((!(msr & MSR_FP)) && restore_fp(current))
 540                msr |= MSR_FP | current->thread.fpexc_mode;
 541
 542        if ((!(msr & MSR_VEC)) && restore_altivec(current))
 543                msr |= MSR_VEC;
 544
 545        if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
 546                        restore_vsx(current)) {
 547                msr |= MSR_VSX;
 548        }
 549
 550        msr_check_and_clear(msr_all_available);
 551
 552        regs->msr = msr;
 553}
 554
 555static void save_all(struct task_struct *tsk)
 556{
 557        unsigned long usermsr;
 558
 559        if (!tsk->thread.regs)
 560                return;
 561
 562        usermsr = tsk->thread.regs->msr;
 563
 564        if ((usermsr & msr_all_available) == 0)
 565                return;
 566
 567        msr_check_and_set(msr_all_available);
 568
 569        WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 570
 571        if (usermsr & MSR_FP)
 572                save_fpu(tsk);
 573
 574        if (usermsr & MSR_VEC)
 575                save_altivec(tsk);
 576
 577        if (usermsr & MSR_SPE)
 578                __giveup_spe(tsk);
 579
 580        msr_check_and_clear(msr_all_available);
 581        thread_pkey_regs_save(&tsk->thread);
 582}
 583
 584void flush_all_to_thread(struct task_struct *tsk)
 585{
 586        if (tsk->thread.regs) {
 587                preempt_disable();
 588                BUG_ON(tsk != current);
 589#ifdef CONFIG_SPE
 590                if (tsk->thread.regs->msr & MSR_SPE)
 591                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 592#endif
 593                save_all(tsk);
 594
 595                preempt_enable();
 596        }
 597}
 598EXPORT_SYMBOL(flush_all_to_thread);
 599
 600#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 601void do_send_trap(struct pt_regs *regs, unsigned long address,
 602                  unsigned long error_code, int breakpt)
 603{
 604        current->thread.trap_nr = TRAP_HWBKPT;
 605        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 606                        11, SIGSEGV) == NOTIFY_STOP)
 607                return;
 608
 609        /* Deliver the signal to userspace */
 610        force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
 611                                    (void __user *)address);
 612}
 613#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 614void do_break (struct pt_regs *regs, unsigned long address,
 615                    unsigned long error_code)
 616{
 617        current->thread.trap_nr = TRAP_HWBKPT;
 618        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 619                        11, SIGSEGV) == NOTIFY_STOP)
 620                return;
 621
 622        if (debugger_break_match(regs))
 623                return;
 624
 625        /* Clear the breakpoint */
 626        hw_breakpoint_disable();
 627
 628        /* Deliver the signal to userspace */
 629        force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
 630}
 631#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 632
 633static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
 634
 635#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 636/*
 637 * Set the debug registers back to their default "safe" values.
 638 */
 639static void set_debug_reg_defaults(struct thread_struct *thread)
 640{
 641        thread->debug.iac1 = thread->debug.iac2 = 0;
 642#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 643        thread->debug.iac3 = thread->debug.iac4 = 0;
 644#endif
 645        thread->debug.dac1 = thread->debug.dac2 = 0;
 646#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 647        thread->debug.dvc1 = thread->debug.dvc2 = 0;
 648#endif
 649        thread->debug.dbcr0 = 0;
 650#ifdef CONFIG_BOOKE
 651        /*
 652         * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 653         */
 654        thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 655                        DBCR1_IAC3US | DBCR1_IAC4US;
 656        /*
 657         * Force Data Address Compare User/Supervisor bits to be User-only
 658         * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 659         */
 660        thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 661#else
 662        thread->debug.dbcr1 = 0;
 663#endif
 664}
 665
 666static void prime_debug_regs(struct debug_reg *debug)
 667{
 668        /*
 669         * We could have inherited MSR_DE from userspace, since
 670         * it doesn't get cleared on exception entry.  Make sure
 671         * MSR_DE is clear before we enable any debug events.
 672         */
 673        mtmsr(mfmsr() & ~MSR_DE);
 674
 675        mtspr(SPRN_IAC1, debug->iac1);
 676        mtspr(SPRN_IAC2, debug->iac2);
 677#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 678        mtspr(SPRN_IAC3, debug->iac3);
 679        mtspr(SPRN_IAC4, debug->iac4);
 680#endif
 681        mtspr(SPRN_DAC1, debug->dac1);
 682        mtspr(SPRN_DAC2, debug->dac2);
 683#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 684        mtspr(SPRN_DVC1, debug->dvc1);
 685        mtspr(SPRN_DVC2, debug->dvc2);
 686#endif
 687        mtspr(SPRN_DBCR0, debug->dbcr0);
 688        mtspr(SPRN_DBCR1, debug->dbcr1);
 689#ifdef CONFIG_BOOKE
 690        mtspr(SPRN_DBCR2, debug->dbcr2);
 691#endif
 692}
 693/*
 694 * Unless neither the old or new thread are making use of the
 695 * debug registers, set the debug registers from the values
 696 * stored in the new thread.
 697 */
 698void switch_booke_debug_regs(struct debug_reg *new_debug)
 699{
 700        if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 701                || (new_debug->dbcr0 & DBCR0_IDM))
 702                        prime_debug_regs(new_debug);
 703}
 704EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 705#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 706#ifndef CONFIG_HAVE_HW_BREAKPOINT
 707static void set_breakpoint(struct arch_hw_breakpoint *brk)
 708{
 709        preempt_disable();
 710        __set_breakpoint(brk);
 711        preempt_enable();
 712}
 713
 714static void set_debug_reg_defaults(struct thread_struct *thread)
 715{
 716        thread->hw_brk.address = 0;
 717        thread->hw_brk.type = 0;
 718        if (ppc_breakpoint_available())
 719                set_breakpoint(&thread->hw_brk);
 720}
 721#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 722#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 723
 724#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 725static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 726{
 727        mtspr(SPRN_DAC1, dabr);
 728#ifdef CONFIG_PPC_47x
 729        isync();
 730#endif
 731        return 0;
 732}
 733#elif defined(CONFIG_PPC_BOOK3S)
 734static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 735{
 736        mtspr(SPRN_DABR, dabr);
 737        if (cpu_has_feature(CPU_FTR_DABRX))
 738                mtspr(SPRN_DABRX, dabrx);
 739        return 0;
 740}
 741#elif defined(CONFIG_PPC_8xx)
 742static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 743{
 744        unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
 745        unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
 746        unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
 747
 748        if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
 749                lctrl1 |= 0xa0000;
 750        else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
 751                lctrl1 |= 0xf0000;
 752        else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
 753                lctrl2 = 0;
 754
 755        mtspr(SPRN_LCTRL2, 0);
 756        mtspr(SPRN_CMPE, addr);
 757        mtspr(SPRN_CMPF, addr + 4);
 758        mtspr(SPRN_LCTRL1, lctrl1);
 759        mtspr(SPRN_LCTRL2, lctrl2);
 760
 761        return 0;
 762}
 763#else
 764static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 765{
 766        return -EINVAL;
 767}
 768#endif
 769
 770static inline int set_dabr(struct arch_hw_breakpoint *brk)
 771{
 772        unsigned long dabr, dabrx;
 773
 774        dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 775        dabrx = ((brk->type >> 3) & 0x7);
 776
 777        if (ppc_md.set_dabr)
 778                return ppc_md.set_dabr(dabr, dabrx);
 779
 780        return __set_dabr(dabr, dabrx);
 781}
 782
 783void __set_breakpoint(struct arch_hw_breakpoint *brk)
 784{
 785        memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
 786
 787        if (dawr_enabled())
 788                // Power8 or later
 789                set_dawr(brk);
 790        else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
 791                // Power7 or earlier
 792                set_dabr(brk);
 793        else
 794                // Shouldn't happen due to higher level checks
 795                WARN_ON_ONCE(1);
 796}
 797
 798/* Check if we have DAWR or DABR hardware */
 799bool ppc_breakpoint_available(void)
 800{
 801        if (dawr_enabled())
 802                return true; /* POWER8 DAWR or POWER9 forced DAWR */
 803        if (cpu_has_feature(CPU_FTR_ARCH_207S))
 804                return false; /* POWER9 with DAWR disabled */
 805        /* DABR: Everything but POWER8 and POWER9 */
 806        return true;
 807}
 808EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
 809
 810static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 811                              struct arch_hw_breakpoint *b)
 812{
 813        if (a->address != b->address)
 814                return false;
 815        if (a->type != b->type)
 816                return false;
 817        if (a->len != b->len)
 818                return false;
 819        return true;
 820}
 821
 822#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 823
 824static inline bool tm_enabled(struct task_struct *tsk)
 825{
 826        return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
 827}
 828
 829static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
 830{
 831        /*
 832         * Use the current MSR TM suspended bit to track if we have
 833         * checkpointed state outstanding.
 834         * On signal delivery, we'd normally reclaim the checkpointed
 835         * state to obtain stack pointer (see:get_tm_stackpointer()).
 836         * This will then directly return to userspace without going
 837         * through __switch_to(). However, if the stack frame is bad,
 838         * we need to exit this thread which calls __switch_to() which
 839         * will again attempt to reclaim the already saved tm state.
 840         * Hence we need to check that we've not already reclaimed
 841         * this state.
 842         * We do this using the current MSR, rather tracking it in
 843         * some specific thread_struct bit, as it has the additional
 844         * benefit of checking for a potential TM bad thing exception.
 845         */
 846        if (!MSR_TM_SUSPENDED(mfmsr()))
 847                return;
 848
 849        giveup_all(container_of(thr, struct task_struct, thread));
 850
 851        tm_reclaim(thr, cause);
 852
 853        /*
 854         * If we are in a transaction and FP is off then we can't have
 855         * used FP inside that transaction. Hence the checkpointed
 856         * state is the same as the live state. We need to copy the
 857         * live state to the checkpointed state so that when the
 858         * transaction is restored, the checkpointed state is correct
 859         * and the aborted transaction sees the correct state. We use
 860         * ckpt_regs.msr here as that's what tm_reclaim will use to
 861         * determine if it's going to write the checkpointed state or
 862         * not. So either this will write the checkpointed registers,
 863         * or reclaim will. Similarly for VMX.
 864         */
 865        if ((thr->ckpt_regs.msr & MSR_FP) == 0)
 866                memcpy(&thr->ckfp_state, &thr->fp_state,
 867                       sizeof(struct thread_fp_state));
 868        if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
 869                memcpy(&thr->ckvr_state, &thr->vr_state,
 870                       sizeof(struct thread_vr_state));
 871}
 872
 873void tm_reclaim_current(uint8_t cause)
 874{
 875        tm_enable();
 876        tm_reclaim_thread(&current->thread, cause);
 877}
 878
 879static inline void tm_reclaim_task(struct task_struct *tsk)
 880{
 881        /* We have to work out if we're switching from/to a task that's in the
 882         * middle of a transaction.
 883         *
 884         * In switching we need to maintain a 2nd register state as
 885         * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 886         * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
 887         * ckvr_state
 888         *
 889         * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 890         */
 891        struct thread_struct *thr = &tsk->thread;
 892
 893        if (!thr->regs)
 894                return;
 895
 896        if (!MSR_TM_ACTIVE(thr->regs->msr))
 897                goto out_and_saveregs;
 898
 899        WARN_ON(tm_suspend_disabled);
 900
 901        TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 902                 "ccr=%lx, msr=%lx, trap=%lx)\n",
 903                 tsk->pid, thr->regs->nip,
 904                 thr->regs->ccr, thr->regs->msr,
 905                 thr->regs->trap);
 906
 907        tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
 908
 909        TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 910                 tsk->pid);
 911
 912out_and_saveregs:
 913        /* Always save the regs here, even if a transaction's not active.
 914         * This context-switches a thread's TM info SPRs.  We do it here to
 915         * be consistent with the restore path (in recheckpoint) which
 916         * cannot happen later in _switch().
 917         */
 918        tm_save_sprs(thr);
 919}
 920
 921extern void __tm_recheckpoint(struct thread_struct *thread);
 922
 923void tm_recheckpoint(struct thread_struct *thread)
 924{
 925        unsigned long flags;
 926
 927        if (!(thread->regs->msr & MSR_TM))
 928                return;
 929
 930        /* We really can't be interrupted here as the TEXASR registers can't
 931         * change and later in the trecheckpoint code, we have a userspace R1.
 932         * So let's hard disable over this region.
 933         */
 934        local_irq_save(flags);
 935        hard_irq_disable();
 936
 937        /* The TM SPRs are restored here, so that TEXASR.FS can be set
 938         * before the trecheckpoint and no explosion occurs.
 939         */
 940        tm_restore_sprs(thread);
 941
 942        __tm_recheckpoint(thread);
 943
 944        local_irq_restore(flags);
 945}
 946
 947static inline void tm_recheckpoint_new_task(struct task_struct *new)
 948{
 949        if (!cpu_has_feature(CPU_FTR_TM))
 950                return;
 951
 952        /* Recheckpoint the registers of the thread we're about to switch to.
 953         *
 954         * If the task was using FP, we non-lazily reload both the original and
 955         * the speculative FP register states.  This is because the kernel
 956         * doesn't see if/when a TM rollback occurs, so if we take an FP
 957         * unavailable later, we are unable to determine which set of FP regs
 958         * need to be restored.
 959         */
 960        if (!tm_enabled(new))
 961                return;
 962
 963        if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
 964                tm_restore_sprs(&new->thread);
 965                return;
 966        }
 967        /* Recheckpoint to restore original checkpointed register state. */
 968        TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
 969                 new->pid, new->thread.regs->msr);
 970
 971        tm_recheckpoint(&new->thread);
 972
 973        /*
 974         * The checkpointed state has been restored but the live state has
 975         * not, ensure all the math functionality is turned off to trigger
 976         * restore_math() to reload.
 977         */
 978        new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
 979
 980        TM_DEBUG("*** tm_recheckpoint of pid %d complete "
 981                 "(kernel msr 0x%lx)\n",
 982                 new->pid, mfmsr());
 983}
 984
 985static inline void __switch_to_tm(struct task_struct *prev,
 986                struct task_struct *new)
 987{
 988        if (cpu_has_feature(CPU_FTR_TM)) {
 989                if (tm_enabled(prev) || tm_enabled(new))
 990                        tm_enable();
 991
 992                if (tm_enabled(prev)) {
 993                        prev->thread.load_tm++;
 994                        tm_reclaim_task(prev);
 995                        if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
 996                                prev->thread.regs->msr &= ~MSR_TM;
 997                }
 998
 999                tm_recheckpoint_new_task(new);
1000        }
1001}
1002
1003/*
1004 * This is called if we are on the way out to userspace and the
1005 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1006 * FP and/or vector state and does so if necessary.
1007 * If userspace is inside a transaction (whether active or
1008 * suspended) and FP/VMX/VSX instructions have ever been enabled
1009 * inside that transaction, then we have to keep them enabled
1010 * and keep the FP/VMX/VSX state loaded while ever the transaction
1011 * continues.  The reason is that if we didn't, and subsequently
1012 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1013 * we don't know whether it's the same transaction, and thus we
1014 * don't know which of the checkpointed state and the transactional
1015 * state to use.
1016 */
1017void restore_tm_state(struct pt_regs *regs)
1018{
1019        unsigned long msr_diff;
1020
1021        /*
1022         * This is the only moment we should clear TIF_RESTORE_TM as
1023         * it is here that ckpt_regs.msr and pt_regs.msr become the same
1024         * again, anything else could lead to an incorrect ckpt_msr being
1025         * saved and therefore incorrect signal contexts.
1026         */
1027        clear_thread_flag(TIF_RESTORE_TM);
1028        if (!MSR_TM_ACTIVE(regs->msr))
1029                return;
1030
1031        msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1032        msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1033
1034        /* Ensure that restore_math() will restore */
1035        if (msr_diff & MSR_FP)
1036                current->thread.load_fp = 1;
1037#ifdef CONFIG_ALTIVEC
1038        if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1039                current->thread.load_vec = 1;
1040#endif
1041        restore_math(regs);
1042
1043        regs->msr |= msr_diff;
1044}
1045
1046#else
1047#define tm_recheckpoint_new_task(new)
1048#define __switch_to_tm(prev, new)
1049#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1050
1051static inline void save_sprs(struct thread_struct *t)
1052{
1053#ifdef CONFIG_ALTIVEC
1054        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1055                t->vrsave = mfspr(SPRN_VRSAVE);
1056#endif
1057#ifdef CONFIG_PPC_BOOK3S_64
1058        if (cpu_has_feature(CPU_FTR_DSCR))
1059                t->dscr = mfspr(SPRN_DSCR);
1060
1061        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1062                t->bescr = mfspr(SPRN_BESCR);
1063                t->ebbhr = mfspr(SPRN_EBBHR);
1064                t->ebbrr = mfspr(SPRN_EBBRR);
1065
1066                t->fscr = mfspr(SPRN_FSCR);
1067
1068                /*
1069                 * Note that the TAR is not available for use in the kernel.
1070                 * (To provide this, the TAR should be backed up/restored on
1071                 * exception entry/exit instead, and be in pt_regs.  FIXME,
1072                 * this should be in pt_regs anyway (for debug).)
1073                 */
1074                t->tar = mfspr(SPRN_TAR);
1075        }
1076#endif
1077
1078        thread_pkey_regs_save(t);
1079}
1080
1081static inline void restore_sprs(struct thread_struct *old_thread,
1082                                struct thread_struct *new_thread)
1083{
1084#ifdef CONFIG_ALTIVEC
1085        if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1086            old_thread->vrsave != new_thread->vrsave)
1087                mtspr(SPRN_VRSAVE, new_thread->vrsave);
1088#endif
1089#ifdef CONFIG_PPC_BOOK3S_64
1090        if (cpu_has_feature(CPU_FTR_DSCR)) {
1091                u64 dscr = get_paca()->dscr_default;
1092                if (new_thread->dscr_inherit)
1093                        dscr = new_thread->dscr;
1094
1095                if (old_thread->dscr != dscr)
1096                        mtspr(SPRN_DSCR, dscr);
1097        }
1098
1099        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1100                if (old_thread->bescr != new_thread->bescr)
1101                        mtspr(SPRN_BESCR, new_thread->bescr);
1102                if (old_thread->ebbhr != new_thread->ebbhr)
1103                        mtspr(SPRN_EBBHR, new_thread->ebbhr);
1104                if (old_thread->ebbrr != new_thread->ebbrr)
1105                        mtspr(SPRN_EBBRR, new_thread->ebbrr);
1106
1107                if (old_thread->fscr != new_thread->fscr)
1108                        mtspr(SPRN_FSCR, new_thread->fscr);
1109
1110                if (old_thread->tar != new_thread->tar)
1111                        mtspr(SPRN_TAR, new_thread->tar);
1112        }
1113
1114        if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1115            old_thread->tidr != new_thread->tidr)
1116                mtspr(SPRN_TIDR, new_thread->tidr);
1117#endif
1118
1119        thread_pkey_regs_restore(new_thread, old_thread);
1120}
1121
1122struct task_struct *__switch_to(struct task_struct *prev,
1123        struct task_struct *new)
1124{
1125        struct thread_struct *new_thread, *old_thread;
1126        struct task_struct *last;
1127#ifdef CONFIG_PPC_BOOK3S_64
1128        struct ppc64_tlb_batch *batch;
1129#endif
1130
1131        new_thread = &new->thread;
1132        old_thread = &current->thread;
1133
1134        WARN_ON(!irqs_disabled());
1135
1136#ifdef CONFIG_PPC_BOOK3S_64
1137        batch = this_cpu_ptr(&ppc64_tlb_batch);
1138        if (batch->active) {
1139                current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1140                if (batch->index)
1141                        __flush_tlb_pending(batch);
1142                batch->active = 0;
1143        }
1144#endif /* CONFIG_PPC_BOOK3S_64 */
1145
1146#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1147        switch_booke_debug_regs(&new->thread.debug);
1148#else
1149/*
1150 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1151 * schedule DABR
1152 */
1153#ifndef CONFIG_HAVE_HW_BREAKPOINT
1154        if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1155                __set_breakpoint(&new->thread.hw_brk);
1156#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1157#endif
1158
1159        /*
1160         * We need to save SPRs before treclaim/trecheckpoint as these will
1161         * change a number of them.
1162         */
1163        save_sprs(&prev->thread);
1164
1165        /* Save FPU, Altivec, VSX and SPE state */
1166        giveup_all(prev);
1167
1168        __switch_to_tm(prev, new);
1169
1170        if (!radix_enabled()) {
1171                /*
1172                 * We can't take a PMU exception inside _switch() since there
1173                 * is a window where the kernel stack SLB and the kernel stack
1174                 * are out of sync. Hard disable here.
1175                 */
1176                hard_irq_disable();
1177        }
1178
1179        /*
1180         * Call restore_sprs() before calling _switch(). If we move it after
1181         * _switch() then we miss out on calling it for new tasks. The reason
1182         * for this is we manually create a stack frame for new tasks that
1183         * directly returns through ret_from_fork() or
1184         * ret_from_kernel_thread(). See copy_thread() for details.
1185         */
1186        restore_sprs(old_thread, new_thread);
1187
1188        last = _switch(old_thread, new_thread);
1189
1190#ifdef CONFIG_PPC_BOOK3S_64
1191        if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1192                current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1193                batch = this_cpu_ptr(&ppc64_tlb_batch);
1194                batch->active = 1;
1195        }
1196
1197        if (current->thread.regs) {
1198                restore_math(current->thread.regs);
1199
1200                /*
1201                 * The copy-paste buffer can only store into foreign real
1202                 * addresses, so unprivileged processes can not see the
1203                 * data or use it in any way unless they have foreign real
1204                 * mappings. If the new process has the foreign real address
1205                 * mappings, we must issue a cp_abort to clear any state and
1206                 * prevent snooping, corruption or a covert channel.
1207                 */
1208                if (current->thread.used_vas)
1209                        asm volatile(PPC_CP_ABORT);
1210        }
1211#endif /* CONFIG_PPC_BOOK3S_64 */
1212
1213        return last;
1214}
1215
1216#define NR_INSN_TO_PRINT        16
1217
1218static void show_instructions(struct pt_regs *regs)
1219{
1220        int i;
1221        unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1222
1223        printk("Instruction dump:");
1224
1225        for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1226                int instr;
1227
1228                if (!(i % 8))
1229                        pr_cont("\n");
1230
1231#if !defined(CONFIG_BOOKE)
1232                /* If executing with the IMMU off, adjust pc rather
1233                 * than print XXXXXXXX.
1234                 */
1235                if (!(regs->msr & MSR_IR))
1236                        pc = (unsigned long)phys_to_virt(pc);
1237#endif
1238
1239                if (!__kernel_text_address(pc) ||
1240                    probe_kernel_address((const void *)pc, instr)) {
1241                        pr_cont("XXXXXXXX ");
1242                } else {
1243                        if (regs->nip == pc)
1244                                pr_cont("<%08x> ", instr);
1245                        else
1246                                pr_cont("%08x ", instr);
1247                }
1248
1249                pc += sizeof(int);
1250        }
1251
1252        pr_cont("\n");
1253}
1254
1255void show_user_instructions(struct pt_regs *regs)
1256{
1257        unsigned long pc;
1258        int n = NR_INSN_TO_PRINT;
1259        struct seq_buf s;
1260        char buf[96]; /* enough for 8 times 9 + 2 chars */
1261
1262        pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1263
1264        /*
1265         * Make sure the NIP points at userspace, not kernel text/data or
1266         * elsewhere.
1267         */
1268        if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1269                pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1270                        current->comm, current->pid);
1271                return;
1272        }
1273
1274        seq_buf_init(&s, buf, sizeof(buf));
1275
1276        while (n) {
1277                int i;
1278
1279                seq_buf_clear(&s);
1280
1281                for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1282                        int instr;
1283
1284                        if (probe_kernel_address((const void *)pc, instr)) {
1285                                seq_buf_printf(&s, "XXXXXXXX ");
1286                                continue;
1287                        }
1288                        seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1289                }
1290
1291                if (!seq_buf_has_overflowed(&s))
1292                        pr_info("%s[%d]: code: %s\n", current->comm,
1293                                current->pid, s.buffer);
1294        }
1295}
1296
1297struct regbit {
1298        unsigned long bit;
1299        const char *name;
1300};
1301
1302static struct regbit msr_bits[] = {
1303#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1304        {MSR_SF,        "SF"},
1305        {MSR_HV,        "HV"},
1306#endif
1307        {MSR_VEC,       "VEC"},
1308        {MSR_VSX,       "VSX"},
1309#ifdef CONFIG_BOOKE
1310        {MSR_CE,        "CE"},
1311#endif
1312        {MSR_EE,        "EE"},
1313        {MSR_PR,        "PR"},
1314        {MSR_FP,        "FP"},
1315        {MSR_ME,        "ME"},
1316#ifdef CONFIG_BOOKE
1317        {MSR_DE,        "DE"},
1318#else
1319        {MSR_SE,        "SE"},
1320        {MSR_BE,        "BE"},
1321#endif
1322        {MSR_IR,        "IR"},
1323        {MSR_DR,        "DR"},
1324        {MSR_PMM,       "PMM"},
1325#ifndef CONFIG_BOOKE
1326        {MSR_RI,        "RI"},
1327        {MSR_LE,        "LE"},
1328#endif
1329        {0,             NULL}
1330};
1331
1332static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1333{
1334        const char *s = "";
1335
1336        for (; bits->bit; ++bits)
1337                if (val & bits->bit) {
1338                        pr_cont("%s%s", s, bits->name);
1339                        s = sep;
1340                }
1341}
1342
1343#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1344static struct regbit msr_tm_bits[] = {
1345        {MSR_TS_T,      "T"},
1346        {MSR_TS_S,      "S"},
1347        {MSR_TM,        "E"},
1348        {0,             NULL}
1349};
1350
1351static void print_tm_bits(unsigned long val)
1352{
1353/*
1354 * This only prints something if at least one of the TM bit is set.
1355 * Inside the TM[], the output means:
1356 *   E: Enabled         (bit 32)
1357 *   S: Suspended       (bit 33)
1358 *   T: Transactional   (bit 34)
1359 */
1360        if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1361                pr_cont(",TM[");
1362                print_bits(val, msr_tm_bits, "");
1363                pr_cont("]");
1364        }
1365}
1366#else
1367static void print_tm_bits(unsigned long val) {}
1368#endif
1369
1370static void print_msr_bits(unsigned long val)
1371{
1372        pr_cont("<");
1373        print_bits(val, msr_bits, ",");
1374        print_tm_bits(val);
1375        pr_cont(">");
1376}
1377
1378#ifdef CONFIG_PPC64
1379#define REG             "%016lx"
1380#define REGS_PER_LINE   4
1381#define LAST_VOLATILE   13
1382#else
1383#define REG             "%08lx"
1384#define REGS_PER_LINE   8
1385#define LAST_VOLATILE   12
1386#endif
1387
1388void show_regs(struct pt_regs * regs)
1389{
1390        int i, trap;
1391
1392        show_regs_print_info(KERN_DEFAULT);
1393
1394        printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1395               regs->nip, regs->link, regs->ctr);
1396        printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1397               regs, regs->trap, print_tainted(), init_utsname()->release);
1398        printk("MSR:  "REG" ", regs->msr);
1399        print_msr_bits(regs->msr);
1400        pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1401        trap = TRAP(regs);
1402        if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1403                pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1404        if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1405#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1406                pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1407#else
1408                pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1409#endif
1410#ifdef CONFIG_PPC64
1411        pr_cont("IRQMASK: %lx ", regs->softe);
1412#endif
1413#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1414        if (MSR_TM_ACTIVE(regs->msr))
1415                pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1416#endif
1417
1418        for (i = 0;  i < 32;  i++) {
1419                if ((i % REGS_PER_LINE) == 0)
1420                        pr_cont("\nGPR%02d: ", i);
1421                pr_cont(REG " ", regs->gpr[i]);
1422                if (i == LAST_VOLATILE && !FULL_REGS(regs))
1423                        break;
1424        }
1425        pr_cont("\n");
1426#ifdef CONFIG_KALLSYMS
1427        /*
1428         * Lookup NIP late so we have the best change of getting the
1429         * above info out without failing
1430         */
1431        printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1432        printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1433#endif
1434        show_stack(current, (unsigned long *) regs->gpr[1]);
1435        if (!user_mode(regs))
1436                show_instructions(regs);
1437}
1438
1439void flush_thread(void)
1440{
1441#ifdef CONFIG_HAVE_HW_BREAKPOINT
1442        flush_ptrace_hw_breakpoint(current);
1443#else /* CONFIG_HAVE_HW_BREAKPOINT */
1444        set_debug_reg_defaults(&current->thread);
1445#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1446}
1447
1448#ifdef CONFIG_PPC_BOOK3S_64
1449void arch_setup_new_exec(void)
1450{
1451        if (radix_enabled())
1452                return;
1453        hash__setup_new_exec();
1454}
1455#endif
1456
1457int set_thread_uses_vas(void)
1458{
1459#ifdef CONFIG_PPC_BOOK3S_64
1460        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1461                return -EINVAL;
1462
1463        current->thread.used_vas = 1;
1464
1465        /*
1466         * Even a process that has no foreign real address mapping can use
1467         * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1468         * to clear any pending COPY and prevent a covert channel.
1469         *
1470         * __switch_to() will issue CP_ABORT on future context switches.
1471         */
1472        asm volatile(PPC_CP_ABORT);
1473
1474#endif /* CONFIG_PPC_BOOK3S_64 */
1475        return 0;
1476}
1477
1478#ifdef CONFIG_PPC64
1479/**
1480 * Assign a TIDR (thread ID) for task @t and set it in the thread
1481 * structure. For now, we only support setting TIDR for 'current' task.
1482 *
1483 * Since the TID value is a truncated form of it PID, it is possible
1484 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1485 * that 2 threads share the same TID and are waiting, one of the following
1486 * cases will happen:
1487 *
1488 * 1. The correct thread is running, the wrong thread is not
1489 * In this situation, the correct thread is woken and proceeds to pass it's
1490 * condition check.
1491 *
1492 * 2. Neither threads are running
1493 * In this situation, neither thread will be woken. When scheduled, the waiting
1494 * threads will execute either a wait, which will return immediately, followed
1495 * by a condition check, which will pass for the correct thread and fail
1496 * for the wrong thread, or they will execute the condition check immediately.
1497 *
1498 * 3. The wrong thread is running, the correct thread is not
1499 * The wrong thread will be woken, but will fail it's condition check and
1500 * re-execute wait. The correct thread, when scheduled, will execute either
1501 * it's condition check (which will pass), or wait, which returns immediately
1502 * when called the first time after the thread is scheduled, followed by it's
1503 * condition check (which will pass).
1504 *
1505 * 4. Both threads are running
1506 * Both threads will be woken. The wrong thread will fail it's condition check
1507 * and execute another wait, while the correct thread will pass it's condition
1508 * check.
1509 *
1510 * @t: the task to set the thread ID for
1511 */
1512int set_thread_tidr(struct task_struct *t)
1513{
1514        if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1515                return -EINVAL;
1516
1517        if (t != current)
1518                return -EINVAL;
1519
1520        if (t->thread.tidr)
1521                return 0;
1522
1523        t->thread.tidr = (u16)task_pid_nr(t);
1524        mtspr(SPRN_TIDR, t->thread.tidr);
1525
1526        return 0;
1527}
1528EXPORT_SYMBOL_GPL(set_thread_tidr);
1529
1530#endif /* CONFIG_PPC64 */
1531
1532void
1533release_thread(struct task_struct *t)
1534{
1535}
1536
1537/*
1538 * this gets called so that we can store coprocessor state into memory and
1539 * copy the current task into the new thread.
1540 */
1541int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1542{
1543        flush_all_to_thread(src);
1544        /*
1545         * Flush TM state out so we can copy it.  __switch_to_tm() does this
1546         * flush but it removes the checkpointed state from the current CPU and
1547         * transitions the CPU out of TM mode.  Hence we need to call
1548         * tm_recheckpoint_new_task() (on the same task) to restore the
1549         * checkpointed state back and the TM mode.
1550         *
1551         * Can't pass dst because it isn't ready. Doesn't matter, passing
1552         * dst is only important for __switch_to()
1553         */
1554        __switch_to_tm(src, src);
1555
1556        *dst = *src;
1557
1558        clear_task_ebb(dst);
1559
1560        return 0;
1561}
1562
1563static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1564{
1565#ifdef CONFIG_PPC_BOOK3S_64
1566        unsigned long sp_vsid;
1567        unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1568
1569        if (radix_enabled())
1570                return;
1571
1572        if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1573                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1574                        << SLB_VSID_SHIFT_1T;
1575        else
1576                sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1577                        << SLB_VSID_SHIFT;
1578        sp_vsid |= SLB_VSID_KERNEL | llp;
1579        p->thread.ksp_vsid = sp_vsid;
1580#endif
1581}
1582
1583/*
1584 * Copy a thread..
1585 */
1586
1587/*
1588 * Copy architecture-specific thread state
1589 */
1590int copy_thread(unsigned long clone_flags, unsigned long usp,
1591                unsigned long kthread_arg, struct task_struct *p)
1592{
1593        struct pt_regs *childregs, *kregs;
1594        extern void ret_from_fork(void);
1595        extern void ret_from_kernel_thread(void);
1596        void (*f)(void);
1597        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1598        struct thread_info *ti = task_thread_info(p);
1599
1600        klp_init_thread_info(p);
1601
1602        /* Copy registers */
1603        sp -= sizeof(struct pt_regs);
1604        childregs = (struct pt_regs *) sp;
1605        if (unlikely(p->flags & PF_KTHREAD)) {
1606                /* kernel thread */
1607                memset(childregs, 0, sizeof(struct pt_regs));
1608                childregs->gpr[1] = sp + sizeof(struct pt_regs);
1609                /* function */
1610                if (usp)
1611                        childregs->gpr[14] = ppc_function_entry((void *)usp);
1612#ifdef CONFIG_PPC64
1613                clear_tsk_thread_flag(p, TIF_32BIT);
1614                childregs->softe = IRQS_ENABLED;
1615#endif
1616                childregs->gpr[15] = kthread_arg;
1617                p->thread.regs = NULL;  /* no user register state */
1618                ti->flags |= _TIF_RESTOREALL;
1619                f = ret_from_kernel_thread;
1620        } else {
1621                /* user thread */
1622                struct pt_regs *regs = current_pt_regs();
1623                CHECK_FULL_REGS(regs);
1624                *childregs = *regs;
1625                if (usp)
1626                        childregs->gpr[1] = usp;
1627                p->thread.regs = childregs;
1628                childregs->gpr[3] = 0;  /* Result from fork() */
1629                if (clone_flags & CLONE_SETTLS) {
1630#ifdef CONFIG_PPC64
1631                        if (!is_32bit_task())
1632                                childregs->gpr[13] = childregs->gpr[6];
1633                        else
1634#endif
1635                                childregs->gpr[2] = childregs->gpr[6];
1636                }
1637
1638                f = ret_from_fork;
1639        }
1640        childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1641        sp -= STACK_FRAME_OVERHEAD;
1642
1643        /*
1644         * The way this works is that at some point in the future
1645         * some task will call _switch to switch to the new task.
1646         * That will pop off the stack frame created below and start
1647         * the new task running at ret_from_fork.  The new task will
1648         * do some house keeping and then return from the fork or clone
1649         * system call, using the stack frame created above.
1650         */
1651        ((unsigned long *)sp)[0] = 0;
1652        sp -= sizeof(struct pt_regs);
1653        kregs = (struct pt_regs *) sp;
1654        sp -= STACK_FRAME_OVERHEAD;
1655        p->thread.ksp = sp;
1656#ifdef CONFIG_PPC32
1657        p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1658#endif
1659#ifdef CONFIG_HAVE_HW_BREAKPOINT
1660        p->thread.ptrace_bps[0] = NULL;
1661#endif
1662
1663        p->thread.fp_save_area = NULL;
1664#ifdef CONFIG_ALTIVEC
1665        p->thread.vr_save_area = NULL;
1666#endif
1667
1668        setup_ksp_vsid(p, sp);
1669
1670#ifdef CONFIG_PPC64 
1671        if (cpu_has_feature(CPU_FTR_DSCR)) {
1672                p->thread.dscr_inherit = current->thread.dscr_inherit;
1673                p->thread.dscr = mfspr(SPRN_DSCR);
1674        }
1675        if (cpu_has_feature(CPU_FTR_HAS_PPR))
1676                childregs->ppr = DEFAULT_PPR;
1677
1678        p->thread.tidr = 0;
1679#endif
1680        kregs->nip = ppc_function_entry(f);
1681        return 0;
1682}
1683
1684void preload_new_slb_context(unsigned long start, unsigned long sp);
1685
1686/*
1687 * Set up a thread for executing a new program
1688 */
1689void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1690{
1691#ifdef CONFIG_PPC64
1692        unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1693
1694#ifdef CONFIG_PPC_BOOK3S_64
1695        if (!radix_enabled())
1696                preload_new_slb_context(start, sp);
1697#endif
1698#endif
1699
1700        /*
1701         * If we exec out of a kernel thread then thread.regs will not be
1702         * set.  Do it now.
1703         */
1704        if (!current->thread.regs) {
1705                struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1706                current->thread.regs = regs - 1;
1707        }
1708
1709#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1710        /*
1711         * Clear any transactional state, we're exec()ing. The cause is
1712         * not important as there will never be a recheckpoint so it's not
1713         * user visible.
1714         */
1715        if (MSR_TM_SUSPENDED(mfmsr()))
1716                tm_reclaim_current(0);
1717#endif
1718
1719        memset(regs->gpr, 0, sizeof(regs->gpr));
1720        regs->ctr = 0;
1721        regs->link = 0;
1722        regs->xer = 0;
1723        regs->ccr = 0;
1724        regs->gpr[1] = sp;
1725
1726        /*
1727         * We have just cleared all the nonvolatile GPRs, so make
1728         * FULL_REGS(regs) return true.  This is necessary to allow
1729         * ptrace to examine the thread immediately after exec.
1730         */
1731        regs->trap &= ~1UL;
1732
1733#ifdef CONFIG_PPC32
1734        regs->mq = 0;
1735        regs->nip = start;
1736        regs->msr = MSR_USER;
1737#else
1738        if (!is_32bit_task()) {
1739                unsigned long entry;
1740
1741                if (is_elf2_task()) {
1742                        /* Look ma, no function descriptors! */
1743                        entry = start;
1744
1745                        /*
1746                         * Ulrich says:
1747                         *   The latest iteration of the ABI requires that when
1748                         *   calling a function (at its global entry point),
1749                         *   the caller must ensure r12 holds the entry point
1750                         *   address (so that the function can quickly
1751                         *   establish addressability).
1752                         */
1753                        regs->gpr[12] = start;
1754                        /* Make sure that's restored on entry to userspace. */
1755                        set_thread_flag(TIF_RESTOREALL);
1756                } else {
1757                        unsigned long toc;
1758
1759                        /* start is a relocated pointer to the function
1760                         * descriptor for the elf _start routine.  The first
1761                         * entry in the function descriptor is the entry
1762                         * address of _start and the second entry is the TOC
1763                         * value we need to use.
1764                         */
1765                        __get_user(entry, (unsigned long __user *)start);
1766                        __get_user(toc, (unsigned long __user *)start+1);
1767
1768                        /* Check whether the e_entry function descriptor entries
1769                         * need to be relocated before we can use them.
1770                         */
1771                        if (load_addr != 0) {
1772                                entry += load_addr;
1773                                toc   += load_addr;
1774                        }
1775                        regs->gpr[2] = toc;
1776                }
1777                regs->nip = entry;
1778                regs->msr = MSR_USER64;
1779        } else {
1780                regs->nip = start;
1781                regs->gpr[2] = 0;
1782                regs->msr = MSR_USER32;
1783        }
1784#endif
1785#ifdef CONFIG_VSX
1786        current->thread.used_vsr = 0;
1787#endif
1788        current->thread.load_slb = 0;
1789        current->thread.load_fp = 0;
1790        memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1791        current->thread.fp_save_area = NULL;
1792#ifdef CONFIG_ALTIVEC
1793        memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1794        current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1795        current->thread.vr_save_area = NULL;
1796        current->thread.vrsave = 0;
1797        current->thread.used_vr = 0;
1798        current->thread.load_vec = 0;
1799#endif /* CONFIG_ALTIVEC */
1800#ifdef CONFIG_SPE
1801        memset(current->thread.evr, 0, sizeof(current->thread.evr));
1802        current->thread.acc = 0;
1803        current->thread.spefscr = 0;
1804        current->thread.used_spe = 0;
1805#endif /* CONFIG_SPE */
1806#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1807        current->thread.tm_tfhar = 0;
1808        current->thread.tm_texasr = 0;
1809        current->thread.tm_tfiar = 0;
1810        current->thread.load_tm = 0;
1811#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1812
1813        thread_pkey_regs_init(&current->thread);
1814}
1815EXPORT_SYMBOL(start_thread);
1816
1817#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1818                | PR_FP_EXC_RES | PR_FP_EXC_INV)
1819
1820int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1821{
1822        struct pt_regs *regs = tsk->thread.regs;
1823
1824        /* This is a bit hairy.  If we are an SPE enabled  processor
1825         * (have embedded fp) we store the IEEE exception enable flags in
1826         * fpexc_mode.  fpexc_mode is also used for setting FP exception
1827         * mode (asyn, precise, disabled) for 'Classic' FP. */
1828        if (val & PR_FP_EXC_SW_ENABLE) {
1829#ifdef CONFIG_SPE
1830                if (cpu_has_feature(CPU_FTR_SPE)) {
1831                        /*
1832                         * When the sticky exception bits are set
1833                         * directly by userspace, it must call prctl
1834                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1835                         * in the existing prctl settings) or
1836                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1837                         * the bits being set).  <fenv.h> functions
1838                         * saving and restoring the whole
1839                         * floating-point environment need to do so
1840                         * anyway to restore the prctl settings from
1841                         * the saved environment.
1842                         */
1843                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1844                        tsk->thread.fpexc_mode = val &
1845                                (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1846                        return 0;
1847                } else {
1848                        return -EINVAL;
1849                }
1850#else
1851                return -EINVAL;
1852#endif
1853        }
1854
1855        /* on a CONFIG_SPE this does not hurt us.  The bits that
1856         * __pack_fe01 use do not overlap with bits used for
1857         * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1858         * on CONFIG_SPE implementations are reserved so writing to
1859         * them does not change anything */
1860        if (val > PR_FP_EXC_PRECISE)
1861                return -EINVAL;
1862        tsk->thread.fpexc_mode = __pack_fe01(val);
1863        if (regs != NULL && (regs->msr & MSR_FP) != 0)
1864                regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1865                        | tsk->thread.fpexc_mode;
1866        return 0;
1867}
1868
1869int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1870{
1871        unsigned int val;
1872
1873        if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1874#ifdef CONFIG_SPE
1875                if (cpu_has_feature(CPU_FTR_SPE)) {
1876                        /*
1877                         * When the sticky exception bits are set
1878                         * directly by userspace, it must call prctl
1879                         * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1880                         * in the existing prctl settings) or
1881                         * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1882                         * the bits being set).  <fenv.h> functions
1883                         * saving and restoring the whole
1884                         * floating-point environment need to do so
1885                         * anyway to restore the prctl settings from
1886                         * the saved environment.
1887                         */
1888                        tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1889                        val = tsk->thread.fpexc_mode;
1890                } else
1891                        return -EINVAL;
1892#else
1893                return -EINVAL;
1894#endif
1895        else
1896                val = __unpack_fe01(tsk->thread.fpexc_mode);
1897        return put_user(val, (unsigned int __user *) adr);
1898}
1899
1900int set_endian(struct task_struct *tsk, unsigned int val)
1901{
1902        struct pt_regs *regs = tsk->thread.regs;
1903
1904        if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1905            (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1906                return -EINVAL;
1907
1908        if (regs == NULL)
1909                return -EINVAL;
1910
1911        if (val == PR_ENDIAN_BIG)
1912                regs->msr &= ~MSR_LE;
1913        else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1914                regs->msr |= MSR_LE;
1915        else
1916                return -EINVAL;
1917
1918        return 0;
1919}
1920
1921int get_endian(struct task_struct *tsk, unsigned long adr)
1922{
1923        struct pt_regs *regs = tsk->thread.regs;
1924        unsigned int val;
1925
1926        if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1927            !cpu_has_feature(CPU_FTR_REAL_LE))
1928                return -EINVAL;
1929
1930        if (regs == NULL)
1931                return -EINVAL;
1932
1933        if (regs->msr & MSR_LE) {
1934                if (cpu_has_feature(CPU_FTR_REAL_LE))
1935                        val = PR_ENDIAN_LITTLE;
1936                else
1937                        val = PR_ENDIAN_PPC_LITTLE;
1938        } else
1939                val = PR_ENDIAN_BIG;
1940
1941        return put_user(val, (unsigned int __user *)adr);
1942}
1943
1944int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1945{
1946        tsk->thread.align_ctl = val;
1947        return 0;
1948}
1949
1950int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1951{
1952        return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1953}
1954
1955static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1956                                  unsigned long nbytes)
1957{
1958        unsigned long stack_page;
1959        unsigned long cpu = task_cpu(p);
1960
1961        stack_page = (unsigned long)hardirq_ctx[cpu];
1962        if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1963                return 1;
1964
1965        stack_page = (unsigned long)softirq_ctx[cpu];
1966        if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1967                return 1;
1968
1969        return 0;
1970}
1971
1972int validate_sp(unsigned long sp, struct task_struct *p,
1973                       unsigned long nbytes)
1974{
1975        unsigned long stack_page = (unsigned long)task_stack_page(p);
1976
1977        if (sp < THREAD_SIZE)
1978                return 0;
1979
1980        if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1981                return 1;
1982
1983        return valid_irq_stack(sp, p, nbytes);
1984}
1985
1986EXPORT_SYMBOL(validate_sp);
1987
1988static unsigned long __get_wchan(struct task_struct *p)
1989{
1990        unsigned long ip, sp;
1991        int count = 0;
1992
1993        if (!p || p == current || p->state == TASK_RUNNING)
1994                return 0;
1995
1996        sp = p->thread.ksp;
1997        if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1998                return 0;
1999
2000        do {
2001                sp = *(unsigned long *)sp;
2002                if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2003                    p->state == TASK_RUNNING)
2004                        return 0;
2005                if (count > 0) {
2006                        ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2007                        if (!in_sched_functions(ip))
2008                                return ip;
2009                }
2010        } while (count++ < 16);
2011        return 0;
2012}
2013
2014unsigned long get_wchan(struct task_struct *p)
2015{
2016        unsigned long ret;
2017
2018        if (!try_get_task_stack(p))
2019                return 0;
2020
2021        ret = __get_wchan(p);
2022
2023        put_task_stack(p);
2024
2025        return ret;
2026}
2027
2028static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2029
2030void show_stack(struct task_struct *tsk, unsigned long *stack)
2031{
2032        unsigned long sp, ip, lr, newsp;
2033        int count = 0;
2034        int firstframe = 1;
2035#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2036        struct ftrace_ret_stack *ret_stack;
2037        extern void return_to_handler(void);
2038        unsigned long rth = (unsigned long)return_to_handler;
2039        int curr_frame = 0;
2040#endif
2041
2042        if (tsk == NULL)
2043                tsk = current;
2044
2045        if (!try_get_task_stack(tsk))
2046                return;
2047
2048        sp = (unsigned long) stack;
2049        if (sp == 0) {
2050                if (tsk == current)
2051                        sp = current_stack_pointer();
2052                else
2053                        sp = tsk->thread.ksp;
2054        }
2055
2056        lr = 0;
2057        printk("Call Trace:\n");
2058        do {
2059                if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2060                        break;
2061
2062                stack = (unsigned long *) sp;
2063                newsp = stack[0];
2064                ip = stack[STACK_FRAME_LR_SAVE];
2065                if (!firstframe || ip != lr) {
2066                        printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2067#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2068                        if ((ip == rth) && curr_frame >= 0) {
2069                                ret_stack = ftrace_graph_get_ret_stack(current,
2070                                                                  curr_frame++);
2071                                if (ret_stack)
2072                                        pr_cont(" (%pS)",
2073                                                (void *)ret_stack->ret);
2074                                else
2075                                        curr_frame = -1;
2076                        }
2077#endif
2078                        if (firstframe)
2079                                pr_cont(" (unreliable)");
2080                        pr_cont("\n");
2081                }
2082                firstframe = 0;
2083
2084                /*
2085                 * See if this is an exception frame.
2086                 * We look for the "regshere" marker in the current frame.
2087                 */
2088                if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2089                    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2090                        struct pt_regs *regs = (struct pt_regs *)
2091                                (sp + STACK_FRAME_OVERHEAD);
2092                        lr = regs->link;
2093                        printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2094                               regs->trap, (void *)regs->nip, (void *)lr);
2095                        firstframe = 1;
2096                }
2097
2098                sp = newsp;
2099        } while (count++ < kstack_depth_to_print);
2100
2101        put_task_stack(tsk);
2102}
2103
2104#ifdef CONFIG_PPC64
2105/* Called with hard IRQs off */
2106void notrace __ppc64_runlatch_on(void)
2107{
2108        struct thread_info *ti = current_thread_info();
2109
2110        if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2111                /*
2112                 * Least significant bit (RUN) is the only writable bit of
2113                 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2114                 * earliest ISA where this is the case, but it's convenient.
2115                 */
2116                mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2117        } else {
2118                unsigned long ctrl;
2119
2120                /*
2121                 * Some architectures (e.g., Cell) have writable fields other
2122                 * than RUN, so do the read-modify-write.
2123                 */
2124                ctrl = mfspr(SPRN_CTRLF);
2125                ctrl |= CTRL_RUNLATCH;
2126                mtspr(SPRN_CTRLT, ctrl);
2127        }
2128
2129        ti->local_flags |= _TLF_RUNLATCH;
2130}
2131
2132/* Called with hard IRQs off */
2133void notrace __ppc64_runlatch_off(void)
2134{
2135        struct thread_info *ti = current_thread_info();
2136
2137        ti->local_flags &= ~_TLF_RUNLATCH;
2138
2139        if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2140                mtspr(SPRN_CTRLT, 0);
2141        } else {
2142                unsigned long ctrl;
2143
2144                ctrl = mfspr(SPRN_CTRLF);
2145                ctrl &= ~CTRL_RUNLATCH;
2146                mtspr(SPRN_CTRLT, ctrl);
2147        }
2148}
2149#endif /* CONFIG_PPC64 */
2150
2151unsigned long arch_align_stack(unsigned long sp)
2152{
2153        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2154                sp -= get_random_int() & ~PAGE_MASK;
2155        return sp & ~0xf;
2156}
2157
2158static inline unsigned long brk_rnd(void)
2159{
2160        unsigned long rnd = 0;
2161
2162        /* 8MB for 32bit, 1GB for 64bit */
2163        if (is_32bit_task())
2164                rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2165        else
2166                rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2167
2168        return rnd << PAGE_SHIFT;
2169}
2170
2171unsigned long arch_randomize_brk(struct mm_struct *mm)
2172{
2173        unsigned long base = mm->brk;
2174        unsigned long ret;
2175
2176#ifdef CONFIG_PPC_BOOK3S_64
2177        /*
2178         * If we are using 1TB segments and we are allowed to randomise
2179         * the heap, we can put it above 1TB so it is backed by a 1TB
2180         * segment. Otherwise the heap will be in the bottom 1TB
2181         * which always uses 256MB segments and this may result in a
2182         * performance penalty. We don't need to worry about radix. For
2183         * radix, mmu_highuser_ssize remains unchanged from 256MB.
2184         */
2185        if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2186                base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2187#endif
2188
2189        ret = PAGE_ALIGN(base + brk_rnd());
2190
2191        if (ret < mm->brk)
2192                return mm->brk;
2193
2194        return ret;
2195}
2196
2197