linux/arch/powerpc/kvm/book3s_64_mmu_hv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/string.h>
   9#include <linux/kvm.h>
  10#include <linux/kvm_host.h>
  11#include <linux/highmem.h>
  12#include <linux/gfp.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/vmalloc.h>
  16#include <linux/srcu.h>
  17#include <linux/anon_inodes.h>
  18#include <linux/file.h>
  19#include <linux/debugfs.h>
  20
  21#include <asm/kvm_ppc.h>
  22#include <asm/kvm_book3s.h>
  23#include <asm/book3s/64/mmu-hash.h>
  24#include <asm/hvcall.h>
  25#include <asm/synch.h>
  26#include <asm/ppc-opcode.h>
  27#include <asm/cputable.h>
  28#include <asm/pte-walk.h>
  29
  30#include "trace_hv.h"
  31
  32//#define DEBUG_RESIZE_HPT      1
  33
  34#ifdef DEBUG_RESIZE_HPT
  35#define resize_hpt_debug(resize, ...)                           \
  36        do {                                                    \
  37                printk(KERN_DEBUG "RESIZE HPT %p: ", resize);   \
  38                printk(__VA_ARGS__);                            \
  39        } while (0)
  40#else
  41#define resize_hpt_debug(resize, ...)                           \
  42        do { } while (0)
  43#endif
  44
  45static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  46                                long pte_index, unsigned long pteh,
  47                                unsigned long ptel, unsigned long *pte_idx_ret);
  48
  49struct kvm_resize_hpt {
  50        /* These fields read-only after init */
  51        struct kvm *kvm;
  52        struct work_struct work;
  53        u32 order;
  54
  55        /* These fields protected by kvm->arch.mmu_setup_lock */
  56
  57        /* Possible values and their usage:
  58         *  <0     an error occurred during allocation,
  59         *  -EBUSY allocation is in the progress,
  60         *  0      allocation made successfuly.
  61         */
  62        int error;
  63
  64        /* Private to the work thread, until error != -EBUSY,
  65         * then protected by kvm->arch.mmu_setup_lock.
  66         */
  67        struct kvm_hpt_info hpt;
  68};
  69
  70int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
  71{
  72        unsigned long hpt = 0;
  73        int cma = 0;
  74        struct page *page = NULL;
  75        struct revmap_entry *rev;
  76        unsigned long npte;
  77
  78        if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
  79                return -EINVAL;
  80
  81        page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
  82        if (page) {
  83                hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
  84                memset((void *)hpt, 0, (1ul << order));
  85                cma = 1;
  86        }
  87
  88        if (!hpt)
  89                hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
  90                                       |__GFP_NOWARN, order - PAGE_SHIFT);
  91
  92        if (!hpt)
  93                return -ENOMEM;
  94
  95        /* HPTEs are 2**4 bytes long */
  96        npte = 1ul << (order - 4);
  97
  98        /* Allocate reverse map array */
  99        rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
 100        if (!rev) {
 101                if (cma)
 102                        kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
 103                else
 104                        free_pages(hpt, order - PAGE_SHIFT);
 105                return -ENOMEM;
 106        }
 107
 108        info->order = order;
 109        info->virt = hpt;
 110        info->cma = cma;
 111        info->rev = rev;
 112
 113        return 0;
 114}
 115
 116void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
 117{
 118        atomic64_set(&kvm->arch.mmio_update, 0);
 119        kvm->arch.hpt = *info;
 120        kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
 121
 122        pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
 123                 info->virt, (long)info->order, kvm->arch.lpid);
 124}
 125
 126long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
 127{
 128        long err = -EBUSY;
 129        struct kvm_hpt_info info;
 130
 131        mutex_lock(&kvm->arch.mmu_setup_lock);
 132        if (kvm->arch.mmu_ready) {
 133                kvm->arch.mmu_ready = 0;
 134                /* order mmu_ready vs. vcpus_running */
 135                smp_mb();
 136                if (atomic_read(&kvm->arch.vcpus_running)) {
 137                        kvm->arch.mmu_ready = 1;
 138                        goto out;
 139                }
 140        }
 141        if (kvm_is_radix(kvm)) {
 142                err = kvmppc_switch_mmu_to_hpt(kvm);
 143                if (err)
 144                        goto out;
 145        }
 146
 147        if (kvm->arch.hpt.order == order) {
 148                /* We already have a suitable HPT */
 149
 150                /* Set the entire HPT to 0, i.e. invalid HPTEs */
 151                memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
 152                /*
 153                 * Reset all the reverse-mapping chains for all memslots
 154                 */
 155                kvmppc_rmap_reset(kvm);
 156                err = 0;
 157                goto out;
 158        }
 159
 160        if (kvm->arch.hpt.virt) {
 161                kvmppc_free_hpt(&kvm->arch.hpt);
 162                kvmppc_rmap_reset(kvm);
 163        }
 164
 165        err = kvmppc_allocate_hpt(&info, order);
 166        if (err < 0)
 167                goto out;
 168        kvmppc_set_hpt(kvm, &info);
 169
 170out:
 171        if (err == 0)
 172                /* Ensure that each vcpu will flush its TLB on next entry. */
 173                cpumask_setall(&kvm->arch.need_tlb_flush);
 174
 175        mutex_unlock(&kvm->arch.mmu_setup_lock);
 176        return err;
 177}
 178
 179void kvmppc_free_hpt(struct kvm_hpt_info *info)
 180{
 181        vfree(info->rev);
 182        info->rev = NULL;
 183        if (info->cma)
 184                kvm_free_hpt_cma(virt_to_page(info->virt),
 185                                 1 << (info->order - PAGE_SHIFT));
 186        else if (info->virt)
 187                free_pages(info->virt, info->order - PAGE_SHIFT);
 188        info->virt = 0;
 189        info->order = 0;
 190}
 191
 192/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
 193static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
 194{
 195        return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
 196}
 197
 198/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
 199static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
 200{
 201        return (pgsize == 0x10000) ? 0x1000 : 0;
 202}
 203
 204void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
 205                     unsigned long porder)
 206{
 207        unsigned long i;
 208        unsigned long npages;
 209        unsigned long hp_v, hp_r;
 210        unsigned long addr, hash;
 211        unsigned long psize;
 212        unsigned long hp0, hp1;
 213        unsigned long idx_ret;
 214        long ret;
 215        struct kvm *kvm = vcpu->kvm;
 216
 217        psize = 1ul << porder;
 218        npages = memslot->npages >> (porder - PAGE_SHIFT);
 219
 220        /* VRMA can't be > 1TB */
 221        if (npages > 1ul << (40 - porder))
 222                npages = 1ul << (40 - porder);
 223        /* Can't use more than 1 HPTE per HPTEG */
 224        if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
 225                npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
 226
 227        hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
 228                HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
 229        hp1 = hpte1_pgsize_encoding(psize) |
 230                HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
 231
 232        for (i = 0; i < npages; ++i) {
 233                addr = i << porder;
 234                /* can't use hpt_hash since va > 64 bits */
 235                hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
 236                        & kvmppc_hpt_mask(&kvm->arch.hpt);
 237                /*
 238                 * We assume that the hash table is empty and no
 239                 * vcpus are using it at this stage.  Since we create
 240                 * at most one HPTE per HPTEG, we just assume entry 7
 241                 * is available and use it.
 242                 */
 243                hash = (hash << 3) + 7;
 244                hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
 245                hp_r = hp1 | addr;
 246                ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
 247                                                 &idx_ret);
 248                if (ret != H_SUCCESS) {
 249                        pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
 250                               addr, ret);
 251                        break;
 252                }
 253        }
 254}
 255
 256int kvmppc_mmu_hv_init(void)
 257{
 258        unsigned long host_lpid, rsvd_lpid;
 259
 260        if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
 261                return -EINVAL;
 262
 263        /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
 264        host_lpid = 0;
 265        if (cpu_has_feature(CPU_FTR_HVMODE))
 266                host_lpid = mfspr(SPRN_LPID);
 267        rsvd_lpid = LPID_RSVD;
 268
 269        kvmppc_init_lpid(rsvd_lpid + 1);
 270
 271        kvmppc_claim_lpid(host_lpid);
 272        /* rsvd_lpid is reserved for use in partition switching */
 273        kvmppc_claim_lpid(rsvd_lpid);
 274
 275        return 0;
 276}
 277
 278static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
 279{
 280        unsigned long msr = vcpu->arch.intr_msr;
 281
 282        /* If transactional, change to suspend mode on IRQ delivery */
 283        if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
 284                msr |= MSR_TS_S;
 285        else
 286                msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
 287        kvmppc_set_msr(vcpu, msr);
 288}
 289
 290static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
 291                                long pte_index, unsigned long pteh,
 292                                unsigned long ptel, unsigned long *pte_idx_ret)
 293{
 294        long ret;
 295
 296        /* Protect linux PTE lookup from page table destruction */
 297        rcu_read_lock_sched();  /* this disables preemption too */
 298        ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
 299                                current->mm->pgd, false, pte_idx_ret);
 300        rcu_read_unlock_sched();
 301        if (ret == H_TOO_HARD) {
 302                /* this can't happen */
 303                pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
 304                ret = H_RESOURCE;       /* or something */
 305        }
 306        return ret;
 307
 308}
 309
 310static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
 311                                                         gva_t eaddr)
 312{
 313        u64 mask;
 314        int i;
 315
 316        for (i = 0; i < vcpu->arch.slb_nr; i++) {
 317                if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
 318                        continue;
 319
 320                if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
 321                        mask = ESID_MASK_1T;
 322                else
 323                        mask = ESID_MASK;
 324
 325                if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
 326                        return &vcpu->arch.slb[i];
 327        }
 328        return NULL;
 329}
 330
 331static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
 332                        unsigned long ea)
 333{
 334        unsigned long ra_mask;
 335
 336        ra_mask = kvmppc_actual_pgsz(v, r) - 1;
 337        return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
 338}
 339
 340static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 341                        struct kvmppc_pte *gpte, bool data, bool iswrite)
 342{
 343        struct kvm *kvm = vcpu->kvm;
 344        struct kvmppc_slb *slbe;
 345        unsigned long slb_v;
 346        unsigned long pp, key;
 347        unsigned long v, orig_v, gr;
 348        __be64 *hptep;
 349        long int index;
 350        int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
 351
 352        if (kvm_is_radix(vcpu->kvm))
 353                return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
 354
 355        /* Get SLB entry */
 356        if (virtmode) {
 357                slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
 358                if (!slbe)
 359                        return -EINVAL;
 360                slb_v = slbe->origv;
 361        } else {
 362                /* real mode access */
 363                slb_v = vcpu->kvm->arch.vrma_slb_v;
 364        }
 365
 366        preempt_disable();
 367        /* Find the HPTE in the hash table */
 368        index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
 369                                         HPTE_V_VALID | HPTE_V_ABSENT);
 370        if (index < 0) {
 371                preempt_enable();
 372                return -ENOENT;
 373        }
 374        hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
 375        v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
 376        if (cpu_has_feature(CPU_FTR_ARCH_300))
 377                v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
 378        gr = kvm->arch.hpt.rev[index].guest_rpte;
 379
 380        unlock_hpte(hptep, orig_v);
 381        preempt_enable();
 382
 383        gpte->eaddr = eaddr;
 384        gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
 385
 386        /* Get PP bits and key for permission check */
 387        pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
 388        key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
 389        key &= slb_v;
 390
 391        /* Calculate permissions */
 392        gpte->may_read = hpte_read_permission(pp, key);
 393        gpte->may_write = hpte_write_permission(pp, key);
 394        gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
 395
 396        /* Storage key permission check for POWER7 */
 397        if (data && virtmode) {
 398                int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
 399                if (amrfield & 1)
 400                        gpte->may_read = 0;
 401                if (amrfield & 2)
 402                        gpte->may_write = 0;
 403        }
 404
 405        /* Get the guest physical address */
 406        gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
 407        return 0;
 408}
 409
 410/*
 411 * Quick test for whether an instruction is a load or a store.
 412 * If the instruction is a load or a store, then this will indicate
 413 * which it is, at least on server processors.  (Embedded processors
 414 * have some external PID instructions that don't follow the rule
 415 * embodied here.)  If the instruction isn't a load or store, then
 416 * this doesn't return anything useful.
 417 */
 418static int instruction_is_store(unsigned int instr)
 419{
 420        unsigned int mask;
 421
 422        mask = 0x10000000;
 423        if ((instr & 0xfc000000) == 0x7c000000)
 424                mask = 0x100;           /* major opcode 31 */
 425        return (instr & mask) != 0;
 426}
 427
 428int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
 429                           unsigned long gpa, gva_t ea, int is_store)
 430{
 431        u32 last_inst;
 432
 433        /*
 434         * Fast path - check if the guest physical address corresponds to a
 435         * device on the FAST_MMIO_BUS, if so we can avoid loading the
 436         * instruction all together, then we can just handle it and return.
 437         */
 438        if (is_store) {
 439                int idx, ret;
 440
 441                idx = srcu_read_lock(&vcpu->kvm->srcu);
 442                ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
 443                                       NULL);
 444                srcu_read_unlock(&vcpu->kvm->srcu, idx);
 445                if (!ret) {
 446                        kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
 447                        return RESUME_GUEST;
 448                }
 449        }
 450
 451        /*
 452         * If we fail, we just return to the guest and try executing it again.
 453         */
 454        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
 455                EMULATE_DONE)
 456                return RESUME_GUEST;
 457
 458        /*
 459         * WARNING: We do not know for sure whether the instruction we just
 460         * read from memory is the same that caused the fault in the first
 461         * place.  If the instruction we read is neither an load or a store,
 462         * then it can't access memory, so we don't need to worry about
 463         * enforcing access permissions.  So, assuming it is a load or
 464         * store, we just check that its direction (load or store) is
 465         * consistent with the original fault, since that's what we
 466         * checked the access permissions against.  If there is a mismatch
 467         * we just return and retry the instruction.
 468         */
 469
 470        if (instruction_is_store(last_inst) != !!is_store)
 471                return RESUME_GUEST;
 472
 473        /*
 474         * Emulated accesses are emulated by looking at the hash for
 475         * translation once, then performing the access later. The
 476         * translation could be invalidated in the meantime in which
 477         * point performing the subsequent memory access on the old
 478         * physical address could possibly be a security hole for the
 479         * guest (but not the host).
 480         *
 481         * This is less of an issue for MMIO stores since they aren't
 482         * globally visible. It could be an issue for MMIO loads to
 483         * a certain extent but we'll ignore it for now.
 484         */
 485
 486        vcpu->arch.paddr_accessed = gpa;
 487        vcpu->arch.vaddr_accessed = ea;
 488        return kvmppc_emulate_mmio(run, vcpu);
 489}
 490
 491int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 492                                unsigned long ea, unsigned long dsisr)
 493{
 494        struct kvm *kvm = vcpu->kvm;
 495        unsigned long hpte[3], r;
 496        unsigned long hnow_v, hnow_r;
 497        __be64 *hptep;
 498        unsigned long mmu_seq, psize, pte_size;
 499        unsigned long gpa_base, gfn_base;
 500        unsigned long gpa, gfn, hva, pfn;
 501        struct kvm_memory_slot *memslot;
 502        unsigned long *rmap;
 503        struct revmap_entry *rev;
 504        struct page *page, *pages[1];
 505        long index, ret, npages;
 506        bool is_ci;
 507        unsigned int writing, write_ok;
 508        struct vm_area_struct *vma;
 509        unsigned long rcbits;
 510        long mmio_update;
 511
 512        if (kvm_is_radix(kvm))
 513                return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
 514
 515        /*
 516         * Real-mode code has already searched the HPT and found the
 517         * entry we're interested in.  Lock the entry and check that
 518         * it hasn't changed.  If it has, just return and re-execute the
 519         * instruction.
 520         */
 521        if (ea != vcpu->arch.pgfault_addr)
 522                return RESUME_GUEST;
 523
 524        if (vcpu->arch.pgfault_cache) {
 525                mmio_update = atomic64_read(&kvm->arch.mmio_update);
 526                if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
 527                        r = vcpu->arch.pgfault_cache->rpte;
 528                        psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
 529                                                   r);
 530                        gpa_base = r & HPTE_R_RPN & ~(psize - 1);
 531                        gfn_base = gpa_base >> PAGE_SHIFT;
 532                        gpa = gpa_base | (ea & (psize - 1));
 533                        return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
 534                                                dsisr & DSISR_ISSTORE);
 535                }
 536        }
 537        index = vcpu->arch.pgfault_index;
 538        hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
 539        rev = &kvm->arch.hpt.rev[index];
 540        preempt_disable();
 541        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 542                cpu_relax();
 543        hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
 544        hpte[1] = be64_to_cpu(hptep[1]);
 545        hpte[2] = r = rev->guest_rpte;
 546        unlock_hpte(hptep, hpte[0]);
 547        preempt_enable();
 548
 549        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 550                hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
 551                hpte[1] = hpte_new_to_old_r(hpte[1]);
 552        }
 553        if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
 554            hpte[1] != vcpu->arch.pgfault_hpte[1])
 555                return RESUME_GUEST;
 556
 557        /* Translate the logical address and get the page */
 558        psize = kvmppc_actual_pgsz(hpte[0], r);
 559        gpa_base = r & HPTE_R_RPN & ~(psize - 1);
 560        gfn_base = gpa_base >> PAGE_SHIFT;
 561        gpa = gpa_base | (ea & (psize - 1));
 562        gfn = gpa >> PAGE_SHIFT;
 563        memslot = gfn_to_memslot(kvm, gfn);
 564
 565        trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
 566
 567        /* No memslot means it's an emulated MMIO region */
 568        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
 569                return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
 570                                              dsisr & DSISR_ISSTORE);
 571
 572        /*
 573         * This should never happen, because of the slot_is_aligned()
 574         * check in kvmppc_do_h_enter().
 575         */
 576        if (gfn_base < memslot->base_gfn)
 577                return -EFAULT;
 578
 579        /* used to check for invalidations in progress */
 580        mmu_seq = kvm->mmu_notifier_seq;
 581        smp_rmb();
 582
 583        ret = -EFAULT;
 584        is_ci = false;
 585        pfn = 0;
 586        page = NULL;
 587        pte_size = PAGE_SIZE;
 588        writing = (dsisr & DSISR_ISSTORE) != 0;
 589        /* If writing != 0, then the HPTE must allow writing, if we get here */
 590        write_ok = writing;
 591        hva = gfn_to_hva_memslot(memslot, gfn);
 592        npages = get_user_pages_fast(hva, 1, writing ? FOLL_WRITE : 0, pages);
 593        if (npages < 1) {
 594                /* Check if it's an I/O mapping */
 595                down_read(&current->mm->mmap_sem);
 596                vma = find_vma(current->mm, hva);
 597                if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
 598                    (vma->vm_flags & VM_PFNMAP)) {
 599                        pfn = vma->vm_pgoff +
 600                                ((hva - vma->vm_start) >> PAGE_SHIFT);
 601                        pte_size = psize;
 602                        is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
 603                        write_ok = vma->vm_flags & VM_WRITE;
 604                }
 605                up_read(&current->mm->mmap_sem);
 606                if (!pfn)
 607                        goto out_put;
 608        } else {
 609                page = pages[0];
 610                pfn = page_to_pfn(page);
 611                if (PageHuge(page)) {
 612                        page = compound_head(page);
 613                        pte_size <<= compound_order(page);
 614                }
 615                /* if the guest wants write access, see if that is OK */
 616                if (!writing && hpte_is_writable(r)) {
 617                        pte_t *ptep, pte;
 618                        unsigned long flags;
 619                        /*
 620                         * We need to protect against page table destruction
 621                         * hugepage split and collapse.
 622                         */
 623                        local_irq_save(flags);
 624                        ptep = find_current_mm_pte(current->mm->pgd,
 625                                                   hva, NULL, NULL);
 626                        if (ptep) {
 627                                pte = kvmppc_read_update_linux_pte(ptep, 1);
 628                                if (__pte_write(pte))
 629                                        write_ok = 1;
 630                        }
 631                        local_irq_restore(flags);
 632                }
 633        }
 634
 635        if (psize > pte_size)
 636                goto out_put;
 637
 638        /* Check WIMG vs. the actual page we're accessing */
 639        if (!hpte_cache_flags_ok(r, is_ci)) {
 640                if (is_ci)
 641                        goto out_put;
 642                /*
 643                 * Allow guest to map emulated device memory as
 644                 * uncacheable, but actually make it cacheable.
 645                 */
 646                r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
 647        }
 648
 649        /*
 650         * Set the HPTE to point to pfn.
 651         * Since the pfn is at PAGE_SIZE granularity, make sure we
 652         * don't mask out lower-order bits if psize < PAGE_SIZE.
 653         */
 654        if (psize < PAGE_SIZE)
 655                psize = PAGE_SIZE;
 656        r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
 657                                        ((pfn << PAGE_SHIFT) & ~(psize - 1));
 658        if (hpte_is_writable(r) && !write_ok)
 659                r = hpte_make_readonly(r);
 660        ret = RESUME_GUEST;
 661        preempt_disable();
 662        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 663                cpu_relax();
 664        hnow_v = be64_to_cpu(hptep[0]);
 665        hnow_r = be64_to_cpu(hptep[1]);
 666        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 667                hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
 668                hnow_r = hpte_new_to_old_r(hnow_r);
 669        }
 670
 671        /*
 672         * If the HPT is being resized, don't update the HPTE,
 673         * instead let the guest retry after the resize operation is complete.
 674         * The synchronization for mmu_ready test vs. set is provided
 675         * by the HPTE lock.
 676         */
 677        if (!kvm->arch.mmu_ready)
 678                goto out_unlock;
 679
 680        if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
 681            rev->guest_rpte != hpte[2])
 682                /* HPTE has been changed under us; let the guest retry */
 683                goto out_unlock;
 684        hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
 685
 686        /* Always put the HPTE in the rmap chain for the page base address */
 687        rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
 688        lock_rmap(rmap);
 689
 690        /* Check if we might have been invalidated; let the guest retry if so */
 691        ret = RESUME_GUEST;
 692        if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
 693                unlock_rmap(rmap);
 694                goto out_unlock;
 695        }
 696
 697        /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
 698        rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
 699        r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
 700
 701        if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
 702                /* HPTE was previously valid, so we need to invalidate it */
 703                unlock_rmap(rmap);
 704                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 705                kvmppc_invalidate_hpte(kvm, hptep, index);
 706                /* don't lose previous R and C bits */
 707                r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
 708        } else {
 709                kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
 710        }
 711
 712        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 713                r = hpte_old_to_new_r(hpte[0], r);
 714                hpte[0] = hpte_old_to_new_v(hpte[0]);
 715        }
 716        hptep[1] = cpu_to_be64(r);
 717        eieio();
 718        __unlock_hpte(hptep, hpte[0]);
 719        asm volatile("ptesync" : : : "memory");
 720        preempt_enable();
 721        if (page && hpte_is_writable(r))
 722                SetPageDirty(page);
 723
 724 out_put:
 725        trace_kvm_page_fault_exit(vcpu, hpte, ret);
 726
 727        if (page) {
 728                /*
 729                 * We drop pages[0] here, not page because page might
 730                 * have been set to the head page of a compound, but
 731                 * we have to drop the reference on the correct tail
 732                 * page to match the get inside gup()
 733                 */
 734                put_page(pages[0]);
 735        }
 736        return ret;
 737
 738 out_unlock:
 739        __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 740        preempt_enable();
 741        goto out_put;
 742}
 743
 744void kvmppc_rmap_reset(struct kvm *kvm)
 745{
 746        struct kvm_memslots *slots;
 747        struct kvm_memory_slot *memslot;
 748        int srcu_idx;
 749
 750        srcu_idx = srcu_read_lock(&kvm->srcu);
 751        slots = kvm_memslots(kvm);
 752        kvm_for_each_memslot(memslot, slots) {
 753                /* Mutual exclusion with kvm_unmap_hva_range etc. */
 754                spin_lock(&kvm->mmu_lock);
 755                /*
 756                 * This assumes it is acceptable to lose reference and
 757                 * change bits across a reset.
 758                 */
 759                memset(memslot->arch.rmap, 0,
 760                       memslot->npages * sizeof(*memslot->arch.rmap));
 761                spin_unlock(&kvm->mmu_lock);
 762        }
 763        srcu_read_unlock(&kvm->srcu, srcu_idx);
 764}
 765
 766typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
 767                              unsigned long gfn);
 768
 769static int kvm_handle_hva_range(struct kvm *kvm,
 770                                unsigned long start,
 771                                unsigned long end,
 772                                hva_handler_fn handler)
 773{
 774        int ret;
 775        int retval = 0;
 776        struct kvm_memslots *slots;
 777        struct kvm_memory_slot *memslot;
 778
 779        slots = kvm_memslots(kvm);
 780        kvm_for_each_memslot(memslot, slots) {
 781                unsigned long hva_start, hva_end;
 782                gfn_t gfn, gfn_end;
 783
 784                hva_start = max(start, memslot->userspace_addr);
 785                hva_end = min(end, memslot->userspace_addr +
 786                                        (memslot->npages << PAGE_SHIFT));
 787                if (hva_start >= hva_end)
 788                        continue;
 789                /*
 790                 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 791                 * {gfn, gfn+1, ..., gfn_end-1}.
 792                 */
 793                gfn = hva_to_gfn_memslot(hva_start, memslot);
 794                gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 795
 796                for (; gfn < gfn_end; ++gfn) {
 797                        ret = handler(kvm, memslot, gfn);
 798                        retval |= ret;
 799                }
 800        }
 801
 802        return retval;
 803}
 804
 805static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
 806                          hva_handler_fn handler)
 807{
 808        return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
 809}
 810
 811/* Must be called with both HPTE and rmap locked */
 812static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
 813                              struct kvm_memory_slot *memslot,
 814                              unsigned long *rmapp, unsigned long gfn)
 815{
 816        __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
 817        struct revmap_entry *rev = kvm->arch.hpt.rev;
 818        unsigned long j, h;
 819        unsigned long ptel, psize, rcbits;
 820
 821        j = rev[i].forw;
 822        if (j == i) {
 823                /* chain is now empty */
 824                *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
 825        } else {
 826                /* remove i from chain */
 827                h = rev[i].back;
 828                rev[h].forw = j;
 829                rev[j].back = h;
 830                rev[i].forw = rev[i].back = i;
 831                *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
 832        }
 833
 834        /* Now check and modify the HPTE */
 835        ptel = rev[i].guest_rpte;
 836        psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
 837        if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
 838            hpte_rpn(ptel, psize) == gfn) {
 839                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 840                kvmppc_invalidate_hpte(kvm, hptep, i);
 841                hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
 842                /* Harvest R and C */
 843                rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
 844                *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
 845                if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
 846                        kvmppc_update_dirty_map(memslot, gfn, psize);
 847                if (rcbits & ~rev[i].guest_rpte) {
 848                        rev[i].guest_rpte = ptel | rcbits;
 849                        note_hpte_modification(kvm, &rev[i]);
 850                }
 851        }
 852}
 853
 854static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
 855                           unsigned long gfn)
 856{
 857        unsigned long i;
 858        __be64 *hptep;
 859        unsigned long *rmapp;
 860
 861        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
 862        for (;;) {
 863                lock_rmap(rmapp);
 864                if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 865                        unlock_rmap(rmapp);
 866                        break;
 867                }
 868
 869                /*
 870                 * To avoid an ABBA deadlock with the HPTE lock bit,
 871                 * we can't spin on the HPTE lock while holding the
 872                 * rmap chain lock.
 873                 */
 874                i = *rmapp & KVMPPC_RMAP_INDEX;
 875                hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
 876                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 877                        /* unlock rmap before spinning on the HPTE lock */
 878                        unlock_rmap(rmapp);
 879                        while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
 880                                cpu_relax();
 881                        continue;
 882                }
 883
 884                kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
 885                unlock_rmap(rmapp);
 886                __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 887        }
 888        return 0;
 889}
 890
 891int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
 892{
 893        hva_handler_fn handler;
 894
 895        handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
 896        kvm_handle_hva_range(kvm, start, end, handler);
 897        return 0;
 898}
 899
 900void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
 901                                  struct kvm_memory_slot *memslot)
 902{
 903        unsigned long gfn;
 904        unsigned long n;
 905        unsigned long *rmapp;
 906
 907        gfn = memslot->base_gfn;
 908        rmapp = memslot->arch.rmap;
 909        if (kvm_is_radix(kvm)) {
 910                kvmppc_radix_flush_memslot(kvm, memslot);
 911                return;
 912        }
 913
 914        for (n = memslot->npages; n; --n, ++gfn) {
 915                /*
 916                 * Testing the present bit without locking is OK because
 917                 * the memslot has been marked invalid already, and hence
 918                 * no new HPTEs referencing this page can be created,
 919                 * thus the present bit can't go from 0 to 1.
 920                 */
 921                if (*rmapp & KVMPPC_RMAP_PRESENT)
 922                        kvm_unmap_rmapp(kvm, memslot, gfn);
 923                ++rmapp;
 924        }
 925}
 926
 927static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
 928                         unsigned long gfn)
 929{
 930        struct revmap_entry *rev = kvm->arch.hpt.rev;
 931        unsigned long head, i, j;
 932        __be64 *hptep;
 933        int ret = 0;
 934        unsigned long *rmapp;
 935
 936        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
 937 retry:
 938        lock_rmap(rmapp);
 939        if (*rmapp & KVMPPC_RMAP_REFERENCED) {
 940                *rmapp &= ~KVMPPC_RMAP_REFERENCED;
 941                ret = 1;
 942        }
 943        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 944                unlock_rmap(rmapp);
 945                return ret;
 946        }
 947
 948        i = head = *rmapp & KVMPPC_RMAP_INDEX;
 949        do {
 950                hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
 951                j = rev[i].forw;
 952
 953                /* If this HPTE isn't referenced, ignore it */
 954                if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
 955                        continue;
 956
 957                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 958                        /* unlock rmap before spinning on the HPTE lock */
 959                        unlock_rmap(rmapp);
 960                        while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
 961                                cpu_relax();
 962                        goto retry;
 963                }
 964
 965                /* Now check and modify the HPTE */
 966                if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
 967                    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
 968                        kvmppc_clear_ref_hpte(kvm, hptep, i);
 969                        if (!(rev[i].guest_rpte & HPTE_R_R)) {
 970                                rev[i].guest_rpte |= HPTE_R_R;
 971                                note_hpte_modification(kvm, &rev[i]);
 972                        }
 973                        ret = 1;
 974                }
 975                __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 976        } while ((i = j) != head);
 977
 978        unlock_rmap(rmapp);
 979        return ret;
 980}
 981
 982int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
 983{
 984        hva_handler_fn handler;
 985
 986        handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
 987        return kvm_handle_hva_range(kvm, start, end, handler);
 988}
 989
 990static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
 991                              unsigned long gfn)
 992{
 993        struct revmap_entry *rev = kvm->arch.hpt.rev;
 994        unsigned long head, i, j;
 995        unsigned long *hp;
 996        int ret = 1;
 997        unsigned long *rmapp;
 998
 999        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1000        if (*rmapp & KVMPPC_RMAP_REFERENCED)
1001                return 1;
1002
1003        lock_rmap(rmapp);
1004        if (*rmapp & KVMPPC_RMAP_REFERENCED)
1005                goto out;
1006
1007        if (*rmapp & KVMPPC_RMAP_PRESENT) {
1008                i = head = *rmapp & KVMPPC_RMAP_INDEX;
1009                do {
1010                        hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
1011                        j = rev[i].forw;
1012                        if (be64_to_cpu(hp[1]) & HPTE_R_R)
1013                                goto out;
1014                } while ((i = j) != head);
1015        }
1016        ret = 0;
1017
1018 out:
1019        unlock_rmap(rmapp);
1020        return ret;
1021}
1022
1023int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1024{
1025        hva_handler_fn handler;
1026
1027        handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1028        return kvm_handle_hva(kvm, hva, handler);
1029}
1030
1031void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1032{
1033        hva_handler_fn handler;
1034
1035        handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1036        kvm_handle_hva(kvm, hva, handler);
1037}
1038
1039static int vcpus_running(struct kvm *kvm)
1040{
1041        return atomic_read(&kvm->arch.vcpus_running) != 0;
1042}
1043
1044/*
1045 * Returns the number of system pages that are dirty.
1046 * This can be more than 1 if we find a huge-page HPTE.
1047 */
1048static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1049{
1050        struct revmap_entry *rev = kvm->arch.hpt.rev;
1051        unsigned long head, i, j;
1052        unsigned long n;
1053        unsigned long v, r;
1054        __be64 *hptep;
1055        int npages_dirty = 0;
1056
1057 retry:
1058        lock_rmap(rmapp);
1059        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1060                unlock_rmap(rmapp);
1061                return npages_dirty;
1062        }
1063
1064        i = head = *rmapp & KVMPPC_RMAP_INDEX;
1065        do {
1066                unsigned long hptep1;
1067                hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1068                j = rev[i].forw;
1069
1070                /*
1071                 * Checking the C (changed) bit here is racy since there
1072                 * is no guarantee about when the hardware writes it back.
1073                 * If the HPTE is not writable then it is stable since the
1074                 * page can't be written to, and we would have done a tlbie
1075                 * (which forces the hardware to complete any writeback)
1076                 * when making the HPTE read-only.
1077                 * If vcpus are running then this call is racy anyway
1078                 * since the page could get dirtied subsequently, so we
1079                 * expect there to be a further call which would pick up
1080                 * any delayed C bit writeback.
1081                 * Otherwise we need to do the tlbie even if C==0 in
1082                 * order to pick up any delayed writeback of C.
1083                 */
1084                hptep1 = be64_to_cpu(hptep[1]);
1085                if (!(hptep1 & HPTE_R_C) &&
1086                    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1087                        continue;
1088
1089                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1090                        /* unlock rmap before spinning on the HPTE lock */
1091                        unlock_rmap(rmapp);
1092                        while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1093                                cpu_relax();
1094                        goto retry;
1095                }
1096
1097                /* Now check and modify the HPTE */
1098                if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1099                        __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1100                        continue;
1101                }
1102
1103                /* need to make it temporarily absent so C is stable */
1104                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1105                kvmppc_invalidate_hpte(kvm, hptep, i);
1106                v = be64_to_cpu(hptep[0]);
1107                r = be64_to_cpu(hptep[1]);
1108                if (r & HPTE_R_C) {
1109                        hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1110                        if (!(rev[i].guest_rpte & HPTE_R_C)) {
1111                                rev[i].guest_rpte |= HPTE_R_C;
1112                                note_hpte_modification(kvm, &rev[i]);
1113                        }
1114                        n = kvmppc_actual_pgsz(v, r);
1115                        n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1116                        if (n > npages_dirty)
1117                                npages_dirty = n;
1118                        eieio();
1119                }
1120                v &= ~HPTE_V_ABSENT;
1121                v |= HPTE_V_VALID;
1122                __unlock_hpte(hptep, v);
1123        } while ((i = j) != head);
1124
1125        unlock_rmap(rmapp);
1126        return npages_dirty;
1127}
1128
1129void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1130                              struct kvm_memory_slot *memslot,
1131                              unsigned long *map)
1132{
1133        unsigned long gfn;
1134
1135        if (!vpa->dirty || !vpa->pinned_addr)
1136                return;
1137        gfn = vpa->gpa >> PAGE_SHIFT;
1138        if (gfn < memslot->base_gfn ||
1139            gfn >= memslot->base_gfn + memslot->npages)
1140                return;
1141
1142        vpa->dirty = false;
1143        if (map)
1144                __set_bit_le(gfn - memslot->base_gfn, map);
1145}
1146
1147long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1148                        struct kvm_memory_slot *memslot, unsigned long *map)
1149{
1150        unsigned long i;
1151        unsigned long *rmapp;
1152
1153        preempt_disable();
1154        rmapp = memslot->arch.rmap;
1155        for (i = 0; i < memslot->npages; ++i) {
1156                int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1157                /*
1158                 * Note that if npages > 0 then i must be a multiple of npages,
1159                 * since we always put huge-page HPTEs in the rmap chain
1160                 * corresponding to their page base address.
1161                 */
1162                if (npages)
1163                        set_dirty_bits(map, i, npages);
1164                ++rmapp;
1165        }
1166        preempt_enable();
1167        return 0;
1168}
1169
1170void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1171                            unsigned long *nb_ret)
1172{
1173        struct kvm_memory_slot *memslot;
1174        unsigned long gfn = gpa >> PAGE_SHIFT;
1175        struct page *page, *pages[1];
1176        int npages;
1177        unsigned long hva, offset;
1178        int srcu_idx;
1179
1180        srcu_idx = srcu_read_lock(&kvm->srcu);
1181        memslot = gfn_to_memslot(kvm, gfn);
1182        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1183                goto err;
1184        hva = gfn_to_hva_memslot(memslot, gfn);
1185        npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1186        if (npages < 1)
1187                goto err;
1188        page = pages[0];
1189        srcu_read_unlock(&kvm->srcu, srcu_idx);
1190
1191        offset = gpa & (PAGE_SIZE - 1);
1192        if (nb_ret)
1193                *nb_ret = PAGE_SIZE - offset;
1194        return page_address(page) + offset;
1195
1196 err:
1197        srcu_read_unlock(&kvm->srcu, srcu_idx);
1198        return NULL;
1199}
1200
1201void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1202                             bool dirty)
1203{
1204        struct page *page = virt_to_page(va);
1205        struct kvm_memory_slot *memslot;
1206        unsigned long gfn;
1207        int srcu_idx;
1208
1209        put_page(page);
1210
1211        if (!dirty)
1212                return;
1213
1214        /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1215        gfn = gpa >> PAGE_SHIFT;
1216        srcu_idx = srcu_read_lock(&kvm->srcu);
1217        memslot = gfn_to_memslot(kvm, gfn);
1218        if (memslot && memslot->dirty_bitmap)
1219                set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1220        srcu_read_unlock(&kvm->srcu, srcu_idx);
1221}
1222
1223/*
1224 * HPT resizing
1225 */
1226static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1227{
1228        int rc;
1229
1230        rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1231        if (rc < 0)
1232                return rc;
1233
1234        resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1235                         resize->hpt.virt);
1236
1237        return 0;
1238}
1239
1240static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1241                                            unsigned long idx)
1242{
1243        struct kvm *kvm = resize->kvm;
1244        struct kvm_hpt_info *old = &kvm->arch.hpt;
1245        struct kvm_hpt_info *new = &resize->hpt;
1246        unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1247        unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1248        __be64 *hptep, *new_hptep;
1249        unsigned long vpte, rpte, guest_rpte;
1250        int ret;
1251        struct revmap_entry *rev;
1252        unsigned long apsize, avpn, pteg, hash;
1253        unsigned long new_idx, new_pteg, replace_vpte;
1254        int pshift;
1255
1256        hptep = (__be64 *)(old->virt + (idx << 4));
1257
1258        /* Guest is stopped, so new HPTEs can't be added or faulted
1259         * in, only unmapped or altered by host actions.  So, it's
1260         * safe to check this before we take the HPTE lock */
1261        vpte = be64_to_cpu(hptep[0]);
1262        if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1263                return 0; /* nothing to do */
1264
1265        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1266                cpu_relax();
1267
1268        vpte = be64_to_cpu(hptep[0]);
1269
1270        ret = 0;
1271        if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1272                /* Nothing to do */
1273                goto out;
1274
1275        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1276                rpte = be64_to_cpu(hptep[1]);
1277                vpte = hpte_new_to_old_v(vpte, rpte);
1278        }
1279
1280        /* Unmap */
1281        rev = &old->rev[idx];
1282        guest_rpte = rev->guest_rpte;
1283
1284        ret = -EIO;
1285        apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1286        if (!apsize)
1287                goto out;
1288
1289        if (vpte & HPTE_V_VALID) {
1290                unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1291                int srcu_idx = srcu_read_lock(&kvm->srcu);
1292                struct kvm_memory_slot *memslot =
1293                        __gfn_to_memslot(kvm_memslots(kvm), gfn);
1294
1295                if (memslot) {
1296                        unsigned long *rmapp;
1297                        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1298
1299                        lock_rmap(rmapp);
1300                        kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1301                        unlock_rmap(rmapp);
1302                }
1303
1304                srcu_read_unlock(&kvm->srcu, srcu_idx);
1305        }
1306
1307        /* Reload PTE after unmap */
1308        vpte = be64_to_cpu(hptep[0]);
1309        BUG_ON(vpte & HPTE_V_VALID);
1310        BUG_ON(!(vpte & HPTE_V_ABSENT));
1311
1312        ret = 0;
1313        if (!(vpte & HPTE_V_BOLTED))
1314                goto out;
1315
1316        rpte = be64_to_cpu(hptep[1]);
1317
1318        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1319                vpte = hpte_new_to_old_v(vpte, rpte);
1320                rpte = hpte_new_to_old_r(rpte);
1321        }
1322
1323        pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1324        avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1325        pteg = idx / HPTES_PER_GROUP;
1326        if (vpte & HPTE_V_SECONDARY)
1327                pteg = ~pteg;
1328
1329        if (!(vpte & HPTE_V_1TB_SEG)) {
1330                unsigned long offset, vsid;
1331
1332                /* We only have 28 - 23 bits of offset in avpn */
1333                offset = (avpn & 0x1f) << 23;
1334                vsid = avpn >> 5;
1335                /* We can find more bits from the pteg value */
1336                if (pshift < 23)
1337                        offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1338
1339                hash = vsid ^ (offset >> pshift);
1340        } else {
1341                unsigned long offset, vsid;
1342
1343                /* We only have 40 - 23 bits of seg_off in avpn */
1344                offset = (avpn & 0x1ffff) << 23;
1345                vsid = avpn >> 17;
1346                if (pshift < 23)
1347                        offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1348
1349                hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1350        }
1351
1352        new_pteg = hash & new_hash_mask;
1353        if (vpte & HPTE_V_SECONDARY)
1354                new_pteg = ~hash & new_hash_mask;
1355
1356        new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1357        new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1358
1359        replace_vpte = be64_to_cpu(new_hptep[0]);
1360        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1361                unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1362                replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1363        }
1364
1365        if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1366                BUG_ON(new->order >= old->order);
1367
1368                if (replace_vpte & HPTE_V_BOLTED) {
1369                        if (vpte & HPTE_V_BOLTED)
1370                                /* Bolted collision, nothing we can do */
1371                                ret = -ENOSPC;
1372                        /* Discard the new HPTE */
1373                        goto out;
1374                }
1375
1376                /* Discard the previous HPTE */
1377        }
1378
1379        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1380                rpte = hpte_old_to_new_r(vpte, rpte);
1381                vpte = hpte_old_to_new_v(vpte);
1382        }
1383
1384        new_hptep[1] = cpu_to_be64(rpte);
1385        new->rev[new_idx].guest_rpte = guest_rpte;
1386        /* No need for a barrier, since new HPT isn't active */
1387        new_hptep[0] = cpu_to_be64(vpte);
1388        unlock_hpte(new_hptep, vpte);
1389
1390out:
1391        unlock_hpte(hptep, vpte);
1392        return ret;
1393}
1394
1395static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1396{
1397        struct kvm *kvm = resize->kvm;
1398        unsigned  long i;
1399        int rc;
1400
1401        for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1402                rc = resize_hpt_rehash_hpte(resize, i);
1403                if (rc != 0)
1404                        return rc;
1405        }
1406
1407        return 0;
1408}
1409
1410static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1411{
1412        struct kvm *kvm = resize->kvm;
1413        struct kvm_hpt_info hpt_tmp;
1414
1415        /* Exchange the pending tables in the resize structure with
1416         * the active tables */
1417
1418        resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1419
1420        spin_lock(&kvm->mmu_lock);
1421        asm volatile("ptesync" : : : "memory");
1422
1423        hpt_tmp = kvm->arch.hpt;
1424        kvmppc_set_hpt(kvm, &resize->hpt);
1425        resize->hpt = hpt_tmp;
1426
1427        spin_unlock(&kvm->mmu_lock);
1428
1429        synchronize_srcu_expedited(&kvm->srcu);
1430
1431        if (cpu_has_feature(CPU_FTR_ARCH_300))
1432                kvmppc_setup_partition_table(kvm);
1433
1434        resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1435}
1436
1437static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1438{
1439        if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1440                return;
1441
1442        if (!resize)
1443                return;
1444
1445        if (resize->error != -EBUSY) {
1446                if (resize->hpt.virt)
1447                        kvmppc_free_hpt(&resize->hpt);
1448                kfree(resize);
1449        }
1450
1451        if (kvm->arch.resize_hpt == resize)
1452                kvm->arch.resize_hpt = NULL;
1453}
1454
1455static void resize_hpt_prepare_work(struct work_struct *work)
1456{
1457        struct kvm_resize_hpt *resize = container_of(work,
1458                                                     struct kvm_resize_hpt,
1459                                                     work);
1460        struct kvm *kvm = resize->kvm;
1461        int err = 0;
1462
1463        if (WARN_ON(resize->error != -EBUSY))
1464                return;
1465
1466        mutex_lock(&kvm->arch.mmu_setup_lock);
1467
1468        /* Request is still current? */
1469        if (kvm->arch.resize_hpt == resize) {
1470                /* We may request large allocations here:
1471                 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1472                 */
1473                mutex_unlock(&kvm->arch.mmu_setup_lock);
1474
1475                resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1476                                 resize->order);
1477
1478                err = resize_hpt_allocate(resize);
1479
1480                /* We have strict assumption about -EBUSY
1481                 * when preparing for HPT resize.
1482                 */
1483                if (WARN_ON(err == -EBUSY))
1484                        err = -EINPROGRESS;
1485
1486                mutex_lock(&kvm->arch.mmu_setup_lock);
1487                /* It is possible that kvm->arch.resize_hpt != resize
1488                 * after we grab kvm->arch.mmu_setup_lock again.
1489                 */
1490        }
1491
1492        resize->error = err;
1493
1494        if (kvm->arch.resize_hpt != resize)
1495                resize_hpt_release(kvm, resize);
1496
1497        mutex_unlock(&kvm->arch.mmu_setup_lock);
1498}
1499
1500long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1501                                     struct kvm_ppc_resize_hpt *rhpt)
1502{
1503        unsigned long flags = rhpt->flags;
1504        unsigned long shift = rhpt->shift;
1505        struct kvm_resize_hpt *resize;
1506        int ret;
1507
1508        if (flags != 0 || kvm_is_radix(kvm))
1509                return -EINVAL;
1510
1511        if (shift && ((shift < 18) || (shift > 46)))
1512                return -EINVAL;
1513
1514        mutex_lock(&kvm->arch.mmu_setup_lock);
1515
1516        resize = kvm->arch.resize_hpt;
1517
1518        if (resize) {
1519                if (resize->order == shift) {
1520                        /* Suitable resize in progress? */
1521                        ret = resize->error;
1522                        if (ret == -EBUSY)
1523                                ret = 100; /* estimated time in ms */
1524                        else if (ret)
1525                                resize_hpt_release(kvm, resize);
1526
1527                        goto out;
1528                }
1529
1530                /* not suitable, cancel it */
1531                resize_hpt_release(kvm, resize);
1532        }
1533
1534        ret = 0;
1535        if (!shift)
1536                goto out; /* nothing to do */
1537
1538        /* start new resize */
1539
1540        resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1541        if (!resize) {
1542                ret = -ENOMEM;
1543                goto out;
1544        }
1545
1546        resize->error = -EBUSY;
1547        resize->order = shift;
1548        resize->kvm = kvm;
1549        INIT_WORK(&resize->work, resize_hpt_prepare_work);
1550        kvm->arch.resize_hpt = resize;
1551
1552        schedule_work(&resize->work);
1553
1554        ret = 100; /* estimated time in ms */
1555
1556out:
1557        mutex_unlock(&kvm->arch.mmu_setup_lock);
1558        return ret;
1559}
1560
1561static void resize_hpt_boot_vcpu(void *opaque)
1562{
1563        /* Nothing to do, just force a KVM exit */
1564}
1565
1566long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1567                                    struct kvm_ppc_resize_hpt *rhpt)
1568{
1569        unsigned long flags = rhpt->flags;
1570        unsigned long shift = rhpt->shift;
1571        struct kvm_resize_hpt *resize;
1572        long ret;
1573
1574        if (flags != 0 || kvm_is_radix(kvm))
1575                return -EINVAL;
1576
1577        if (shift && ((shift < 18) || (shift > 46)))
1578                return -EINVAL;
1579
1580        mutex_lock(&kvm->arch.mmu_setup_lock);
1581
1582        resize = kvm->arch.resize_hpt;
1583
1584        /* This shouldn't be possible */
1585        ret = -EIO;
1586        if (WARN_ON(!kvm->arch.mmu_ready))
1587                goto out_no_hpt;
1588
1589        /* Stop VCPUs from running while we mess with the HPT */
1590        kvm->arch.mmu_ready = 0;
1591        smp_mb();
1592
1593        /* Boot all CPUs out of the guest so they re-read
1594         * mmu_ready */
1595        on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1596
1597        ret = -ENXIO;
1598        if (!resize || (resize->order != shift))
1599                goto out;
1600
1601        ret = resize->error;
1602        if (ret)
1603                goto out;
1604
1605        ret = resize_hpt_rehash(resize);
1606        if (ret)
1607                goto out;
1608
1609        resize_hpt_pivot(resize);
1610
1611out:
1612        /* Let VCPUs run again */
1613        kvm->arch.mmu_ready = 1;
1614        smp_mb();
1615out_no_hpt:
1616        resize_hpt_release(kvm, resize);
1617        mutex_unlock(&kvm->arch.mmu_setup_lock);
1618        return ret;
1619}
1620
1621/*
1622 * Functions for reading and writing the hash table via reads and
1623 * writes on a file descriptor.
1624 *
1625 * Reads return the guest view of the hash table, which has to be
1626 * pieced together from the real hash table and the guest_rpte
1627 * values in the revmap array.
1628 *
1629 * On writes, each HPTE written is considered in turn, and if it
1630 * is valid, it is written to the HPT as if an H_ENTER with the
1631 * exact flag set was done.  When the invalid count is non-zero
1632 * in the header written to the stream, the kernel will make
1633 * sure that that many HPTEs are invalid, and invalidate them
1634 * if not.
1635 */
1636
1637struct kvm_htab_ctx {
1638        unsigned long   index;
1639        unsigned long   flags;
1640        struct kvm      *kvm;
1641        int             first_pass;
1642};
1643
1644#define HPTE_SIZE       (2 * sizeof(unsigned long))
1645
1646/*
1647 * Returns 1 if this HPT entry has been modified or has pending
1648 * R/C bit changes.
1649 */
1650static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1651{
1652        unsigned long rcbits_unset;
1653
1654        if (revp->guest_rpte & HPTE_GR_MODIFIED)
1655                return 1;
1656
1657        /* Also need to consider changes in reference and changed bits */
1658        rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1659        if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1660            (be64_to_cpu(hptp[1]) & rcbits_unset))
1661                return 1;
1662
1663        return 0;
1664}
1665
1666static long record_hpte(unsigned long flags, __be64 *hptp,
1667                        unsigned long *hpte, struct revmap_entry *revp,
1668                        int want_valid, int first_pass)
1669{
1670        unsigned long v, r, hr;
1671        unsigned long rcbits_unset;
1672        int ok = 1;
1673        int valid, dirty;
1674
1675        /* Unmodified entries are uninteresting except on the first pass */
1676        dirty = hpte_dirty(revp, hptp);
1677        if (!first_pass && !dirty)
1678                return 0;
1679
1680        valid = 0;
1681        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1682                valid = 1;
1683                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1684                    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1685                        valid = 0;
1686        }
1687        if (valid != want_valid)
1688                return 0;
1689
1690        v = r = 0;
1691        if (valid || dirty) {
1692                /* lock the HPTE so it's stable and read it */
1693                preempt_disable();
1694                while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1695                        cpu_relax();
1696                v = be64_to_cpu(hptp[0]);
1697                hr = be64_to_cpu(hptp[1]);
1698                if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1699                        v = hpte_new_to_old_v(v, hr);
1700                        hr = hpte_new_to_old_r(hr);
1701                }
1702
1703                /* re-evaluate valid and dirty from synchronized HPTE value */
1704                valid = !!(v & HPTE_V_VALID);
1705                dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1706
1707                /* Harvest R and C into guest view if necessary */
1708                rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1709                if (valid && (rcbits_unset & hr)) {
1710                        revp->guest_rpte |= (hr &
1711                                (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1712                        dirty = 1;
1713                }
1714
1715                if (v & HPTE_V_ABSENT) {
1716                        v &= ~HPTE_V_ABSENT;
1717                        v |= HPTE_V_VALID;
1718                        valid = 1;
1719                }
1720                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1721                        valid = 0;
1722
1723                r = revp->guest_rpte;
1724                /* only clear modified if this is the right sort of entry */
1725                if (valid == want_valid && dirty) {
1726                        r &= ~HPTE_GR_MODIFIED;
1727                        revp->guest_rpte = r;
1728                }
1729                unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1730                preempt_enable();
1731                if (!(valid == want_valid && (first_pass || dirty)))
1732                        ok = 0;
1733        }
1734        hpte[0] = cpu_to_be64(v);
1735        hpte[1] = cpu_to_be64(r);
1736        return ok;
1737}
1738
1739static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1740                             size_t count, loff_t *ppos)
1741{
1742        struct kvm_htab_ctx *ctx = file->private_data;
1743        struct kvm *kvm = ctx->kvm;
1744        struct kvm_get_htab_header hdr;
1745        __be64 *hptp;
1746        struct revmap_entry *revp;
1747        unsigned long i, nb, nw;
1748        unsigned long __user *lbuf;
1749        struct kvm_get_htab_header __user *hptr;
1750        unsigned long flags;
1751        int first_pass;
1752        unsigned long hpte[2];
1753
1754        if (!access_ok(buf, count))
1755                return -EFAULT;
1756        if (kvm_is_radix(kvm))
1757                return 0;
1758
1759        first_pass = ctx->first_pass;
1760        flags = ctx->flags;
1761
1762        i = ctx->index;
1763        hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1764        revp = kvm->arch.hpt.rev + i;
1765        lbuf = (unsigned long __user *)buf;
1766
1767        nb = 0;
1768        while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1769                /* Initialize header */
1770                hptr = (struct kvm_get_htab_header __user *)buf;
1771                hdr.n_valid = 0;
1772                hdr.n_invalid = 0;
1773                nw = nb;
1774                nb += sizeof(hdr);
1775                lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1776
1777                /* Skip uninteresting entries, i.e. clean on not-first pass */
1778                if (!first_pass) {
1779                        while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1780                               !hpte_dirty(revp, hptp)) {
1781                                ++i;
1782                                hptp += 2;
1783                                ++revp;
1784                        }
1785                }
1786                hdr.index = i;
1787
1788                /* Grab a series of valid entries */
1789                while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1790                       hdr.n_valid < 0xffff &&
1791                       nb + HPTE_SIZE < count &&
1792                       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1793                        /* valid entry, write it out */
1794                        ++hdr.n_valid;
1795                        if (__put_user(hpte[0], lbuf) ||
1796                            __put_user(hpte[1], lbuf + 1))
1797                                return -EFAULT;
1798                        nb += HPTE_SIZE;
1799                        lbuf += 2;
1800                        ++i;
1801                        hptp += 2;
1802                        ++revp;
1803                }
1804                /* Now skip invalid entries while we can */
1805                while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1806                       hdr.n_invalid < 0xffff &&
1807                       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1808                        /* found an invalid entry */
1809                        ++hdr.n_invalid;
1810                        ++i;
1811                        hptp += 2;
1812                        ++revp;
1813                }
1814
1815                if (hdr.n_valid || hdr.n_invalid) {
1816                        /* write back the header */
1817                        if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1818                                return -EFAULT;
1819                        nw = nb;
1820                        buf = (char __user *)lbuf;
1821                } else {
1822                        nb = nw;
1823                }
1824
1825                /* Check if we've wrapped around the hash table */
1826                if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1827                        i = 0;
1828                        ctx->first_pass = 0;
1829                        break;
1830                }
1831        }
1832
1833        ctx->index = i;
1834
1835        return nb;
1836}
1837
1838static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1839                              size_t count, loff_t *ppos)
1840{
1841        struct kvm_htab_ctx *ctx = file->private_data;
1842        struct kvm *kvm = ctx->kvm;
1843        struct kvm_get_htab_header hdr;
1844        unsigned long i, j;
1845        unsigned long v, r;
1846        unsigned long __user *lbuf;
1847        __be64 *hptp;
1848        unsigned long tmp[2];
1849        ssize_t nb;
1850        long int err, ret;
1851        int mmu_ready;
1852        int pshift;
1853
1854        if (!access_ok(buf, count))
1855                return -EFAULT;
1856        if (kvm_is_radix(kvm))
1857                return -EINVAL;
1858
1859        /* lock out vcpus from running while we're doing this */
1860        mutex_lock(&kvm->arch.mmu_setup_lock);
1861        mmu_ready = kvm->arch.mmu_ready;
1862        if (mmu_ready) {
1863                kvm->arch.mmu_ready = 0;        /* temporarily */
1864                /* order mmu_ready vs. vcpus_running */
1865                smp_mb();
1866                if (atomic_read(&kvm->arch.vcpus_running)) {
1867                        kvm->arch.mmu_ready = 1;
1868                        mutex_unlock(&kvm->arch.mmu_setup_lock);
1869                        return -EBUSY;
1870                }
1871        }
1872
1873        err = 0;
1874        for (nb = 0; nb + sizeof(hdr) <= count; ) {
1875                err = -EFAULT;
1876                if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1877                        break;
1878
1879                err = 0;
1880                if (nb + hdr.n_valid * HPTE_SIZE > count)
1881                        break;
1882
1883                nb += sizeof(hdr);
1884                buf += sizeof(hdr);
1885
1886                err = -EINVAL;
1887                i = hdr.index;
1888                if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1889                    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1890                        break;
1891
1892                hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1893                lbuf = (unsigned long __user *)buf;
1894                for (j = 0; j < hdr.n_valid; ++j) {
1895                        __be64 hpte_v;
1896                        __be64 hpte_r;
1897
1898                        err = -EFAULT;
1899                        if (__get_user(hpte_v, lbuf) ||
1900                            __get_user(hpte_r, lbuf + 1))
1901                                goto out;
1902                        v = be64_to_cpu(hpte_v);
1903                        r = be64_to_cpu(hpte_r);
1904                        err = -EINVAL;
1905                        if (!(v & HPTE_V_VALID))
1906                                goto out;
1907                        pshift = kvmppc_hpte_base_page_shift(v, r);
1908                        if (pshift <= 0)
1909                                goto out;
1910                        lbuf += 2;
1911                        nb += HPTE_SIZE;
1912
1913                        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1914                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1915                        err = -EIO;
1916                        ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1917                                                         tmp);
1918                        if (ret != H_SUCCESS) {
1919                                pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1920                                       "r=%lx\n", ret, i, v, r);
1921                                goto out;
1922                        }
1923                        if (!mmu_ready && is_vrma_hpte(v)) {
1924                                unsigned long senc, lpcr;
1925
1926                                senc = slb_pgsize_encoding(1ul << pshift);
1927                                kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1928                                        (VRMA_VSID << SLB_VSID_SHIFT_1T);
1929                                if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1930                                        lpcr = senc << (LPCR_VRMASD_SH - 4);
1931                                        kvmppc_update_lpcr(kvm, lpcr,
1932                                                           LPCR_VRMASD);
1933                                } else {
1934                                        kvmppc_setup_partition_table(kvm);
1935                                }
1936                                mmu_ready = 1;
1937                        }
1938                        ++i;
1939                        hptp += 2;
1940                }
1941
1942                for (j = 0; j < hdr.n_invalid; ++j) {
1943                        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1944                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1945                        ++i;
1946                        hptp += 2;
1947                }
1948                err = 0;
1949        }
1950
1951 out:
1952        /* Order HPTE updates vs. mmu_ready */
1953        smp_wmb();
1954        kvm->arch.mmu_ready = mmu_ready;
1955        mutex_unlock(&kvm->arch.mmu_setup_lock);
1956
1957        if (err)
1958                return err;
1959        return nb;
1960}
1961
1962static int kvm_htab_release(struct inode *inode, struct file *filp)
1963{
1964        struct kvm_htab_ctx *ctx = filp->private_data;
1965
1966        filp->private_data = NULL;
1967        if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1968                atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1969        kvm_put_kvm(ctx->kvm);
1970        kfree(ctx);
1971        return 0;
1972}
1973
1974static const struct file_operations kvm_htab_fops = {
1975        .read           = kvm_htab_read,
1976        .write          = kvm_htab_write,
1977        .llseek         = default_llseek,
1978        .release        = kvm_htab_release,
1979};
1980
1981int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1982{
1983        int ret;
1984        struct kvm_htab_ctx *ctx;
1985        int rwflag;
1986
1987        /* reject flags we don't recognize */
1988        if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1989                return -EINVAL;
1990        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1991        if (!ctx)
1992                return -ENOMEM;
1993        kvm_get_kvm(kvm);
1994        ctx->kvm = kvm;
1995        ctx->index = ghf->start_index;
1996        ctx->flags = ghf->flags;
1997        ctx->first_pass = 1;
1998
1999        rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
2000        ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
2001        if (ret < 0) {
2002                kfree(ctx);
2003                kvm_put_kvm(kvm);
2004                return ret;
2005        }
2006
2007        if (rwflag == O_RDONLY) {
2008                mutex_lock(&kvm->slots_lock);
2009                atomic_inc(&kvm->arch.hpte_mod_interest);
2010                /* make sure kvmppc_do_h_enter etc. see the increment */
2011                synchronize_srcu_expedited(&kvm->srcu);
2012                mutex_unlock(&kvm->slots_lock);
2013        }
2014
2015        return ret;
2016}
2017
2018struct debugfs_htab_state {
2019        struct kvm      *kvm;
2020        struct mutex    mutex;
2021        unsigned long   hpt_index;
2022        int             chars_left;
2023        int             buf_index;
2024        char            buf[64];
2025};
2026
2027static int debugfs_htab_open(struct inode *inode, struct file *file)
2028{
2029        struct kvm *kvm = inode->i_private;
2030        struct debugfs_htab_state *p;
2031
2032        p = kzalloc(sizeof(*p), GFP_KERNEL);
2033        if (!p)
2034                return -ENOMEM;
2035
2036        kvm_get_kvm(kvm);
2037        p->kvm = kvm;
2038        mutex_init(&p->mutex);
2039        file->private_data = p;
2040
2041        return nonseekable_open(inode, file);
2042}
2043
2044static int debugfs_htab_release(struct inode *inode, struct file *file)
2045{
2046        struct debugfs_htab_state *p = file->private_data;
2047
2048        kvm_put_kvm(p->kvm);
2049        kfree(p);
2050        return 0;
2051}
2052
2053static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2054                                 size_t len, loff_t *ppos)
2055{
2056        struct debugfs_htab_state *p = file->private_data;
2057        ssize_t ret, r;
2058        unsigned long i, n;
2059        unsigned long v, hr, gr;
2060        struct kvm *kvm;
2061        __be64 *hptp;
2062
2063        kvm = p->kvm;
2064        if (kvm_is_radix(kvm))
2065                return 0;
2066
2067        ret = mutex_lock_interruptible(&p->mutex);
2068        if (ret)
2069                return ret;
2070
2071        if (p->chars_left) {
2072                n = p->chars_left;
2073                if (n > len)
2074                        n = len;
2075                r = copy_to_user(buf, p->buf + p->buf_index, n);
2076                n -= r;
2077                p->chars_left -= n;
2078                p->buf_index += n;
2079                buf += n;
2080                len -= n;
2081                ret = n;
2082                if (r) {
2083                        if (!n)
2084                                ret = -EFAULT;
2085                        goto out;
2086                }
2087        }
2088
2089        i = p->hpt_index;
2090        hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2091        for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2092             ++i, hptp += 2) {
2093                if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2094                        continue;
2095
2096                /* lock the HPTE so it's stable and read it */
2097                preempt_disable();
2098                while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2099                        cpu_relax();
2100                v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2101                hr = be64_to_cpu(hptp[1]);
2102                gr = kvm->arch.hpt.rev[i].guest_rpte;
2103                unlock_hpte(hptp, v);
2104                preempt_enable();
2105
2106                if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2107                        continue;
2108
2109                n = scnprintf(p->buf, sizeof(p->buf),
2110                              "%6lx %.16lx %.16lx %.16lx\n",
2111                              i, v, hr, gr);
2112                p->chars_left = n;
2113                if (n > len)
2114                        n = len;
2115                r = copy_to_user(buf, p->buf, n);
2116                n -= r;
2117                p->chars_left -= n;
2118                p->buf_index = n;
2119                buf += n;
2120                len -= n;
2121                ret += n;
2122                if (r) {
2123                        if (!ret)
2124                                ret = -EFAULT;
2125                        goto out;
2126                }
2127        }
2128        p->hpt_index = i;
2129
2130 out:
2131        mutex_unlock(&p->mutex);
2132        return ret;
2133}
2134
2135static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2136                           size_t len, loff_t *ppos)
2137{
2138        return -EACCES;
2139}
2140
2141static const struct file_operations debugfs_htab_fops = {
2142        .owner   = THIS_MODULE,
2143        .open    = debugfs_htab_open,
2144        .release = debugfs_htab_release,
2145        .read    = debugfs_htab_read,
2146        .write   = debugfs_htab_write,
2147        .llseek  = generic_file_llseek,
2148};
2149
2150void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2151{
2152        kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
2153                                                    kvm->arch.debugfs_dir, kvm,
2154                                                    &debugfs_htab_fops);
2155}
2156
2157void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2158{
2159        struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2160
2161        vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
2162
2163        mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2164        mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
2165
2166        vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2167}
2168