linux/arch/powerpc/kvm/book3s_hv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
   5 *
   6 * Authors:
   7 *    Paul Mackerras <paulus@au1.ibm.com>
   8 *    Alexander Graf <agraf@suse.de>
   9 *    Kevin Wolf <mail@kevin-wolf.de>
  10 *
  11 * Description: KVM functions specific to running on Book 3S
  12 * processors in hypervisor mode (specifically POWER7 and later).
  13 *
  14 * This file is derived from arch/powerpc/kvm/book3s.c,
  15 * by Alexander Graf <agraf@suse.de>.
  16 */
  17
  18#include <linux/kvm_host.h>
  19#include <linux/kernel.h>
  20#include <linux/err.h>
  21#include <linux/slab.h>
  22#include <linux/preempt.h>
  23#include <linux/sched/signal.h>
  24#include <linux/sched/stat.h>
  25#include <linux/delay.h>
  26#include <linux/export.h>
  27#include <linux/fs.h>
  28#include <linux/anon_inodes.h>
  29#include <linux/cpu.h>
  30#include <linux/cpumask.h>
  31#include <linux/spinlock.h>
  32#include <linux/page-flags.h>
  33#include <linux/srcu.h>
  34#include <linux/miscdevice.h>
  35#include <linux/debugfs.h>
  36#include <linux/gfp.h>
  37#include <linux/vmalloc.h>
  38#include <linux/highmem.h>
  39#include <linux/hugetlb.h>
  40#include <linux/kvm_irqfd.h>
  41#include <linux/irqbypass.h>
  42#include <linux/module.h>
  43#include <linux/compiler.h>
  44#include <linux/of.h>
  45
  46#include <asm/ftrace.h>
  47#include <asm/reg.h>
  48#include <asm/ppc-opcode.h>
  49#include <asm/asm-prototypes.h>
  50#include <asm/archrandom.h>
  51#include <asm/debug.h>
  52#include <asm/disassemble.h>
  53#include <asm/cputable.h>
  54#include <asm/cacheflush.h>
  55#include <linux/uaccess.h>
  56#include <asm/io.h>
  57#include <asm/kvm_ppc.h>
  58#include <asm/kvm_book3s.h>
  59#include <asm/mmu_context.h>
  60#include <asm/lppaca.h>
  61#include <asm/processor.h>
  62#include <asm/cputhreads.h>
  63#include <asm/page.h>
  64#include <asm/hvcall.h>
  65#include <asm/switch_to.h>
  66#include <asm/smp.h>
  67#include <asm/dbell.h>
  68#include <asm/hmi.h>
  69#include <asm/pnv-pci.h>
  70#include <asm/mmu.h>
  71#include <asm/opal.h>
  72#include <asm/xics.h>
  73#include <asm/xive.h>
  74#include <asm/hw_breakpoint.h>
  75
  76#include "book3s.h"
  77
  78#define CREATE_TRACE_POINTS
  79#include "trace_hv.h"
  80
  81/* #define EXIT_DEBUG */
  82/* #define EXIT_DEBUG_SIMPLE */
  83/* #define EXIT_DEBUG_INT */
  84
  85/* Used to indicate that a guest page fault needs to be handled */
  86#define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
  87/* Used to indicate that a guest passthrough interrupt needs to be handled */
  88#define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
  89
  90/* Used as a "null" value for timebase values */
  91#define TB_NIL  (~(u64)0)
  92
  93static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
  94
  95static int dynamic_mt_modes = 6;
  96module_param(dynamic_mt_modes, int, 0644);
  97MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
  98static int target_smt_mode;
  99module_param(target_smt_mode, int, 0644);
 100MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
 101
 102static bool indep_threads_mode = true;
 103module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
 104MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
 105
 106static bool one_vm_per_core;
 107module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
 108MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
 109
 110#ifdef CONFIG_KVM_XICS
 111static struct kernel_param_ops module_param_ops = {
 112        .set = param_set_int,
 113        .get = param_get_int,
 114};
 115
 116module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
 117MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
 118
 119module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
 120MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
 121#endif
 122
 123/* If set, guests are allowed to create and control nested guests */
 124static bool nested = true;
 125module_param(nested, bool, S_IRUGO | S_IWUSR);
 126MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
 127
 128static inline bool nesting_enabled(struct kvm *kvm)
 129{
 130        return kvm->arch.nested_enable && kvm_is_radix(kvm);
 131}
 132
 133/* If set, the threads on each CPU core have to be in the same MMU mode */
 134static bool no_mixing_hpt_and_radix;
 135
 136static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
 137static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
 138
 139/*
 140 * RWMR values for POWER8.  These control the rate at which PURR
 141 * and SPURR count and should be set according to the number of
 142 * online threads in the vcore being run.
 143 */
 144#define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
 145#define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
 146#define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
 147#define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
 148#define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
 149#define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
 150#define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
 151#define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
 152
 153static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
 154        RWMR_RPA_P8_1THREAD,
 155        RWMR_RPA_P8_1THREAD,
 156        RWMR_RPA_P8_2THREAD,
 157        RWMR_RPA_P8_3THREAD,
 158        RWMR_RPA_P8_4THREAD,
 159        RWMR_RPA_P8_5THREAD,
 160        RWMR_RPA_P8_6THREAD,
 161        RWMR_RPA_P8_7THREAD,
 162        RWMR_RPA_P8_8THREAD,
 163};
 164
 165static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
 166                int *ip)
 167{
 168        int i = *ip;
 169        struct kvm_vcpu *vcpu;
 170
 171        while (++i < MAX_SMT_THREADS) {
 172                vcpu = READ_ONCE(vc->runnable_threads[i]);
 173                if (vcpu) {
 174                        *ip = i;
 175                        return vcpu;
 176                }
 177        }
 178        return NULL;
 179}
 180
 181/* Used to traverse the list of runnable threads for a given vcore */
 182#define for_each_runnable_thread(i, vcpu, vc) \
 183        for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
 184
 185static bool kvmppc_ipi_thread(int cpu)
 186{
 187        unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 188
 189        /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
 190        if (kvmhv_on_pseries())
 191                return false;
 192
 193        /* On POWER9 we can use msgsnd to IPI any cpu */
 194        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 195                msg |= get_hard_smp_processor_id(cpu);
 196                smp_mb();
 197                __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 198                return true;
 199        }
 200
 201        /* On POWER8 for IPIs to threads in the same core, use msgsnd */
 202        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 203                preempt_disable();
 204                if (cpu_first_thread_sibling(cpu) ==
 205                    cpu_first_thread_sibling(smp_processor_id())) {
 206                        msg |= cpu_thread_in_core(cpu);
 207                        smp_mb();
 208                        __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 209                        preempt_enable();
 210                        return true;
 211                }
 212                preempt_enable();
 213        }
 214
 215#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
 216        if (cpu >= 0 && cpu < nr_cpu_ids) {
 217                if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
 218                        xics_wake_cpu(cpu);
 219                        return true;
 220                }
 221                opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
 222                return true;
 223        }
 224#endif
 225
 226        return false;
 227}
 228
 229static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
 230{
 231        int cpu;
 232        struct swait_queue_head *wqp;
 233
 234        wqp = kvm_arch_vcpu_wq(vcpu);
 235        if (swq_has_sleeper(wqp)) {
 236                swake_up_one(wqp);
 237                ++vcpu->stat.halt_wakeup;
 238        }
 239
 240        cpu = READ_ONCE(vcpu->arch.thread_cpu);
 241        if (cpu >= 0 && kvmppc_ipi_thread(cpu))
 242                return;
 243
 244        /* CPU points to the first thread of the core */
 245        cpu = vcpu->cpu;
 246        if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
 247                smp_send_reschedule(cpu);
 248}
 249
 250/*
 251 * We use the vcpu_load/put functions to measure stolen time.
 252 * Stolen time is counted as time when either the vcpu is able to
 253 * run as part of a virtual core, but the task running the vcore
 254 * is preempted or sleeping, or when the vcpu needs something done
 255 * in the kernel by the task running the vcpu, but that task is
 256 * preempted or sleeping.  Those two things have to be counted
 257 * separately, since one of the vcpu tasks will take on the job
 258 * of running the core, and the other vcpu tasks in the vcore will
 259 * sleep waiting for it to do that, but that sleep shouldn't count
 260 * as stolen time.
 261 *
 262 * Hence we accumulate stolen time when the vcpu can run as part of
 263 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 264 * needs its task to do other things in the kernel (for example,
 265 * service a page fault) in busy_stolen.  We don't accumulate
 266 * stolen time for a vcore when it is inactive, or for a vcpu
 267 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 268 * a misnomer; it means that the vcpu task is not executing in
 269 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 270 * the kernel.  We don't have any way of dividing up that time
 271 * between time that the vcpu is genuinely stopped, time that
 272 * the task is actively working on behalf of the vcpu, and time
 273 * that the task is preempted, so we don't count any of it as
 274 * stolen.
 275 *
 276 * Updates to busy_stolen are protected by arch.tbacct_lock;
 277 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 278 * lock.  The stolen times are measured in units of timebase ticks.
 279 * (Note that the != TB_NIL checks below are purely defensive;
 280 * they should never fail.)
 281 */
 282
 283static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
 284{
 285        unsigned long flags;
 286
 287        spin_lock_irqsave(&vc->stoltb_lock, flags);
 288        vc->preempt_tb = mftb();
 289        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 290}
 291
 292static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
 293{
 294        unsigned long flags;
 295
 296        spin_lock_irqsave(&vc->stoltb_lock, flags);
 297        if (vc->preempt_tb != TB_NIL) {
 298                vc->stolen_tb += mftb() - vc->preempt_tb;
 299                vc->preempt_tb = TB_NIL;
 300        }
 301        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 302}
 303
 304static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
 305{
 306        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 307        unsigned long flags;
 308
 309        /*
 310         * We can test vc->runner without taking the vcore lock,
 311         * because only this task ever sets vc->runner to this
 312         * vcpu, and once it is set to this vcpu, only this task
 313         * ever sets it to NULL.
 314         */
 315        if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 316                kvmppc_core_end_stolen(vc);
 317
 318        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 319        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
 320            vcpu->arch.busy_preempt != TB_NIL) {
 321                vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
 322                vcpu->arch.busy_preempt = TB_NIL;
 323        }
 324        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 325}
 326
 327static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
 328{
 329        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 330        unsigned long flags;
 331
 332        if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 333                kvmppc_core_start_stolen(vc);
 334
 335        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 336        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
 337                vcpu->arch.busy_preempt = mftb();
 338        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 339}
 340
 341static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
 342{
 343        /*
 344         * Check for illegal transactional state bit combination
 345         * and if we find it, force the TS field to a safe state.
 346         */
 347        if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
 348                msr &= ~MSR_TS_MASK;
 349        vcpu->arch.shregs.msr = msr;
 350        kvmppc_end_cede(vcpu);
 351}
 352
 353static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
 354{
 355        vcpu->arch.pvr = pvr;
 356}
 357
 358/* Dummy value used in computing PCR value below */
 359#define PCR_ARCH_300    (PCR_ARCH_207 << 1)
 360
 361static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
 362{
 363        unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
 364        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 365
 366        /* We can (emulate) our own architecture version and anything older */
 367        if (cpu_has_feature(CPU_FTR_ARCH_300))
 368                host_pcr_bit = PCR_ARCH_300;
 369        else if (cpu_has_feature(CPU_FTR_ARCH_207S))
 370                host_pcr_bit = PCR_ARCH_207;
 371        else if (cpu_has_feature(CPU_FTR_ARCH_206))
 372                host_pcr_bit = PCR_ARCH_206;
 373        else
 374                host_pcr_bit = PCR_ARCH_205;
 375
 376        /* Determine lowest PCR bit needed to run guest in given PVR level */
 377        guest_pcr_bit = host_pcr_bit;
 378        if (arch_compat) {
 379                switch (arch_compat) {
 380                case PVR_ARCH_205:
 381                        guest_pcr_bit = PCR_ARCH_205;
 382                        break;
 383                case PVR_ARCH_206:
 384                case PVR_ARCH_206p:
 385                        guest_pcr_bit = PCR_ARCH_206;
 386                        break;
 387                case PVR_ARCH_207:
 388                        guest_pcr_bit = PCR_ARCH_207;
 389                        break;
 390                case PVR_ARCH_300:
 391                        guest_pcr_bit = PCR_ARCH_300;
 392                        break;
 393                default:
 394                        return -EINVAL;
 395                }
 396        }
 397
 398        /* Check requested PCR bits don't exceed our capabilities */
 399        if (guest_pcr_bit > host_pcr_bit)
 400                return -EINVAL;
 401
 402        spin_lock(&vc->lock);
 403        vc->arch_compat = arch_compat;
 404        /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
 405        vc->pcr = host_pcr_bit - guest_pcr_bit;
 406        spin_unlock(&vc->lock);
 407
 408        return 0;
 409}
 410
 411static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
 412{
 413        int r;
 414
 415        pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
 416        pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
 417               vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
 418        for (r = 0; r < 16; ++r)
 419                pr_err("r%2d = %.16lx  r%d = %.16lx\n",
 420                       r, kvmppc_get_gpr(vcpu, r),
 421                       r+16, kvmppc_get_gpr(vcpu, r+16));
 422        pr_err("ctr = %.16lx  lr  = %.16lx\n",
 423               vcpu->arch.regs.ctr, vcpu->arch.regs.link);
 424        pr_err("srr0 = %.16llx srr1 = %.16llx\n",
 425               vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
 426        pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
 427               vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 428        pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 429               vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
 430        pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
 431               vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
 432        pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 433        pr_err("fault dar = %.16lx dsisr = %.8x\n",
 434               vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 435        pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
 436        for (r = 0; r < vcpu->arch.slb_max; ++r)
 437                pr_err("  ESID = %.16llx VSID = %.16llx\n",
 438                       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
 439        pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
 440               vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
 441               vcpu->arch.last_inst);
 442}
 443
 444static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
 445{
 446        return kvm_get_vcpu_by_id(kvm, id);
 447}
 448
 449static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
 450{
 451        vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
 452        vpa->yield_count = cpu_to_be32(1);
 453}
 454
 455static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
 456                   unsigned long addr, unsigned long len)
 457{
 458        /* check address is cacheline aligned */
 459        if (addr & (L1_CACHE_BYTES - 1))
 460                return -EINVAL;
 461        spin_lock(&vcpu->arch.vpa_update_lock);
 462        if (v->next_gpa != addr || v->len != len) {
 463                v->next_gpa = addr;
 464                v->len = addr ? len : 0;
 465                v->update_pending = 1;
 466        }
 467        spin_unlock(&vcpu->arch.vpa_update_lock);
 468        return 0;
 469}
 470
 471/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
 472struct reg_vpa {
 473        u32 dummy;
 474        union {
 475                __be16 hword;
 476                __be32 word;
 477        } length;
 478};
 479
 480static int vpa_is_registered(struct kvmppc_vpa *vpap)
 481{
 482        if (vpap->update_pending)
 483                return vpap->next_gpa != 0;
 484        return vpap->pinned_addr != NULL;
 485}
 486
 487static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
 488                                       unsigned long flags,
 489                                       unsigned long vcpuid, unsigned long vpa)
 490{
 491        struct kvm *kvm = vcpu->kvm;
 492        unsigned long len, nb;
 493        void *va;
 494        struct kvm_vcpu *tvcpu;
 495        int err;
 496        int subfunc;
 497        struct kvmppc_vpa *vpap;
 498
 499        tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
 500        if (!tvcpu)
 501                return H_PARAMETER;
 502
 503        subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
 504        if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
 505            subfunc == H_VPA_REG_SLB) {
 506                /* Registering new area - address must be cache-line aligned */
 507                if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
 508                        return H_PARAMETER;
 509
 510                /* convert logical addr to kernel addr and read length */
 511                va = kvmppc_pin_guest_page(kvm, vpa, &nb);
 512                if (va == NULL)
 513                        return H_PARAMETER;
 514                if (subfunc == H_VPA_REG_VPA)
 515                        len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
 516                else
 517                        len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
 518                kvmppc_unpin_guest_page(kvm, va, vpa, false);
 519
 520                /* Check length */
 521                if (len > nb || len < sizeof(struct reg_vpa))
 522                        return H_PARAMETER;
 523        } else {
 524                vpa = 0;
 525                len = 0;
 526        }
 527
 528        err = H_PARAMETER;
 529        vpap = NULL;
 530        spin_lock(&tvcpu->arch.vpa_update_lock);
 531
 532        switch (subfunc) {
 533        case H_VPA_REG_VPA:             /* register VPA */
 534                /*
 535                 * The size of our lppaca is 1kB because of the way we align
 536                 * it for the guest to avoid crossing a 4kB boundary. We only
 537                 * use 640 bytes of the structure though, so we should accept
 538                 * clients that set a size of 640.
 539                 */
 540                BUILD_BUG_ON(sizeof(struct lppaca) != 640);
 541                if (len < sizeof(struct lppaca))
 542                        break;
 543                vpap = &tvcpu->arch.vpa;
 544                err = 0;
 545                break;
 546
 547        case H_VPA_REG_DTL:             /* register DTL */
 548                if (len < sizeof(struct dtl_entry))
 549                        break;
 550                len -= len % sizeof(struct dtl_entry);
 551
 552                /* Check that they have previously registered a VPA */
 553                err = H_RESOURCE;
 554                if (!vpa_is_registered(&tvcpu->arch.vpa))
 555                        break;
 556
 557                vpap = &tvcpu->arch.dtl;
 558                err = 0;
 559                break;
 560
 561        case H_VPA_REG_SLB:             /* register SLB shadow buffer */
 562                /* Check that they have previously registered a VPA */
 563                err = H_RESOURCE;
 564                if (!vpa_is_registered(&tvcpu->arch.vpa))
 565                        break;
 566
 567                vpap = &tvcpu->arch.slb_shadow;
 568                err = 0;
 569                break;
 570
 571        case H_VPA_DEREG_VPA:           /* deregister VPA */
 572                /* Check they don't still have a DTL or SLB buf registered */
 573                err = H_RESOURCE;
 574                if (vpa_is_registered(&tvcpu->arch.dtl) ||
 575                    vpa_is_registered(&tvcpu->arch.slb_shadow))
 576                        break;
 577
 578                vpap = &tvcpu->arch.vpa;
 579                err = 0;
 580                break;
 581
 582        case H_VPA_DEREG_DTL:           /* deregister DTL */
 583                vpap = &tvcpu->arch.dtl;
 584                err = 0;
 585                break;
 586
 587        case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
 588                vpap = &tvcpu->arch.slb_shadow;
 589                err = 0;
 590                break;
 591        }
 592
 593        if (vpap) {
 594                vpap->next_gpa = vpa;
 595                vpap->len = len;
 596                vpap->update_pending = 1;
 597        }
 598
 599        spin_unlock(&tvcpu->arch.vpa_update_lock);
 600
 601        return err;
 602}
 603
 604static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
 605{
 606        struct kvm *kvm = vcpu->kvm;
 607        void *va;
 608        unsigned long nb;
 609        unsigned long gpa;
 610
 611        /*
 612         * We need to pin the page pointed to by vpap->next_gpa,
 613         * but we can't call kvmppc_pin_guest_page under the lock
 614         * as it does get_user_pages() and down_read().  So we
 615         * have to drop the lock, pin the page, then get the lock
 616         * again and check that a new area didn't get registered
 617         * in the meantime.
 618         */
 619        for (;;) {
 620                gpa = vpap->next_gpa;
 621                spin_unlock(&vcpu->arch.vpa_update_lock);
 622                va = NULL;
 623                nb = 0;
 624                if (gpa)
 625                        va = kvmppc_pin_guest_page(kvm, gpa, &nb);
 626                spin_lock(&vcpu->arch.vpa_update_lock);
 627                if (gpa == vpap->next_gpa)
 628                        break;
 629                /* sigh... unpin that one and try again */
 630                if (va)
 631                        kvmppc_unpin_guest_page(kvm, va, gpa, false);
 632        }
 633
 634        vpap->update_pending = 0;
 635        if (va && nb < vpap->len) {
 636                /*
 637                 * If it's now too short, it must be that userspace
 638                 * has changed the mappings underlying guest memory,
 639                 * so unregister the region.
 640                 */
 641                kvmppc_unpin_guest_page(kvm, va, gpa, false);
 642                va = NULL;
 643        }
 644        if (vpap->pinned_addr)
 645                kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
 646                                        vpap->dirty);
 647        vpap->gpa = gpa;
 648        vpap->pinned_addr = va;
 649        vpap->dirty = false;
 650        if (va)
 651                vpap->pinned_end = va + vpap->len;
 652}
 653
 654static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
 655{
 656        if (!(vcpu->arch.vpa.update_pending ||
 657              vcpu->arch.slb_shadow.update_pending ||
 658              vcpu->arch.dtl.update_pending))
 659                return;
 660
 661        spin_lock(&vcpu->arch.vpa_update_lock);
 662        if (vcpu->arch.vpa.update_pending) {
 663                kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
 664                if (vcpu->arch.vpa.pinned_addr)
 665                        init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
 666        }
 667        if (vcpu->arch.dtl.update_pending) {
 668                kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
 669                vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
 670                vcpu->arch.dtl_index = 0;
 671        }
 672        if (vcpu->arch.slb_shadow.update_pending)
 673                kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
 674        spin_unlock(&vcpu->arch.vpa_update_lock);
 675}
 676
 677/*
 678 * Return the accumulated stolen time for the vcore up until `now'.
 679 * The caller should hold the vcore lock.
 680 */
 681static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
 682{
 683        u64 p;
 684        unsigned long flags;
 685
 686        spin_lock_irqsave(&vc->stoltb_lock, flags);
 687        p = vc->stolen_tb;
 688        if (vc->vcore_state != VCORE_INACTIVE &&
 689            vc->preempt_tb != TB_NIL)
 690                p += now - vc->preempt_tb;
 691        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 692        return p;
 693}
 694
 695static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
 696                                    struct kvmppc_vcore *vc)
 697{
 698        struct dtl_entry *dt;
 699        struct lppaca *vpa;
 700        unsigned long stolen;
 701        unsigned long core_stolen;
 702        u64 now;
 703        unsigned long flags;
 704
 705        dt = vcpu->arch.dtl_ptr;
 706        vpa = vcpu->arch.vpa.pinned_addr;
 707        now = mftb();
 708        core_stolen = vcore_stolen_time(vc, now);
 709        stolen = core_stolen - vcpu->arch.stolen_logged;
 710        vcpu->arch.stolen_logged = core_stolen;
 711        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 712        stolen += vcpu->arch.busy_stolen;
 713        vcpu->arch.busy_stolen = 0;
 714        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 715        if (!dt || !vpa)
 716                return;
 717        memset(dt, 0, sizeof(struct dtl_entry));
 718        dt->dispatch_reason = 7;
 719        dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
 720        dt->timebase = cpu_to_be64(now + vc->tb_offset);
 721        dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
 722        dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
 723        dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
 724        ++dt;
 725        if (dt == vcpu->arch.dtl.pinned_end)
 726                dt = vcpu->arch.dtl.pinned_addr;
 727        vcpu->arch.dtl_ptr = dt;
 728        /* order writing *dt vs. writing vpa->dtl_idx */
 729        smp_wmb();
 730        vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
 731        vcpu->arch.dtl.dirty = true;
 732}
 733
 734/* See if there is a doorbell interrupt pending for a vcpu */
 735static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
 736{
 737        int thr;
 738        struct kvmppc_vcore *vc;
 739
 740        if (vcpu->arch.doorbell_request)
 741                return true;
 742        /*
 743         * Ensure that the read of vcore->dpdes comes after the read
 744         * of vcpu->doorbell_request.  This barrier matches the
 745         * smp_wmb() in kvmppc_guest_entry_inject().
 746         */
 747        smp_rmb();
 748        vc = vcpu->arch.vcore;
 749        thr = vcpu->vcpu_id - vc->first_vcpuid;
 750        return !!(vc->dpdes & (1 << thr));
 751}
 752
 753static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
 754{
 755        if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
 756                return true;
 757        if ((!vcpu->arch.vcore->arch_compat) &&
 758            cpu_has_feature(CPU_FTR_ARCH_207S))
 759                return true;
 760        return false;
 761}
 762
 763static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
 764                             unsigned long resource, unsigned long value1,
 765                             unsigned long value2)
 766{
 767        switch (resource) {
 768        case H_SET_MODE_RESOURCE_SET_CIABR:
 769                if (!kvmppc_power8_compatible(vcpu))
 770                        return H_P2;
 771                if (value2)
 772                        return H_P4;
 773                if (mflags)
 774                        return H_UNSUPPORTED_FLAG_START;
 775                /* Guests can't breakpoint the hypervisor */
 776                if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
 777                        return H_P3;
 778                vcpu->arch.ciabr  = value1;
 779                return H_SUCCESS;
 780        case H_SET_MODE_RESOURCE_SET_DAWR:
 781                if (!kvmppc_power8_compatible(vcpu))
 782                        return H_P2;
 783                if (!ppc_breakpoint_available())
 784                        return H_P2;
 785                if (mflags)
 786                        return H_UNSUPPORTED_FLAG_START;
 787                if (value2 & DABRX_HYP)
 788                        return H_P4;
 789                vcpu->arch.dawr  = value1;
 790                vcpu->arch.dawrx = value2;
 791                return H_SUCCESS;
 792        default:
 793                return H_TOO_HARD;
 794        }
 795}
 796
 797/* Copy guest memory in place - must reside within a single memslot */
 798static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
 799                                  unsigned long len)
 800{
 801        struct kvm_memory_slot *to_memslot = NULL;
 802        struct kvm_memory_slot *from_memslot = NULL;
 803        unsigned long to_addr, from_addr;
 804        int r;
 805
 806        /* Get HPA for from address */
 807        from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
 808        if (!from_memslot)
 809                return -EFAULT;
 810        if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
 811                             << PAGE_SHIFT))
 812                return -EINVAL;
 813        from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
 814        if (kvm_is_error_hva(from_addr))
 815                return -EFAULT;
 816        from_addr |= (from & (PAGE_SIZE - 1));
 817
 818        /* Get HPA for to address */
 819        to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
 820        if (!to_memslot)
 821                return -EFAULT;
 822        if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
 823                           << PAGE_SHIFT))
 824                return -EINVAL;
 825        to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
 826        if (kvm_is_error_hva(to_addr))
 827                return -EFAULT;
 828        to_addr |= (to & (PAGE_SIZE - 1));
 829
 830        /* Perform copy */
 831        r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
 832                             len);
 833        if (r)
 834                return -EFAULT;
 835        mark_page_dirty(kvm, to >> PAGE_SHIFT);
 836        return 0;
 837}
 838
 839static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
 840                               unsigned long dest, unsigned long src)
 841{
 842        u64 pg_sz = SZ_4K;              /* 4K page size */
 843        u64 pg_mask = SZ_4K - 1;
 844        int ret;
 845
 846        /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
 847        if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
 848                      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
 849                return H_PARAMETER;
 850
 851        /* dest (and src if copy_page flag set) must be page aligned */
 852        if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
 853                return H_PARAMETER;
 854
 855        /* zero and/or copy the page as determined by the flags */
 856        if (flags & H_COPY_PAGE) {
 857                ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
 858                if (ret < 0)
 859                        return H_PARAMETER;
 860        } else if (flags & H_ZERO_PAGE) {
 861                ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
 862                if (ret < 0)
 863                        return H_PARAMETER;
 864        }
 865
 866        /* We can ignore the remaining flags */
 867
 868        return H_SUCCESS;
 869}
 870
 871static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
 872{
 873        struct kvmppc_vcore *vcore = target->arch.vcore;
 874
 875        /*
 876         * We expect to have been called by the real mode handler
 877         * (kvmppc_rm_h_confer()) which would have directly returned
 878         * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
 879         * have useful work to do and should not confer) so we don't
 880         * recheck that here.
 881         */
 882
 883        spin_lock(&vcore->lock);
 884        if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
 885            vcore->vcore_state != VCORE_INACTIVE &&
 886            vcore->runner)
 887                target = vcore->runner;
 888        spin_unlock(&vcore->lock);
 889
 890        return kvm_vcpu_yield_to(target);
 891}
 892
 893static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
 894{
 895        int yield_count = 0;
 896        struct lppaca *lppaca;
 897
 898        spin_lock(&vcpu->arch.vpa_update_lock);
 899        lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
 900        if (lppaca)
 901                yield_count = be32_to_cpu(lppaca->yield_count);
 902        spin_unlock(&vcpu->arch.vpa_update_lock);
 903        return yield_count;
 904}
 905
 906int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 907{
 908        unsigned long req = kvmppc_get_gpr(vcpu, 3);
 909        unsigned long target, ret = H_SUCCESS;
 910        int yield_count;
 911        struct kvm_vcpu *tvcpu;
 912        int idx, rc;
 913
 914        if (req <= MAX_HCALL_OPCODE &&
 915            !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
 916                return RESUME_HOST;
 917
 918        switch (req) {
 919        case H_CEDE:
 920                break;
 921        case H_PROD:
 922                target = kvmppc_get_gpr(vcpu, 4);
 923                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 924                if (!tvcpu) {
 925                        ret = H_PARAMETER;
 926                        break;
 927                }
 928                tvcpu->arch.prodded = 1;
 929                smp_mb();
 930                if (tvcpu->arch.ceded)
 931                        kvmppc_fast_vcpu_kick_hv(tvcpu);
 932                break;
 933        case H_CONFER:
 934                target = kvmppc_get_gpr(vcpu, 4);
 935                if (target == -1)
 936                        break;
 937                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 938                if (!tvcpu) {
 939                        ret = H_PARAMETER;
 940                        break;
 941                }
 942                yield_count = kvmppc_get_gpr(vcpu, 5);
 943                if (kvmppc_get_yield_count(tvcpu) != yield_count)
 944                        break;
 945                kvm_arch_vcpu_yield_to(tvcpu);
 946                break;
 947        case H_REGISTER_VPA:
 948                ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
 949                                        kvmppc_get_gpr(vcpu, 5),
 950                                        kvmppc_get_gpr(vcpu, 6));
 951                break;
 952        case H_RTAS:
 953                if (list_empty(&vcpu->kvm->arch.rtas_tokens))
 954                        return RESUME_HOST;
 955
 956                idx = srcu_read_lock(&vcpu->kvm->srcu);
 957                rc = kvmppc_rtas_hcall(vcpu);
 958                srcu_read_unlock(&vcpu->kvm->srcu, idx);
 959
 960                if (rc == -ENOENT)
 961                        return RESUME_HOST;
 962                else if (rc == 0)
 963                        break;
 964
 965                /* Send the error out to userspace via KVM_RUN */
 966                return rc;
 967        case H_LOGICAL_CI_LOAD:
 968                ret = kvmppc_h_logical_ci_load(vcpu);
 969                if (ret == H_TOO_HARD)
 970                        return RESUME_HOST;
 971                break;
 972        case H_LOGICAL_CI_STORE:
 973                ret = kvmppc_h_logical_ci_store(vcpu);
 974                if (ret == H_TOO_HARD)
 975                        return RESUME_HOST;
 976                break;
 977        case H_SET_MODE:
 978                ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
 979                                        kvmppc_get_gpr(vcpu, 5),
 980                                        kvmppc_get_gpr(vcpu, 6),
 981                                        kvmppc_get_gpr(vcpu, 7));
 982                if (ret == H_TOO_HARD)
 983                        return RESUME_HOST;
 984                break;
 985        case H_XIRR:
 986        case H_CPPR:
 987        case H_EOI:
 988        case H_IPI:
 989        case H_IPOLL:
 990        case H_XIRR_X:
 991                if (kvmppc_xics_enabled(vcpu)) {
 992                        if (xics_on_xive()) {
 993                                ret = H_NOT_AVAILABLE;
 994                                return RESUME_GUEST;
 995                        }
 996                        ret = kvmppc_xics_hcall(vcpu, req);
 997                        break;
 998                }
 999                return RESUME_HOST;
1000        case H_SET_DABR:
1001                ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1002                break;
1003        case H_SET_XDABR:
1004                ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1005                                                kvmppc_get_gpr(vcpu, 5));
1006                break;
1007#ifdef CONFIG_SPAPR_TCE_IOMMU
1008        case H_GET_TCE:
1009                ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1010                                                kvmppc_get_gpr(vcpu, 5));
1011                if (ret == H_TOO_HARD)
1012                        return RESUME_HOST;
1013                break;
1014        case H_PUT_TCE:
1015                ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1016                                                kvmppc_get_gpr(vcpu, 5),
1017                                                kvmppc_get_gpr(vcpu, 6));
1018                if (ret == H_TOO_HARD)
1019                        return RESUME_HOST;
1020                break;
1021        case H_PUT_TCE_INDIRECT:
1022                ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1023                                                kvmppc_get_gpr(vcpu, 5),
1024                                                kvmppc_get_gpr(vcpu, 6),
1025                                                kvmppc_get_gpr(vcpu, 7));
1026                if (ret == H_TOO_HARD)
1027                        return RESUME_HOST;
1028                break;
1029        case H_STUFF_TCE:
1030                ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1031                                                kvmppc_get_gpr(vcpu, 5),
1032                                                kvmppc_get_gpr(vcpu, 6),
1033                                                kvmppc_get_gpr(vcpu, 7));
1034                if (ret == H_TOO_HARD)
1035                        return RESUME_HOST;
1036                break;
1037#endif
1038        case H_RANDOM:
1039                if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1040                        ret = H_HARDWARE;
1041                break;
1042
1043        case H_SET_PARTITION_TABLE:
1044                ret = H_FUNCTION;
1045                if (nesting_enabled(vcpu->kvm))
1046                        ret = kvmhv_set_partition_table(vcpu);
1047                break;
1048        case H_ENTER_NESTED:
1049                ret = H_FUNCTION;
1050                if (!nesting_enabled(vcpu->kvm))
1051                        break;
1052                ret = kvmhv_enter_nested_guest(vcpu);
1053                if (ret == H_INTERRUPT) {
1054                        kvmppc_set_gpr(vcpu, 3, 0);
1055                        vcpu->arch.hcall_needed = 0;
1056                        return -EINTR;
1057                } else if (ret == H_TOO_HARD) {
1058                        kvmppc_set_gpr(vcpu, 3, 0);
1059                        vcpu->arch.hcall_needed = 0;
1060                        return RESUME_HOST;
1061                }
1062                break;
1063        case H_TLB_INVALIDATE:
1064                ret = H_FUNCTION;
1065                if (nesting_enabled(vcpu->kvm))
1066                        ret = kvmhv_do_nested_tlbie(vcpu);
1067                break;
1068        case H_COPY_TOFROM_GUEST:
1069                ret = H_FUNCTION;
1070                if (nesting_enabled(vcpu->kvm))
1071                        ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1072                break;
1073        case H_PAGE_INIT:
1074                ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1075                                         kvmppc_get_gpr(vcpu, 5),
1076                                         kvmppc_get_gpr(vcpu, 6));
1077                break;
1078        default:
1079                return RESUME_HOST;
1080        }
1081        kvmppc_set_gpr(vcpu, 3, ret);
1082        vcpu->arch.hcall_needed = 0;
1083        return RESUME_GUEST;
1084}
1085
1086/*
1087 * Handle H_CEDE in the nested virtualization case where we haven't
1088 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1089 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1090 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1091 */
1092static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1093{
1094        vcpu->arch.shregs.msr |= MSR_EE;
1095        vcpu->arch.ceded = 1;
1096        smp_mb();
1097        if (vcpu->arch.prodded) {
1098                vcpu->arch.prodded = 0;
1099                smp_mb();
1100                vcpu->arch.ceded = 0;
1101        }
1102}
1103
1104static int kvmppc_hcall_impl_hv(unsigned long cmd)
1105{
1106        switch (cmd) {
1107        case H_CEDE:
1108        case H_PROD:
1109        case H_CONFER:
1110        case H_REGISTER_VPA:
1111        case H_SET_MODE:
1112        case H_LOGICAL_CI_LOAD:
1113        case H_LOGICAL_CI_STORE:
1114#ifdef CONFIG_KVM_XICS
1115        case H_XIRR:
1116        case H_CPPR:
1117        case H_EOI:
1118        case H_IPI:
1119        case H_IPOLL:
1120        case H_XIRR_X:
1121#endif
1122        case H_PAGE_INIT:
1123                return 1;
1124        }
1125
1126        /* See if it's in the real-mode table */
1127        return kvmppc_hcall_impl_hv_realmode(cmd);
1128}
1129
1130static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1131                                        struct kvm_vcpu *vcpu)
1132{
1133        u32 last_inst;
1134
1135        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1136                                        EMULATE_DONE) {
1137                /*
1138                 * Fetch failed, so return to guest and
1139                 * try executing it again.
1140                 */
1141                return RESUME_GUEST;
1142        }
1143
1144        if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1145                run->exit_reason = KVM_EXIT_DEBUG;
1146                run->debug.arch.address = kvmppc_get_pc(vcpu);
1147                return RESUME_HOST;
1148        } else {
1149                kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1150                return RESUME_GUEST;
1151        }
1152}
1153
1154static void do_nothing(void *x)
1155{
1156}
1157
1158static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1159{
1160        int thr, cpu, pcpu, nthreads;
1161        struct kvm_vcpu *v;
1162        unsigned long dpdes;
1163
1164        nthreads = vcpu->kvm->arch.emul_smt_mode;
1165        dpdes = 0;
1166        cpu = vcpu->vcpu_id & ~(nthreads - 1);
1167        for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1168                v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1169                if (!v)
1170                        continue;
1171                /*
1172                 * If the vcpu is currently running on a physical cpu thread,
1173                 * interrupt it in order to pull it out of the guest briefly,
1174                 * which will update its vcore->dpdes value.
1175                 */
1176                pcpu = READ_ONCE(v->cpu);
1177                if (pcpu >= 0)
1178                        smp_call_function_single(pcpu, do_nothing, NULL, 1);
1179                if (kvmppc_doorbell_pending(v))
1180                        dpdes |= 1 << thr;
1181        }
1182        return dpdes;
1183}
1184
1185/*
1186 * On POWER9, emulate doorbell-related instructions in order to
1187 * give the guest the illusion of running on a multi-threaded core.
1188 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1189 * and mfspr DPDES.
1190 */
1191static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1192{
1193        u32 inst, rb, thr;
1194        unsigned long arg;
1195        struct kvm *kvm = vcpu->kvm;
1196        struct kvm_vcpu *tvcpu;
1197
1198        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1199                return RESUME_GUEST;
1200        if (get_op(inst) != 31)
1201                return EMULATE_FAIL;
1202        rb = get_rb(inst);
1203        thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1204        switch (get_xop(inst)) {
1205        case OP_31_XOP_MSGSNDP:
1206                arg = kvmppc_get_gpr(vcpu, rb);
1207                if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1208                        break;
1209                arg &= 0x3f;
1210                if (arg >= kvm->arch.emul_smt_mode)
1211                        break;
1212                tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1213                if (!tvcpu)
1214                        break;
1215                if (!tvcpu->arch.doorbell_request) {
1216                        tvcpu->arch.doorbell_request = 1;
1217                        kvmppc_fast_vcpu_kick_hv(tvcpu);
1218                }
1219                break;
1220        case OP_31_XOP_MSGCLRP:
1221                arg = kvmppc_get_gpr(vcpu, rb);
1222                if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1223                        break;
1224                vcpu->arch.vcore->dpdes = 0;
1225                vcpu->arch.doorbell_request = 0;
1226                break;
1227        case OP_31_XOP_MFSPR:
1228                switch (get_sprn(inst)) {
1229                case SPRN_TIR:
1230                        arg = thr;
1231                        break;
1232                case SPRN_DPDES:
1233                        arg = kvmppc_read_dpdes(vcpu);
1234                        break;
1235                default:
1236                        return EMULATE_FAIL;
1237                }
1238                kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1239                break;
1240        default:
1241                return EMULATE_FAIL;
1242        }
1243        kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1244        return RESUME_GUEST;
1245}
1246
1247static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1248                                 struct task_struct *tsk)
1249{
1250        int r = RESUME_HOST;
1251
1252        vcpu->stat.sum_exits++;
1253
1254        /*
1255         * This can happen if an interrupt occurs in the last stages
1256         * of guest entry or the first stages of guest exit (i.e. after
1257         * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1258         * and before setting it to KVM_GUEST_MODE_HOST_HV).
1259         * That can happen due to a bug, or due to a machine check
1260         * occurring at just the wrong time.
1261         */
1262        if (vcpu->arch.shregs.msr & MSR_HV) {
1263                printk(KERN_EMERG "KVM trap in HV mode!\n");
1264                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1265                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
1266                        vcpu->arch.shregs.msr);
1267                kvmppc_dump_regs(vcpu);
1268                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1269                run->hw.hardware_exit_reason = vcpu->arch.trap;
1270                return RESUME_HOST;
1271        }
1272        run->exit_reason = KVM_EXIT_UNKNOWN;
1273        run->ready_for_interrupt_injection = 1;
1274        switch (vcpu->arch.trap) {
1275        /* We're good on these - the host merely wanted to get our attention */
1276        case BOOK3S_INTERRUPT_HV_DECREMENTER:
1277                vcpu->stat.dec_exits++;
1278                r = RESUME_GUEST;
1279                break;
1280        case BOOK3S_INTERRUPT_EXTERNAL:
1281        case BOOK3S_INTERRUPT_H_DOORBELL:
1282        case BOOK3S_INTERRUPT_H_VIRT:
1283                vcpu->stat.ext_intr_exits++;
1284                r = RESUME_GUEST;
1285                break;
1286        /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1287        case BOOK3S_INTERRUPT_HMI:
1288        case BOOK3S_INTERRUPT_PERFMON:
1289        case BOOK3S_INTERRUPT_SYSTEM_RESET:
1290                r = RESUME_GUEST;
1291                break;
1292        case BOOK3S_INTERRUPT_MACHINE_CHECK:
1293                /* Print the MCE event to host console. */
1294                machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1295
1296                /*
1297                 * If the guest can do FWNMI, exit to userspace so it can
1298                 * deliver a FWNMI to the guest.
1299                 * Otherwise we synthesize a machine check for the guest
1300                 * so that it knows that the machine check occurred.
1301                 */
1302                if (!vcpu->kvm->arch.fwnmi_enabled) {
1303                        ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1304                        kvmppc_core_queue_machine_check(vcpu, flags);
1305                        r = RESUME_GUEST;
1306                        break;
1307                }
1308
1309                /* Exit to guest with KVM_EXIT_NMI as exit reason */
1310                run->exit_reason = KVM_EXIT_NMI;
1311                run->hw.hardware_exit_reason = vcpu->arch.trap;
1312                /* Clear out the old NMI status from run->flags */
1313                run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1314                /* Now set the NMI status */
1315                if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1316                        run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1317                else
1318                        run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1319
1320                r = RESUME_HOST;
1321                break;
1322        case BOOK3S_INTERRUPT_PROGRAM:
1323        {
1324                ulong flags;
1325                /*
1326                 * Normally program interrupts are delivered directly
1327                 * to the guest by the hardware, but we can get here
1328                 * as a result of a hypervisor emulation interrupt
1329                 * (e40) getting turned into a 700 by BML RTAS.
1330                 */
1331                flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1332                kvmppc_core_queue_program(vcpu, flags);
1333                r = RESUME_GUEST;
1334                break;
1335        }
1336        case BOOK3S_INTERRUPT_SYSCALL:
1337        {
1338                /* hcall - punt to userspace */
1339                int i;
1340
1341                /* hypercall with MSR_PR has already been handled in rmode,
1342                 * and never reaches here.
1343                 */
1344
1345                run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1346                for (i = 0; i < 9; ++i)
1347                        run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1348                run->exit_reason = KVM_EXIT_PAPR_HCALL;
1349                vcpu->arch.hcall_needed = 1;
1350                r = RESUME_HOST;
1351                break;
1352        }
1353        /*
1354         * We get these next two if the guest accesses a page which it thinks
1355         * it has mapped but which is not actually present, either because
1356         * it is for an emulated I/O device or because the corresonding
1357         * host page has been paged out.  Any other HDSI/HISI interrupts
1358         * have been handled already.
1359         */
1360        case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1361                r = RESUME_PAGE_FAULT;
1362                break;
1363        case BOOK3S_INTERRUPT_H_INST_STORAGE:
1364                vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1365                vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1366                        DSISR_SRR1_MATCH_64S;
1367                if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1368                        vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1369                r = RESUME_PAGE_FAULT;
1370                break;
1371        /*
1372         * This occurs if the guest executes an illegal instruction.
1373         * If the guest debug is disabled, generate a program interrupt
1374         * to the guest. If guest debug is enabled, we need to check
1375         * whether the instruction is a software breakpoint instruction.
1376         * Accordingly return to Guest or Host.
1377         */
1378        case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1379                if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1380                        vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1381                                swab32(vcpu->arch.emul_inst) :
1382                                vcpu->arch.emul_inst;
1383                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1384                        r = kvmppc_emulate_debug_inst(run, vcpu);
1385                } else {
1386                        kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1387                        r = RESUME_GUEST;
1388                }
1389                break;
1390        /*
1391         * This occurs if the guest (kernel or userspace), does something that
1392         * is prohibited by HFSCR.
1393         * On POWER9, this could be a doorbell instruction that we need
1394         * to emulate.
1395         * Otherwise, we just generate a program interrupt to the guest.
1396         */
1397        case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1398                r = EMULATE_FAIL;
1399                if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1400                    cpu_has_feature(CPU_FTR_ARCH_300))
1401                        r = kvmppc_emulate_doorbell_instr(vcpu);
1402                if (r == EMULATE_FAIL) {
1403                        kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1404                        r = RESUME_GUEST;
1405                }
1406                break;
1407
1408#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1409        case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1410                /*
1411                 * This occurs for various TM-related instructions that
1412                 * we need to emulate on POWER9 DD2.2.  We have already
1413                 * handled the cases where the guest was in real-suspend
1414                 * mode and was transitioning to transactional state.
1415                 */
1416                r = kvmhv_p9_tm_emulation(vcpu);
1417                break;
1418#endif
1419
1420        case BOOK3S_INTERRUPT_HV_RM_HARD:
1421                r = RESUME_PASSTHROUGH;
1422                break;
1423        default:
1424                kvmppc_dump_regs(vcpu);
1425                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1426                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
1427                        vcpu->arch.shregs.msr);
1428                run->hw.hardware_exit_reason = vcpu->arch.trap;
1429                r = RESUME_HOST;
1430                break;
1431        }
1432
1433        return r;
1434}
1435
1436static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1437{
1438        int r;
1439        int srcu_idx;
1440
1441        vcpu->stat.sum_exits++;
1442
1443        /*
1444         * This can happen if an interrupt occurs in the last stages
1445         * of guest entry or the first stages of guest exit (i.e. after
1446         * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1447         * and before setting it to KVM_GUEST_MODE_HOST_HV).
1448         * That can happen due to a bug, or due to a machine check
1449         * occurring at just the wrong time.
1450         */
1451        if (vcpu->arch.shregs.msr & MSR_HV) {
1452                pr_emerg("KVM trap in HV mode while nested!\n");
1453                pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1454                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1455                         vcpu->arch.shregs.msr);
1456                kvmppc_dump_regs(vcpu);
1457                return RESUME_HOST;
1458        }
1459        switch (vcpu->arch.trap) {
1460        /* We're good on these - the host merely wanted to get our attention */
1461        case BOOK3S_INTERRUPT_HV_DECREMENTER:
1462                vcpu->stat.dec_exits++;
1463                r = RESUME_GUEST;
1464                break;
1465        case BOOK3S_INTERRUPT_EXTERNAL:
1466                vcpu->stat.ext_intr_exits++;
1467                r = RESUME_HOST;
1468                break;
1469        case BOOK3S_INTERRUPT_H_DOORBELL:
1470        case BOOK3S_INTERRUPT_H_VIRT:
1471                vcpu->stat.ext_intr_exits++;
1472                r = RESUME_GUEST;
1473                break;
1474        /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1475        case BOOK3S_INTERRUPT_HMI:
1476        case BOOK3S_INTERRUPT_PERFMON:
1477        case BOOK3S_INTERRUPT_SYSTEM_RESET:
1478                r = RESUME_GUEST;
1479                break;
1480        case BOOK3S_INTERRUPT_MACHINE_CHECK:
1481                /* Pass the machine check to the L1 guest */
1482                r = RESUME_HOST;
1483                /* Print the MCE event to host console. */
1484                machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1485                break;
1486        /*
1487         * We get these next two if the guest accesses a page which it thinks
1488         * it has mapped but which is not actually present, either because
1489         * it is for an emulated I/O device or because the corresonding
1490         * host page has been paged out.
1491         */
1492        case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1493                srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1494                r = kvmhv_nested_page_fault(run, vcpu);
1495                srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1496                break;
1497        case BOOK3S_INTERRUPT_H_INST_STORAGE:
1498                vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1499                vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1500                                         DSISR_SRR1_MATCH_64S;
1501                if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1502                        vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1503                srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1504                r = kvmhv_nested_page_fault(run, vcpu);
1505                srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1506                break;
1507
1508#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1509        case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1510                /*
1511                 * This occurs for various TM-related instructions that
1512                 * we need to emulate on POWER9 DD2.2.  We have already
1513                 * handled the cases where the guest was in real-suspend
1514                 * mode and was transitioning to transactional state.
1515                 */
1516                r = kvmhv_p9_tm_emulation(vcpu);
1517                break;
1518#endif
1519
1520        case BOOK3S_INTERRUPT_HV_RM_HARD:
1521                vcpu->arch.trap = 0;
1522                r = RESUME_GUEST;
1523                if (!xics_on_xive())
1524                        kvmppc_xics_rm_complete(vcpu, 0);
1525                break;
1526        default:
1527                r = RESUME_HOST;
1528                break;
1529        }
1530
1531        return r;
1532}
1533
1534static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1535                                            struct kvm_sregs *sregs)
1536{
1537        int i;
1538
1539        memset(sregs, 0, sizeof(struct kvm_sregs));
1540        sregs->pvr = vcpu->arch.pvr;
1541        for (i = 0; i < vcpu->arch.slb_max; i++) {
1542                sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1543                sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1544        }
1545
1546        return 0;
1547}
1548
1549static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1550                                            struct kvm_sregs *sregs)
1551{
1552        int i, j;
1553
1554        /* Only accept the same PVR as the host's, since we can't spoof it */
1555        if (sregs->pvr != vcpu->arch.pvr)
1556                return -EINVAL;
1557
1558        j = 0;
1559        for (i = 0; i < vcpu->arch.slb_nr; i++) {
1560                if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1561                        vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1562                        vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1563                        ++j;
1564                }
1565        }
1566        vcpu->arch.slb_max = j;
1567
1568        return 0;
1569}
1570
1571static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1572                bool preserve_top32)
1573{
1574        struct kvm *kvm = vcpu->kvm;
1575        struct kvmppc_vcore *vc = vcpu->arch.vcore;
1576        u64 mask;
1577
1578        spin_lock(&vc->lock);
1579        /*
1580         * If ILE (interrupt little-endian) has changed, update the
1581         * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1582         */
1583        if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1584                struct kvm_vcpu *vcpu;
1585                int i;
1586
1587                kvm_for_each_vcpu(i, vcpu, kvm) {
1588                        if (vcpu->arch.vcore != vc)
1589                                continue;
1590                        if (new_lpcr & LPCR_ILE)
1591                                vcpu->arch.intr_msr |= MSR_LE;
1592                        else
1593                                vcpu->arch.intr_msr &= ~MSR_LE;
1594                }
1595        }
1596
1597        /*
1598         * Userspace can only modify DPFD (default prefetch depth),
1599         * ILE (interrupt little-endian) and TC (translation control).
1600         * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1601         */
1602        mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1603        if (cpu_has_feature(CPU_FTR_ARCH_207S))
1604                mask |= LPCR_AIL;
1605        /*
1606         * On POWER9, allow userspace to enable large decrementer for the
1607         * guest, whether or not the host has it enabled.
1608         */
1609        if (cpu_has_feature(CPU_FTR_ARCH_300))
1610                mask |= LPCR_LD;
1611
1612        /* Broken 32-bit version of LPCR must not clear top bits */
1613        if (preserve_top32)
1614                mask &= 0xFFFFFFFF;
1615        vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1616        spin_unlock(&vc->lock);
1617}
1618
1619static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1620                                 union kvmppc_one_reg *val)
1621{
1622        int r = 0;
1623        long int i;
1624
1625        switch (id) {
1626        case KVM_REG_PPC_DEBUG_INST:
1627                *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1628                break;
1629        case KVM_REG_PPC_HIOR:
1630                *val = get_reg_val(id, 0);
1631                break;
1632        case KVM_REG_PPC_DABR:
1633                *val = get_reg_val(id, vcpu->arch.dabr);
1634                break;
1635        case KVM_REG_PPC_DABRX:
1636                *val = get_reg_val(id, vcpu->arch.dabrx);
1637                break;
1638        case KVM_REG_PPC_DSCR:
1639                *val = get_reg_val(id, vcpu->arch.dscr);
1640                break;
1641        case KVM_REG_PPC_PURR:
1642                *val = get_reg_val(id, vcpu->arch.purr);
1643                break;
1644        case KVM_REG_PPC_SPURR:
1645                *val = get_reg_val(id, vcpu->arch.spurr);
1646                break;
1647        case KVM_REG_PPC_AMR:
1648                *val = get_reg_val(id, vcpu->arch.amr);
1649                break;
1650        case KVM_REG_PPC_UAMOR:
1651                *val = get_reg_val(id, vcpu->arch.uamor);
1652                break;
1653        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1654                i = id - KVM_REG_PPC_MMCR0;
1655                *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1656                break;
1657        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1658                i = id - KVM_REG_PPC_PMC1;
1659                *val = get_reg_val(id, vcpu->arch.pmc[i]);
1660                break;
1661        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1662                i = id - KVM_REG_PPC_SPMC1;
1663                *val = get_reg_val(id, vcpu->arch.spmc[i]);
1664                break;
1665        case KVM_REG_PPC_SIAR:
1666                *val = get_reg_val(id, vcpu->arch.siar);
1667                break;
1668        case KVM_REG_PPC_SDAR:
1669                *val = get_reg_val(id, vcpu->arch.sdar);
1670                break;
1671        case KVM_REG_PPC_SIER:
1672                *val = get_reg_val(id, vcpu->arch.sier);
1673                break;
1674        case KVM_REG_PPC_IAMR:
1675                *val = get_reg_val(id, vcpu->arch.iamr);
1676                break;
1677        case KVM_REG_PPC_PSPB:
1678                *val = get_reg_val(id, vcpu->arch.pspb);
1679                break;
1680        case KVM_REG_PPC_DPDES:
1681                *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1682                break;
1683        case KVM_REG_PPC_VTB:
1684                *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1685                break;
1686        case KVM_REG_PPC_DAWR:
1687                *val = get_reg_val(id, vcpu->arch.dawr);
1688                break;
1689        case KVM_REG_PPC_DAWRX:
1690                *val = get_reg_val(id, vcpu->arch.dawrx);
1691                break;
1692        case KVM_REG_PPC_CIABR:
1693                *val = get_reg_val(id, vcpu->arch.ciabr);
1694                break;
1695        case KVM_REG_PPC_CSIGR:
1696                *val = get_reg_val(id, vcpu->arch.csigr);
1697                break;
1698        case KVM_REG_PPC_TACR:
1699                *val = get_reg_val(id, vcpu->arch.tacr);
1700                break;
1701        case KVM_REG_PPC_TCSCR:
1702                *val = get_reg_val(id, vcpu->arch.tcscr);
1703                break;
1704        case KVM_REG_PPC_PID:
1705                *val = get_reg_val(id, vcpu->arch.pid);
1706                break;
1707        case KVM_REG_PPC_ACOP:
1708                *val = get_reg_val(id, vcpu->arch.acop);
1709                break;
1710        case KVM_REG_PPC_WORT:
1711                *val = get_reg_val(id, vcpu->arch.wort);
1712                break;
1713        case KVM_REG_PPC_TIDR:
1714                *val = get_reg_val(id, vcpu->arch.tid);
1715                break;
1716        case KVM_REG_PPC_PSSCR:
1717                *val = get_reg_val(id, vcpu->arch.psscr);
1718                break;
1719        case KVM_REG_PPC_VPA_ADDR:
1720                spin_lock(&vcpu->arch.vpa_update_lock);
1721                *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1722                spin_unlock(&vcpu->arch.vpa_update_lock);
1723                break;
1724        case KVM_REG_PPC_VPA_SLB:
1725                spin_lock(&vcpu->arch.vpa_update_lock);
1726                val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1727                val->vpaval.length = vcpu->arch.slb_shadow.len;
1728                spin_unlock(&vcpu->arch.vpa_update_lock);
1729                break;
1730        case KVM_REG_PPC_VPA_DTL:
1731                spin_lock(&vcpu->arch.vpa_update_lock);
1732                val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1733                val->vpaval.length = vcpu->arch.dtl.len;
1734                spin_unlock(&vcpu->arch.vpa_update_lock);
1735                break;
1736        case KVM_REG_PPC_TB_OFFSET:
1737                *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1738                break;
1739        case KVM_REG_PPC_LPCR:
1740        case KVM_REG_PPC_LPCR_64:
1741                *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1742                break;
1743        case KVM_REG_PPC_PPR:
1744                *val = get_reg_val(id, vcpu->arch.ppr);
1745                break;
1746#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1747        case KVM_REG_PPC_TFHAR:
1748                *val = get_reg_val(id, vcpu->arch.tfhar);
1749                break;
1750        case KVM_REG_PPC_TFIAR:
1751                *val = get_reg_val(id, vcpu->arch.tfiar);
1752                break;
1753        case KVM_REG_PPC_TEXASR:
1754                *val = get_reg_val(id, vcpu->arch.texasr);
1755                break;
1756        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1757                i = id - KVM_REG_PPC_TM_GPR0;
1758                *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1759                break;
1760        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1761        {
1762                int j;
1763                i = id - KVM_REG_PPC_TM_VSR0;
1764                if (i < 32)
1765                        for (j = 0; j < TS_FPRWIDTH; j++)
1766                                val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1767                else {
1768                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1769                                val->vval = vcpu->arch.vr_tm.vr[i-32];
1770                        else
1771                                r = -ENXIO;
1772                }
1773                break;
1774        }
1775        case KVM_REG_PPC_TM_CR:
1776                *val = get_reg_val(id, vcpu->arch.cr_tm);
1777                break;
1778        case KVM_REG_PPC_TM_XER:
1779                *val = get_reg_val(id, vcpu->arch.xer_tm);
1780                break;
1781        case KVM_REG_PPC_TM_LR:
1782                *val = get_reg_val(id, vcpu->arch.lr_tm);
1783                break;
1784        case KVM_REG_PPC_TM_CTR:
1785                *val = get_reg_val(id, vcpu->arch.ctr_tm);
1786                break;
1787        case KVM_REG_PPC_TM_FPSCR:
1788                *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1789                break;
1790        case KVM_REG_PPC_TM_AMR:
1791                *val = get_reg_val(id, vcpu->arch.amr_tm);
1792                break;
1793        case KVM_REG_PPC_TM_PPR:
1794                *val = get_reg_val(id, vcpu->arch.ppr_tm);
1795                break;
1796        case KVM_REG_PPC_TM_VRSAVE:
1797                *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1798                break;
1799        case KVM_REG_PPC_TM_VSCR:
1800                if (cpu_has_feature(CPU_FTR_ALTIVEC))
1801                        *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1802                else
1803                        r = -ENXIO;
1804                break;
1805        case KVM_REG_PPC_TM_DSCR:
1806                *val = get_reg_val(id, vcpu->arch.dscr_tm);
1807                break;
1808        case KVM_REG_PPC_TM_TAR:
1809                *val = get_reg_val(id, vcpu->arch.tar_tm);
1810                break;
1811#endif
1812        case KVM_REG_PPC_ARCH_COMPAT:
1813                *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1814                break;
1815        case KVM_REG_PPC_DEC_EXPIRY:
1816                *val = get_reg_val(id, vcpu->arch.dec_expires +
1817                                   vcpu->arch.vcore->tb_offset);
1818                break;
1819        case KVM_REG_PPC_ONLINE:
1820                *val = get_reg_val(id, vcpu->arch.online);
1821                break;
1822        case KVM_REG_PPC_PTCR:
1823                *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1824                break;
1825        default:
1826                r = -EINVAL;
1827                break;
1828        }
1829
1830        return r;
1831}
1832
1833static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1834                                 union kvmppc_one_reg *val)
1835{
1836        int r = 0;
1837        long int i;
1838        unsigned long addr, len;
1839
1840        switch (id) {
1841        case KVM_REG_PPC_HIOR:
1842                /* Only allow this to be set to zero */
1843                if (set_reg_val(id, *val))
1844                        r = -EINVAL;
1845                break;
1846        case KVM_REG_PPC_DABR:
1847                vcpu->arch.dabr = set_reg_val(id, *val);
1848                break;
1849        case KVM_REG_PPC_DABRX:
1850                vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1851                break;
1852        case KVM_REG_PPC_DSCR:
1853                vcpu->arch.dscr = set_reg_val(id, *val);
1854                break;
1855        case KVM_REG_PPC_PURR:
1856                vcpu->arch.purr = set_reg_val(id, *val);
1857                break;
1858        case KVM_REG_PPC_SPURR:
1859                vcpu->arch.spurr = set_reg_val(id, *val);
1860                break;
1861        case KVM_REG_PPC_AMR:
1862                vcpu->arch.amr = set_reg_val(id, *val);
1863                break;
1864        case KVM_REG_PPC_UAMOR:
1865                vcpu->arch.uamor = set_reg_val(id, *val);
1866                break;
1867        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1868                i = id - KVM_REG_PPC_MMCR0;
1869                vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1870                break;
1871        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1872                i = id - KVM_REG_PPC_PMC1;
1873                vcpu->arch.pmc[i] = set_reg_val(id, *val);
1874                break;
1875        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1876                i = id - KVM_REG_PPC_SPMC1;
1877                vcpu->arch.spmc[i] = set_reg_val(id, *val);
1878                break;
1879        case KVM_REG_PPC_SIAR:
1880                vcpu->arch.siar = set_reg_val(id, *val);
1881                break;
1882        case KVM_REG_PPC_SDAR:
1883                vcpu->arch.sdar = set_reg_val(id, *val);
1884                break;
1885        case KVM_REG_PPC_SIER:
1886                vcpu->arch.sier = set_reg_val(id, *val);
1887                break;
1888        case KVM_REG_PPC_IAMR:
1889                vcpu->arch.iamr = set_reg_val(id, *val);
1890                break;
1891        case KVM_REG_PPC_PSPB:
1892                vcpu->arch.pspb = set_reg_val(id, *val);
1893                break;
1894        case KVM_REG_PPC_DPDES:
1895                vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1896                break;
1897        case KVM_REG_PPC_VTB:
1898                vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1899                break;
1900        case KVM_REG_PPC_DAWR:
1901                vcpu->arch.dawr = set_reg_val(id, *val);
1902                break;
1903        case KVM_REG_PPC_DAWRX:
1904                vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1905                break;
1906        case KVM_REG_PPC_CIABR:
1907                vcpu->arch.ciabr = set_reg_val(id, *val);
1908                /* Don't allow setting breakpoints in hypervisor code */
1909                if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1910                        vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1911                break;
1912        case KVM_REG_PPC_CSIGR:
1913                vcpu->arch.csigr = set_reg_val(id, *val);
1914                break;
1915        case KVM_REG_PPC_TACR:
1916                vcpu->arch.tacr = set_reg_val(id, *val);
1917                break;
1918        case KVM_REG_PPC_TCSCR:
1919                vcpu->arch.tcscr = set_reg_val(id, *val);
1920                break;
1921        case KVM_REG_PPC_PID:
1922                vcpu->arch.pid = set_reg_val(id, *val);
1923                break;
1924        case KVM_REG_PPC_ACOP:
1925                vcpu->arch.acop = set_reg_val(id, *val);
1926                break;
1927        case KVM_REG_PPC_WORT:
1928                vcpu->arch.wort = set_reg_val(id, *val);
1929                break;
1930        case KVM_REG_PPC_TIDR:
1931                vcpu->arch.tid = set_reg_val(id, *val);
1932                break;
1933        case KVM_REG_PPC_PSSCR:
1934                vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1935                break;
1936        case KVM_REG_PPC_VPA_ADDR:
1937                addr = set_reg_val(id, *val);
1938                r = -EINVAL;
1939                if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1940                              vcpu->arch.dtl.next_gpa))
1941                        break;
1942                r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1943                break;
1944        case KVM_REG_PPC_VPA_SLB:
1945                addr = val->vpaval.addr;
1946                len = val->vpaval.length;
1947                r = -EINVAL;
1948                if (addr && !vcpu->arch.vpa.next_gpa)
1949                        break;
1950                r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1951                break;
1952        case KVM_REG_PPC_VPA_DTL:
1953                addr = val->vpaval.addr;
1954                len = val->vpaval.length;
1955                r = -EINVAL;
1956                if (addr && (len < sizeof(struct dtl_entry) ||
1957                             !vcpu->arch.vpa.next_gpa))
1958                        break;
1959                len -= len % sizeof(struct dtl_entry);
1960                r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1961                break;
1962        case KVM_REG_PPC_TB_OFFSET:
1963                /* round up to multiple of 2^24 */
1964                vcpu->arch.vcore->tb_offset =
1965                        ALIGN(set_reg_val(id, *val), 1UL << 24);
1966                break;
1967        case KVM_REG_PPC_LPCR:
1968                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1969                break;
1970        case KVM_REG_PPC_LPCR_64:
1971                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1972                break;
1973        case KVM_REG_PPC_PPR:
1974                vcpu->arch.ppr = set_reg_val(id, *val);
1975                break;
1976#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1977        case KVM_REG_PPC_TFHAR:
1978                vcpu->arch.tfhar = set_reg_val(id, *val);
1979                break;
1980        case KVM_REG_PPC_TFIAR:
1981                vcpu->arch.tfiar = set_reg_val(id, *val);
1982                break;
1983        case KVM_REG_PPC_TEXASR:
1984                vcpu->arch.texasr = set_reg_val(id, *val);
1985                break;
1986        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1987                i = id - KVM_REG_PPC_TM_GPR0;
1988                vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1989                break;
1990        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1991        {
1992                int j;
1993                i = id - KVM_REG_PPC_TM_VSR0;
1994                if (i < 32)
1995                        for (j = 0; j < TS_FPRWIDTH; j++)
1996                                vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1997                else
1998                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1999                                vcpu->arch.vr_tm.vr[i-32] = val->vval;
2000                        else
2001                                r = -ENXIO;
2002                break;
2003        }
2004        case KVM_REG_PPC_TM_CR:
2005                vcpu->arch.cr_tm = set_reg_val(id, *val);
2006                break;
2007        case KVM_REG_PPC_TM_XER:
2008                vcpu->arch.xer_tm = set_reg_val(id, *val);
2009                break;
2010        case KVM_REG_PPC_TM_LR:
2011                vcpu->arch.lr_tm = set_reg_val(id, *val);
2012                break;
2013        case KVM_REG_PPC_TM_CTR:
2014                vcpu->arch.ctr_tm = set_reg_val(id, *val);
2015                break;
2016        case KVM_REG_PPC_TM_FPSCR:
2017                vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2018                break;
2019        case KVM_REG_PPC_TM_AMR:
2020                vcpu->arch.amr_tm = set_reg_val(id, *val);
2021                break;
2022        case KVM_REG_PPC_TM_PPR:
2023                vcpu->arch.ppr_tm = set_reg_val(id, *val);
2024                break;
2025        case KVM_REG_PPC_TM_VRSAVE:
2026                vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2027                break;
2028        case KVM_REG_PPC_TM_VSCR:
2029                if (cpu_has_feature(CPU_FTR_ALTIVEC))
2030                        vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2031                else
2032                        r = - ENXIO;
2033                break;
2034        case KVM_REG_PPC_TM_DSCR:
2035                vcpu->arch.dscr_tm = set_reg_val(id, *val);
2036                break;
2037        case KVM_REG_PPC_TM_TAR:
2038                vcpu->arch.tar_tm = set_reg_val(id, *val);
2039                break;
2040#endif
2041        case KVM_REG_PPC_ARCH_COMPAT:
2042                r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2043                break;
2044        case KVM_REG_PPC_DEC_EXPIRY:
2045                vcpu->arch.dec_expires = set_reg_val(id, *val) -
2046                        vcpu->arch.vcore->tb_offset;
2047                break;
2048        case KVM_REG_PPC_ONLINE:
2049                i = set_reg_val(id, *val);
2050                if (i && !vcpu->arch.online)
2051                        atomic_inc(&vcpu->arch.vcore->online_count);
2052                else if (!i && vcpu->arch.online)
2053                        atomic_dec(&vcpu->arch.vcore->online_count);
2054                vcpu->arch.online = i;
2055                break;
2056        case KVM_REG_PPC_PTCR:
2057                vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2058                break;
2059        default:
2060                r = -EINVAL;
2061                break;
2062        }
2063
2064        return r;
2065}
2066
2067/*
2068 * On POWER9, threads are independent and can be in different partitions.
2069 * Therefore we consider each thread to be a subcore.
2070 * There is a restriction that all threads have to be in the same
2071 * MMU mode (radix or HPT), unfortunately, but since we only support
2072 * HPT guests on a HPT host so far, that isn't an impediment yet.
2073 */
2074static int threads_per_vcore(struct kvm *kvm)
2075{
2076        if (kvm->arch.threads_indep)
2077                return 1;
2078        return threads_per_subcore;
2079}
2080
2081static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2082{
2083        struct kvmppc_vcore *vcore;
2084
2085        vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2086
2087        if (vcore == NULL)
2088                return NULL;
2089
2090        spin_lock_init(&vcore->lock);
2091        spin_lock_init(&vcore->stoltb_lock);
2092        init_swait_queue_head(&vcore->wq);
2093        vcore->preempt_tb = TB_NIL;
2094        vcore->lpcr = kvm->arch.lpcr;
2095        vcore->first_vcpuid = id;
2096        vcore->kvm = kvm;
2097        INIT_LIST_HEAD(&vcore->preempt_list);
2098
2099        return vcore;
2100}
2101
2102#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2103static struct debugfs_timings_element {
2104        const char *name;
2105        size_t offset;
2106} timings[] = {
2107        {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2108        {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2109        {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2110        {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2111        {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2112};
2113
2114#define N_TIMINGS       (ARRAY_SIZE(timings))
2115
2116struct debugfs_timings_state {
2117        struct kvm_vcpu *vcpu;
2118        unsigned int    buflen;
2119        char            buf[N_TIMINGS * 100];
2120};
2121
2122static int debugfs_timings_open(struct inode *inode, struct file *file)
2123{
2124        struct kvm_vcpu *vcpu = inode->i_private;
2125        struct debugfs_timings_state *p;
2126
2127        p = kzalloc(sizeof(*p), GFP_KERNEL);
2128        if (!p)
2129                return -ENOMEM;
2130
2131        kvm_get_kvm(vcpu->kvm);
2132        p->vcpu = vcpu;
2133        file->private_data = p;
2134
2135        return nonseekable_open(inode, file);
2136}
2137
2138static int debugfs_timings_release(struct inode *inode, struct file *file)
2139{
2140        struct debugfs_timings_state *p = file->private_data;
2141
2142        kvm_put_kvm(p->vcpu->kvm);
2143        kfree(p);
2144        return 0;
2145}
2146
2147static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2148                                    size_t len, loff_t *ppos)
2149{
2150        struct debugfs_timings_state *p = file->private_data;
2151        struct kvm_vcpu *vcpu = p->vcpu;
2152        char *s, *buf_end;
2153        struct kvmhv_tb_accumulator tb;
2154        u64 count;
2155        loff_t pos;
2156        ssize_t n;
2157        int i, loops;
2158        bool ok;
2159
2160        if (!p->buflen) {
2161                s = p->buf;
2162                buf_end = s + sizeof(p->buf);
2163                for (i = 0; i < N_TIMINGS; ++i) {
2164                        struct kvmhv_tb_accumulator *acc;
2165
2166                        acc = (struct kvmhv_tb_accumulator *)
2167                                ((unsigned long)vcpu + timings[i].offset);
2168                        ok = false;
2169                        for (loops = 0; loops < 1000; ++loops) {
2170                                count = acc->seqcount;
2171                                if (!(count & 1)) {
2172                                        smp_rmb();
2173                                        tb = *acc;
2174                                        smp_rmb();
2175                                        if (count == acc->seqcount) {
2176                                                ok = true;
2177                                                break;
2178                                        }
2179                                }
2180                                udelay(1);
2181                        }
2182                        if (!ok)
2183                                snprintf(s, buf_end - s, "%s: stuck\n",
2184                                        timings[i].name);
2185                        else
2186                                snprintf(s, buf_end - s,
2187                                        "%s: %llu %llu %llu %llu\n",
2188                                        timings[i].name, count / 2,
2189                                        tb_to_ns(tb.tb_total),
2190                                        tb_to_ns(tb.tb_min),
2191                                        tb_to_ns(tb.tb_max));
2192                        s += strlen(s);
2193                }
2194                p->buflen = s - p->buf;
2195        }
2196
2197        pos = *ppos;
2198        if (pos >= p->buflen)
2199                return 0;
2200        if (len > p->buflen - pos)
2201                len = p->buflen - pos;
2202        n = copy_to_user(buf, p->buf + pos, len);
2203        if (n) {
2204                if (n == len)
2205                        return -EFAULT;
2206                len -= n;
2207        }
2208        *ppos = pos + len;
2209        return len;
2210}
2211
2212static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2213                                     size_t len, loff_t *ppos)
2214{
2215        return -EACCES;
2216}
2217
2218static const struct file_operations debugfs_timings_ops = {
2219        .owner   = THIS_MODULE,
2220        .open    = debugfs_timings_open,
2221        .release = debugfs_timings_release,
2222        .read    = debugfs_timings_read,
2223        .write   = debugfs_timings_write,
2224        .llseek  = generic_file_llseek,
2225};
2226
2227/* Create a debugfs directory for the vcpu */
2228static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2229{
2230        char buf[16];
2231        struct kvm *kvm = vcpu->kvm;
2232
2233        snprintf(buf, sizeof(buf), "vcpu%u", id);
2234        if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2235                return;
2236        vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2237        if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2238                return;
2239        vcpu->arch.debugfs_timings =
2240                debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2241                                    vcpu, &debugfs_timings_ops);
2242}
2243
2244#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2245static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2246{
2247}
2248#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2249
2250static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2251                                                   unsigned int id)
2252{
2253        struct kvm_vcpu *vcpu;
2254        int err;
2255        int core;
2256        struct kvmppc_vcore *vcore;
2257
2258        err = -ENOMEM;
2259        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2260        if (!vcpu)
2261                goto out;
2262
2263        err = kvm_vcpu_init(vcpu, kvm, id);
2264        if (err)
2265                goto free_vcpu;
2266
2267        vcpu->arch.shared = &vcpu->arch.shregs;
2268#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2269        /*
2270         * The shared struct is never shared on HV,
2271         * so we can always use host endianness
2272         */
2273#ifdef __BIG_ENDIAN__
2274        vcpu->arch.shared_big_endian = true;
2275#else
2276        vcpu->arch.shared_big_endian = false;
2277#endif
2278#endif
2279        vcpu->arch.mmcr[0] = MMCR0_FC;
2280        vcpu->arch.ctrl = CTRL_RUNLATCH;
2281        /* default to host PVR, since we can't spoof it */
2282        kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2283        spin_lock_init(&vcpu->arch.vpa_update_lock);
2284        spin_lock_init(&vcpu->arch.tbacct_lock);
2285        vcpu->arch.busy_preempt = TB_NIL;
2286        vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2287
2288        /*
2289         * Set the default HFSCR for the guest from the host value.
2290         * This value is only used on POWER9.
2291         * On POWER9, we want to virtualize the doorbell facility, so we
2292         * don't set the HFSCR_MSGP bit, and that causes those instructions
2293         * to trap and then we emulate them.
2294         */
2295        vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2296                HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2297        if (cpu_has_feature(CPU_FTR_HVMODE)) {
2298                vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2299                if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2300                        vcpu->arch.hfscr |= HFSCR_TM;
2301        }
2302        if (cpu_has_feature(CPU_FTR_TM_COMP))
2303                vcpu->arch.hfscr |= HFSCR_TM;
2304
2305        kvmppc_mmu_book3s_hv_init(vcpu);
2306
2307        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2308
2309        init_waitqueue_head(&vcpu->arch.cpu_run);
2310
2311        mutex_lock(&kvm->lock);
2312        vcore = NULL;
2313        err = -EINVAL;
2314        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2315                if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2316                        pr_devel("KVM: VCPU ID too high\n");
2317                        core = KVM_MAX_VCORES;
2318                } else {
2319                        BUG_ON(kvm->arch.smt_mode != 1);
2320                        core = kvmppc_pack_vcpu_id(kvm, id);
2321                }
2322        } else {
2323                core = id / kvm->arch.smt_mode;
2324        }
2325        if (core < KVM_MAX_VCORES) {
2326                vcore = kvm->arch.vcores[core];
2327                if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2328                        pr_devel("KVM: collision on id %u", id);
2329                        vcore = NULL;
2330                } else if (!vcore) {
2331                        /*
2332                         * Take mmu_setup_lock for mutual exclusion
2333                         * with kvmppc_update_lpcr().
2334                         */
2335                        err = -ENOMEM;
2336                        vcore = kvmppc_vcore_create(kvm,
2337                                        id & ~(kvm->arch.smt_mode - 1));
2338                        mutex_lock(&kvm->arch.mmu_setup_lock);
2339                        kvm->arch.vcores[core] = vcore;
2340                        kvm->arch.online_vcores++;
2341                        mutex_unlock(&kvm->arch.mmu_setup_lock);
2342                }
2343        }
2344        mutex_unlock(&kvm->lock);
2345
2346        if (!vcore)
2347                goto free_vcpu;
2348
2349        spin_lock(&vcore->lock);
2350        ++vcore->num_threads;
2351        spin_unlock(&vcore->lock);
2352        vcpu->arch.vcore = vcore;
2353        vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2354        vcpu->arch.thread_cpu = -1;
2355        vcpu->arch.prev_cpu = -1;
2356
2357        vcpu->arch.cpu_type = KVM_CPU_3S_64;
2358        kvmppc_sanity_check(vcpu);
2359
2360        debugfs_vcpu_init(vcpu, id);
2361
2362        return vcpu;
2363
2364free_vcpu:
2365        kmem_cache_free(kvm_vcpu_cache, vcpu);
2366out:
2367        return ERR_PTR(err);
2368}
2369
2370static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2371                              unsigned long flags)
2372{
2373        int err;
2374        int esmt = 0;
2375
2376        if (flags)
2377                return -EINVAL;
2378        if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2379                return -EINVAL;
2380        if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2381                /*
2382                 * On POWER8 (or POWER7), the threading mode is "strict",
2383                 * so we pack smt_mode vcpus per vcore.
2384                 */
2385                if (smt_mode > threads_per_subcore)
2386                        return -EINVAL;
2387        } else {
2388                /*
2389                 * On POWER9, the threading mode is "loose",
2390                 * so each vcpu gets its own vcore.
2391                 */
2392                esmt = smt_mode;
2393                smt_mode = 1;
2394        }
2395        mutex_lock(&kvm->lock);
2396        err = -EBUSY;
2397        if (!kvm->arch.online_vcores) {
2398                kvm->arch.smt_mode = smt_mode;
2399                kvm->arch.emul_smt_mode = esmt;
2400                err = 0;
2401        }
2402        mutex_unlock(&kvm->lock);
2403
2404        return err;
2405}
2406
2407static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2408{
2409        if (vpa->pinned_addr)
2410                kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2411                                        vpa->dirty);
2412}
2413
2414static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2415{
2416        spin_lock(&vcpu->arch.vpa_update_lock);
2417        unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2418        unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2419        unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2420        spin_unlock(&vcpu->arch.vpa_update_lock);
2421        kvm_vcpu_uninit(vcpu);
2422        kmem_cache_free(kvm_vcpu_cache, vcpu);
2423}
2424
2425static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2426{
2427        /* Indicate we want to get back into the guest */
2428        return 1;
2429}
2430
2431static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2432{
2433        unsigned long dec_nsec, now;
2434
2435        now = get_tb();
2436        if (now > vcpu->arch.dec_expires) {
2437                /* decrementer has already gone negative */
2438                kvmppc_core_queue_dec(vcpu);
2439                kvmppc_core_prepare_to_enter(vcpu);
2440                return;
2441        }
2442        dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2443        hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2444        vcpu->arch.timer_running = 1;
2445}
2446
2447static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2448{
2449        vcpu->arch.ceded = 0;
2450        if (vcpu->arch.timer_running) {
2451                hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2452                vcpu->arch.timer_running = 0;
2453        }
2454}
2455
2456extern int __kvmppc_vcore_entry(void);
2457
2458static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2459                                   struct kvm_vcpu *vcpu)
2460{
2461        u64 now;
2462
2463        if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2464                return;
2465        spin_lock_irq(&vcpu->arch.tbacct_lock);
2466        now = mftb();
2467        vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2468                vcpu->arch.stolen_logged;
2469        vcpu->arch.busy_preempt = now;
2470        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2471        spin_unlock_irq(&vcpu->arch.tbacct_lock);
2472        --vc->n_runnable;
2473        WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2474}
2475
2476static int kvmppc_grab_hwthread(int cpu)
2477{
2478        struct paca_struct *tpaca;
2479        long timeout = 10000;
2480
2481        tpaca = paca_ptrs[cpu];
2482
2483        /* Ensure the thread won't go into the kernel if it wakes */
2484        tpaca->kvm_hstate.kvm_vcpu = NULL;
2485        tpaca->kvm_hstate.kvm_vcore = NULL;
2486        tpaca->kvm_hstate.napping = 0;
2487        smp_wmb();
2488        tpaca->kvm_hstate.hwthread_req = 1;
2489
2490        /*
2491         * If the thread is already executing in the kernel (e.g. handling
2492         * a stray interrupt), wait for it to get back to nap mode.
2493         * The smp_mb() is to ensure that our setting of hwthread_req
2494         * is visible before we look at hwthread_state, so if this
2495         * races with the code at system_reset_pSeries and the thread
2496         * misses our setting of hwthread_req, we are sure to see its
2497         * setting of hwthread_state, and vice versa.
2498         */
2499        smp_mb();
2500        while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2501                if (--timeout <= 0) {
2502                        pr_err("KVM: couldn't grab cpu %d\n", cpu);
2503                        return -EBUSY;
2504                }
2505                udelay(1);
2506        }
2507        return 0;
2508}
2509
2510static void kvmppc_release_hwthread(int cpu)
2511{
2512        struct paca_struct *tpaca;
2513
2514        tpaca = paca_ptrs[cpu];
2515        tpaca->kvm_hstate.hwthread_req = 0;
2516        tpaca->kvm_hstate.kvm_vcpu = NULL;
2517        tpaca->kvm_hstate.kvm_vcore = NULL;
2518        tpaca->kvm_hstate.kvm_split_mode = NULL;
2519}
2520
2521static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2522{
2523        struct kvm_nested_guest *nested = vcpu->arch.nested;
2524        cpumask_t *cpu_in_guest;
2525        int i;
2526
2527        cpu = cpu_first_thread_sibling(cpu);
2528        if (nested) {
2529                cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2530                cpu_in_guest = &nested->cpu_in_guest;
2531        } else {
2532                cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2533                cpu_in_guest = &kvm->arch.cpu_in_guest;
2534        }
2535        /*
2536         * Make sure setting of bit in need_tlb_flush precedes
2537         * testing of cpu_in_guest bits.  The matching barrier on
2538         * the other side is the first smp_mb() in kvmppc_run_core().
2539         */
2540        smp_mb();
2541        for (i = 0; i < threads_per_core; ++i)
2542                if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2543                        smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2544}
2545
2546static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2547{
2548        struct kvm_nested_guest *nested = vcpu->arch.nested;
2549        struct kvm *kvm = vcpu->kvm;
2550        int prev_cpu;
2551
2552        if (!cpu_has_feature(CPU_FTR_HVMODE))
2553                return;
2554
2555        if (nested)
2556                prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2557        else
2558                prev_cpu = vcpu->arch.prev_cpu;
2559
2560        /*
2561         * With radix, the guest can do TLB invalidations itself,
2562         * and it could choose to use the local form (tlbiel) if
2563         * it is invalidating a translation that has only ever been
2564         * used on one vcpu.  However, that doesn't mean it has
2565         * only ever been used on one physical cpu, since vcpus
2566         * can move around between pcpus.  To cope with this, when
2567         * a vcpu moves from one pcpu to another, we need to tell
2568         * any vcpus running on the same core as this vcpu previously
2569         * ran to flush the TLB.  The TLB is shared between threads,
2570         * so we use a single bit in .need_tlb_flush for all 4 threads.
2571         */
2572        if (prev_cpu != pcpu) {
2573                if (prev_cpu >= 0 &&
2574                    cpu_first_thread_sibling(prev_cpu) !=
2575                    cpu_first_thread_sibling(pcpu))
2576                        radix_flush_cpu(kvm, prev_cpu, vcpu);
2577                if (nested)
2578                        nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2579                else
2580                        vcpu->arch.prev_cpu = pcpu;
2581        }
2582}
2583
2584static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2585{
2586        int cpu;
2587        struct paca_struct *tpaca;
2588        struct kvm *kvm = vc->kvm;
2589
2590        cpu = vc->pcpu;
2591        if (vcpu) {
2592                if (vcpu->arch.timer_running) {
2593                        hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2594                        vcpu->arch.timer_running = 0;
2595                }
2596                cpu += vcpu->arch.ptid;
2597                vcpu->cpu = vc->pcpu;
2598                vcpu->arch.thread_cpu = cpu;
2599                cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2600        }
2601        tpaca = paca_ptrs[cpu];
2602        tpaca->kvm_hstate.kvm_vcpu = vcpu;
2603        tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2604        tpaca->kvm_hstate.fake_suspend = 0;
2605        /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2606        smp_wmb();
2607        tpaca->kvm_hstate.kvm_vcore = vc;
2608        if (cpu != smp_processor_id())
2609                kvmppc_ipi_thread(cpu);
2610}
2611
2612static void kvmppc_wait_for_nap(int n_threads)
2613{
2614        int cpu = smp_processor_id();
2615        int i, loops;
2616
2617        if (n_threads <= 1)
2618                return;
2619        for (loops = 0; loops < 1000000; ++loops) {
2620                /*
2621                 * Check if all threads are finished.
2622                 * We set the vcore pointer when starting a thread
2623                 * and the thread clears it when finished, so we look
2624                 * for any threads that still have a non-NULL vcore ptr.
2625                 */
2626                for (i = 1; i < n_threads; ++i)
2627                        if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2628                                break;
2629                if (i == n_threads) {
2630                        HMT_medium();
2631                        return;
2632                }
2633                HMT_low();
2634        }
2635        HMT_medium();
2636        for (i = 1; i < n_threads; ++i)
2637                if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2638                        pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2639}
2640
2641/*
2642 * Check that we are on thread 0 and that any other threads in
2643 * this core are off-line.  Then grab the threads so they can't
2644 * enter the kernel.
2645 */
2646static int on_primary_thread(void)
2647{
2648        int cpu = smp_processor_id();
2649        int thr;
2650
2651        /* Are we on a primary subcore? */
2652        if (cpu_thread_in_subcore(cpu))
2653                return 0;
2654
2655        thr = 0;
2656        while (++thr < threads_per_subcore)
2657                if (cpu_online(cpu + thr))
2658                        return 0;
2659
2660        /* Grab all hw threads so they can't go into the kernel */
2661        for (thr = 1; thr < threads_per_subcore; ++thr) {
2662                if (kvmppc_grab_hwthread(cpu + thr)) {
2663                        /* Couldn't grab one; let the others go */
2664                        do {
2665                                kvmppc_release_hwthread(cpu + thr);
2666                        } while (--thr > 0);
2667                        return 0;
2668                }
2669        }
2670        return 1;
2671}
2672
2673/*
2674 * A list of virtual cores for each physical CPU.
2675 * These are vcores that could run but their runner VCPU tasks are
2676 * (or may be) preempted.
2677 */
2678struct preempted_vcore_list {
2679        struct list_head        list;
2680        spinlock_t              lock;
2681};
2682
2683static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2684
2685static void init_vcore_lists(void)
2686{
2687        int cpu;
2688
2689        for_each_possible_cpu(cpu) {
2690                struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2691                spin_lock_init(&lp->lock);
2692                INIT_LIST_HEAD(&lp->list);
2693        }
2694}
2695
2696static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2697{
2698        struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2699
2700        vc->vcore_state = VCORE_PREEMPT;
2701        vc->pcpu = smp_processor_id();
2702        if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2703                spin_lock(&lp->lock);
2704                list_add_tail(&vc->preempt_list, &lp->list);
2705                spin_unlock(&lp->lock);
2706        }
2707
2708        /* Start accumulating stolen time */
2709        kvmppc_core_start_stolen(vc);
2710}
2711
2712static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2713{
2714        struct preempted_vcore_list *lp;
2715
2716        kvmppc_core_end_stolen(vc);
2717        if (!list_empty(&vc->preempt_list)) {
2718                lp = &per_cpu(preempted_vcores, vc->pcpu);
2719                spin_lock(&lp->lock);
2720                list_del_init(&vc->preempt_list);
2721                spin_unlock(&lp->lock);
2722        }
2723        vc->vcore_state = VCORE_INACTIVE;
2724}
2725
2726/*
2727 * This stores information about the virtual cores currently
2728 * assigned to a physical core.
2729 */
2730struct core_info {
2731        int             n_subcores;
2732        int             max_subcore_threads;
2733        int             total_threads;
2734        int             subcore_threads[MAX_SUBCORES];
2735        struct kvmppc_vcore *vc[MAX_SUBCORES];
2736};
2737
2738/*
2739 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2740 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2741 */
2742static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2743
2744static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2745{
2746        memset(cip, 0, sizeof(*cip));
2747        cip->n_subcores = 1;
2748        cip->max_subcore_threads = vc->num_threads;
2749        cip->total_threads = vc->num_threads;
2750        cip->subcore_threads[0] = vc->num_threads;
2751        cip->vc[0] = vc;
2752}
2753
2754static bool subcore_config_ok(int n_subcores, int n_threads)
2755{
2756        /*
2757         * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2758         * split-core mode, with one thread per subcore.
2759         */
2760        if (cpu_has_feature(CPU_FTR_ARCH_300))
2761                return n_subcores <= 4 && n_threads == 1;
2762
2763        /* On POWER8, can only dynamically split if unsplit to begin with */
2764        if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2765                return false;
2766        if (n_subcores > MAX_SUBCORES)
2767                return false;
2768        if (n_subcores > 1) {
2769                if (!(dynamic_mt_modes & 2))
2770                        n_subcores = 4;
2771                if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2772                        return false;
2773        }
2774
2775        return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2776}
2777
2778static void init_vcore_to_run(struct kvmppc_vcore *vc)
2779{
2780        vc->entry_exit_map = 0;
2781        vc->in_guest = 0;
2782        vc->napping_threads = 0;
2783        vc->conferring_threads = 0;
2784        vc->tb_offset_applied = 0;
2785}
2786
2787static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2788{
2789        int n_threads = vc->num_threads;
2790        int sub;
2791
2792        if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2793                return false;
2794
2795        /* In one_vm_per_core mode, require all vcores to be from the same vm */
2796        if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2797                return false;
2798
2799        /* Some POWER9 chips require all threads to be in the same MMU mode */
2800        if (no_mixing_hpt_and_radix &&
2801            kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2802                return false;
2803
2804        if (n_threads < cip->max_subcore_threads)
2805                n_threads = cip->max_subcore_threads;
2806        if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2807                return false;
2808        cip->max_subcore_threads = n_threads;
2809
2810        sub = cip->n_subcores;
2811        ++cip->n_subcores;
2812        cip->total_threads += vc->num_threads;
2813        cip->subcore_threads[sub] = vc->num_threads;
2814        cip->vc[sub] = vc;
2815        init_vcore_to_run(vc);
2816        list_del_init(&vc->preempt_list);
2817
2818        return true;
2819}
2820
2821/*
2822 * Work out whether it is possible to piggyback the execution of
2823 * vcore *pvc onto the execution of the other vcores described in *cip.
2824 */
2825static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2826                          int target_threads)
2827{
2828        if (cip->total_threads + pvc->num_threads > target_threads)
2829                return false;
2830
2831        return can_dynamic_split(pvc, cip);
2832}
2833
2834static void prepare_threads(struct kvmppc_vcore *vc)
2835{
2836        int i;
2837        struct kvm_vcpu *vcpu;
2838
2839        for_each_runnable_thread(i, vcpu, vc) {
2840                if (signal_pending(vcpu->arch.run_task))
2841                        vcpu->arch.ret = -EINTR;
2842                else if (vcpu->arch.vpa.update_pending ||
2843                         vcpu->arch.slb_shadow.update_pending ||
2844                         vcpu->arch.dtl.update_pending)
2845                        vcpu->arch.ret = RESUME_GUEST;
2846                else
2847                        continue;
2848                kvmppc_remove_runnable(vc, vcpu);
2849                wake_up(&vcpu->arch.cpu_run);
2850        }
2851}
2852
2853static void collect_piggybacks(struct core_info *cip, int target_threads)
2854{
2855        struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2856        struct kvmppc_vcore *pvc, *vcnext;
2857
2858        spin_lock(&lp->lock);
2859        list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2860                if (!spin_trylock(&pvc->lock))
2861                        continue;
2862                prepare_threads(pvc);
2863                if (!pvc->n_runnable) {
2864                        list_del_init(&pvc->preempt_list);
2865                        if (pvc->runner == NULL) {
2866                                pvc->vcore_state = VCORE_INACTIVE;
2867                                kvmppc_core_end_stolen(pvc);
2868                        }
2869                        spin_unlock(&pvc->lock);
2870                        continue;
2871                }
2872                if (!can_piggyback(pvc, cip, target_threads)) {
2873                        spin_unlock(&pvc->lock);
2874                        continue;
2875                }
2876                kvmppc_core_end_stolen(pvc);
2877                pvc->vcore_state = VCORE_PIGGYBACK;
2878                if (cip->total_threads >= target_threads)
2879                        break;
2880        }
2881        spin_unlock(&lp->lock);
2882}
2883
2884static bool recheck_signals(struct core_info *cip)
2885{
2886        int sub, i;
2887        struct kvm_vcpu *vcpu;
2888
2889        for (sub = 0; sub < cip->n_subcores; ++sub)
2890                for_each_runnable_thread(i, vcpu, cip->vc[sub])
2891                        if (signal_pending(vcpu->arch.run_task))
2892                                return true;
2893        return false;
2894}
2895
2896static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2897{
2898        int still_running = 0, i;
2899        u64 now;
2900        long ret;
2901        struct kvm_vcpu *vcpu;
2902
2903        spin_lock(&vc->lock);
2904        now = get_tb();
2905        for_each_runnable_thread(i, vcpu, vc) {
2906                /*
2907                 * It's safe to unlock the vcore in the loop here, because
2908                 * for_each_runnable_thread() is safe against removal of
2909                 * the vcpu, and the vcore state is VCORE_EXITING here,
2910                 * so any vcpus becoming runnable will have their arch.trap
2911                 * set to zero and can't actually run in the guest.
2912                 */
2913                spin_unlock(&vc->lock);
2914                /* cancel pending dec exception if dec is positive */
2915                if (now < vcpu->arch.dec_expires &&
2916                    kvmppc_core_pending_dec(vcpu))
2917                        kvmppc_core_dequeue_dec(vcpu);
2918
2919                trace_kvm_guest_exit(vcpu);
2920
2921                ret = RESUME_GUEST;
2922                if (vcpu->arch.trap)
2923                        ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2924                                                    vcpu->arch.run_task);
2925
2926                vcpu->arch.ret = ret;
2927                vcpu->arch.trap = 0;
2928
2929                spin_lock(&vc->lock);
2930                if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2931                        if (vcpu->arch.pending_exceptions)
2932                                kvmppc_core_prepare_to_enter(vcpu);
2933                        if (vcpu->arch.ceded)
2934                                kvmppc_set_timer(vcpu);
2935                        else
2936                                ++still_running;
2937                } else {
2938                        kvmppc_remove_runnable(vc, vcpu);
2939                        wake_up(&vcpu->arch.cpu_run);
2940                }
2941        }
2942        if (!is_master) {
2943                if (still_running > 0) {
2944                        kvmppc_vcore_preempt(vc);
2945                } else if (vc->runner) {
2946                        vc->vcore_state = VCORE_PREEMPT;
2947                        kvmppc_core_start_stolen(vc);
2948                } else {
2949                        vc->vcore_state = VCORE_INACTIVE;
2950                }
2951                if (vc->n_runnable > 0 && vc->runner == NULL) {
2952                        /* make sure there's a candidate runner awake */
2953                        i = -1;
2954                        vcpu = next_runnable_thread(vc, &i);
2955                        wake_up(&vcpu->arch.cpu_run);
2956                }
2957        }
2958        spin_unlock(&vc->lock);
2959}
2960
2961/*
2962 * Clear core from the list of active host cores as we are about to
2963 * enter the guest. Only do this if it is the primary thread of the
2964 * core (not if a subcore) that is entering the guest.
2965 */
2966static inline int kvmppc_clear_host_core(unsigned int cpu)
2967{
2968        int core;
2969
2970        if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2971                return 0;
2972        /*
2973         * Memory barrier can be omitted here as we will do a smp_wmb()
2974         * later in kvmppc_start_thread and we need ensure that state is
2975         * visible to other CPUs only after we enter guest.
2976         */
2977        core = cpu >> threads_shift;
2978        kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2979        return 0;
2980}
2981
2982/*
2983 * Advertise this core as an active host core since we exited the guest
2984 * Only need to do this if it is the primary thread of the core that is
2985 * exiting.
2986 */
2987static inline int kvmppc_set_host_core(unsigned int cpu)
2988{
2989        int core;
2990
2991        if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2992                return 0;
2993
2994        /*
2995         * Memory barrier can be omitted here because we do a spin_unlock
2996         * immediately after this which provides the memory barrier.
2997         */
2998        core = cpu >> threads_shift;
2999        kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3000        return 0;
3001}
3002
3003static void set_irq_happened(int trap)
3004{
3005        switch (trap) {
3006        case BOOK3S_INTERRUPT_EXTERNAL:
3007                local_paca->irq_happened |= PACA_IRQ_EE;
3008                break;
3009        case BOOK3S_INTERRUPT_H_DOORBELL:
3010                local_paca->irq_happened |= PACA_IRQ_DBELL;
3011                break;
3012        case BOOK3S_INTERRUPT_HMI:
3013                local_paca->irq_happened |= PACA_IRQ_HMI;
3014                break;
3015        case BOOK3S_INTERRUPT_SYSTEM_RESET:
3016                replay_system_reset();
3017                break;
3018        }
3019}
3020
3021/*
3022 * Run a set of guest threads on a physical core.
3023 * Called with vc->lock held.
3024 */
3025static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3026{
3027        struct kvm_vcpu *vcpu;
3028        int i;
3029        int srcu_idx;
3030        struct core_info core_info;
3031        struct kvmppc_vcore *pvc;
3032        struct kvm_split_mode split_info, *sip;
3033        int split, subcore_size, active;
3034        int sub;
3035        bool thr0_done;
3036        unsigned long cmd_bit, stat_bit;
3037        int pcpu, thr;
3038        int target_threads;
3039        int controlled_threads;
3040        int trap;
3041        bool is_power8;
3042        bool hpt_on_radix;
3043
3044        /*
3045         * Remove from the list any threads that have a signal pending
3046         * or need a VPA update done
3047         */
3048        prepare_threads(vc);
3049
3050        /* if the runner is no longer runnable, let the caller pick a new one */
3051        if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3052                return;
3053
3054        /*
3055         * Initialize *vc.
3056         */
3057        init_vcore_to_run(vc);
3058        vc->preempt_tb = TB_NIL;
3059
3060        /*
3061         * Number of threads that we will be controlling: the same as
3062         * the number of threads per subcore, except on POWER9,
3063         * where it's 1 because the threads are (mostly) independent.
3064         */
3065        controlled_threads = threads_per_vcore(vc->kvm);
3066
3067        /*
3068         * Make sure we are running on primary threads, and that secondary
3069         * threads are offline.  Also check if the number of threads in this
3070         * guest are greater than the current system threads per guest.
3071         * On POWER9, we need to be not in independent-threads mode if
3072         * this is a HPT guest on a radix host machine where the
3073         * CPU threads may not be in different MMU modes.
3074         */
3075        hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3076                !kvm_is_radix(vc->kvm);
3077        if (((controlled_threads > 1) &&
3078             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3079            (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3080                for_each_runnable_thread(i, vcpu, vc) {
3081                        vcpu->arch.ret = -EBUSY;
3082                        kvmppc_remove_runnable(vc, vcpu);
3083                        wake_up(&vcpu->arch.cpu_run);
3084                }
3085                goto out;
3086        }
3087
3088        /*
3089         * See if we could run any other vcores on the physical core
3090         * along with this one.
3091         */
3092        init_core_info(&core_info, vc);
3093        pcpu = smp_processor_id();
3094        target_threads = controlled_threads;
3095        if (target_smt_mode && target_smt_mode < target_threads)
3096                target_threads = target_smt_mode;
3097        if (vc->num_threads < target_threads)
3098                collect_piggybacks(&core_info, target_threads);
3099
3100        /*
3101         * On radix, arrange for TLB flushing if necessary.
3102         * This has to be done before disabling interrupts since
3103         * it uses smp_call_function().
3104         */
3105        pcpu = smp_processor_id();
3106        if (kvm_is_radix(vc->kvm)) {
3107                for (sub = 0; sub < core_info.n_subcores; ++sub)
3108                        for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3109                                kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3110        }
3111
3112        /*
3113         * Hard-disable interrupts, and check resched flag and signals.
3114         * If we need to reschedule or deliver a signal, clean up
3115         * and return without going into the guest(s).
3116         * If the mmu_ready flag has been cleared, don't go into the
3117         * guest because that means a HPT resize operation is in progress.
3118         */
3119        local_irq_disable();
3120        hard_irq_disable();
3121        if (lazy_irq_pending() || need_resched() ||
3122            recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
3123                local_irq_enable();
3124                vc->vcore_state = VCORE_INACTIVE;
3125                /* Unlock all except the primary vcore */
3126                for (sub = 1; sub < core_info.n_subcores; ++sub) {
3127                        pvc = core_info.vc[sub];
3128                        /* Put back on to the preempted vcores list */
3129                        kvmppc_vcore_preempt(pvc);
3130                        spin_unlock(&pvc->lock);
3131                }
3132                for (i = 0; i < controlled_threads; ++i)
3133                        kvmppc_release_hwthread(pcpu + i);
3134                return;
3135        }
3136
3137        kvmppc_clear_host_core(pcpu);
3138
3139        /* Decide on micro-threading (split-core) mode */
3140        subcore_size = threads_per_subcore;
3141        cmd_bit = stat_bit = 0;
3142        split = core_info.n_subcores;
3143        sip = NULL;
3144        is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3145                && !cpu_has_feature(CPU_FTR_ARCH_300);
3146
3147        if (split > 1 || hpt_on_radix) {
3148                sip = &split_info;
3149                memset(&split_info, 0, sizeof(split_info));
3150                for (sub = 0; sub < core_info.n_subcores; ++sub)
3151                        split_info.vc[sub] = core_info.vc[sub];
3152
3153                if (is_power8) {
3154                        if (split == 2 && (dynamic_mt_modes & 2)) {
3155                                cmd_bit = HID0_POWER8_1TO2LPAR;
3156                                stat_bit = HID0_POWER8_2LPARMODE;
3157                        } else {
3158                                split = 4;
3159                                cmd_bit = HID0_POWER8_1TO4LPAR;
3160                                stat_bit = HID0_POWER8_4LPARMODE;
3161                        }
3162                        subcore_size = MAX_SMT_THREADS / split;
3163                        split_info.rpr = mfspr(SPRN_RPR);
3164                        split_info.pmmar = mfspr(SPRN_PMMAR);
3165                        split_info.ldbar = mfspr(SPRN_LDBAR);
3166                        split_info.subcore_size = subcore_size;
3167                } else {
3168                        split_info.subcore_size = 1;
3169                        if (hpt_on_radix) {
3170                                /* Use the split_info for LPCR/LPIDR changes */
3171                                split_info.lpcr_req = vc->lpcr;
3172                                split_info.lpidr_req = vc->kvm->arch.lpid;
3173                                split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3174                                split_info.do_set = 1;
3175                        }
3176                }
3177
3178                /* order writes to split_info before kvm_split_mode pointer */
3179                smp_wmb();
3180        }
3181
3182        for (thr = 0; thr < controlled_threads; ++thr) {
3183                struct paca_struct *paca = paca_ptrs[pcpu + thr];
3184
3185                paca->kvm_hstate.tid = thr;
3186                paca->kvm_hstate.napping = 0;
3187                paca->kvm_hstate.kvm_split_mode = sip;
3188        }
3189
3190        /* Initiate micro-threading (split-core) on POWER8 if required */
3191        if (cmd_bit) {
3192                unsigned long hid0 = mfspr(SPRN_HID0);
3193
3194                hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3195                mb();
3196                mtspr(SPRN_HID0, hid0);
3197                isync();
3198                for (;;) {
3199                        hid0 = mfspr(SPRN_HID0);
3200                        if (hid0 & stat_bit)
3201                                break;
3202                        cpu_relax();
3203                }
3204        }
3205
3206        /*
3207         * On POWER8, set RWMR register.
3208         * Since it only affects PURR and SPURR, it doesn't affect
3209         * the host, so we don't save/restore the host value.
3210         */
3211        if (is_power8) {
3212                unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3213                int n_online = atomic_read(&vc->online_count);
3214
3215                /*
3216                 * Use the 8-thread value if we're doing split-core
3217                 * or if the vcore's online count looks bogus.
3218                 */
3219                if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3220                    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3221                        rwmr_val = p8_rwmr_values[n_online];
3222                mtspr(SPRN_RWMR, rwmr_val);
3223        }
3224
3225        /* Start all the threads */
3226        active = 0;
3227        for (sub = 0; sub < core_info.n_subcores; ++sub) {
3228                thr = is_power8 ? subcore_thread_map[sub] : sub;
3229                thr0_done = false;
3230                active |= 1 << thr;
3231                pvc = core_info.vc[sub];
3232                pvc->pcpu = pcpu + thr;
3233                for_each_runnable_thread(i, vcpu, pvc) {
3234                        kvmppc_start_thread(vcpu, pvc);
3235                        kvmppc_create_dtl_entry(vcpu, pvc);
3236                        trace_kvm_guest_enter(vcpu);
3237                        if (!vcpu->arch.ptid)
3238                                thr0_done = true;
3239                        active |= 1 << (thr + vcpu->arch.ptid);
3240                }
3241                /*
3242                 * We need to start the first thread of each subcore
3243                 * even if it doesn't have a vcpu.
3244                 */
3245                if (!thr0_done)
3246                        kvmppc_start_thread(NULL, pvc);
3247        }
3248
3249        /*
3250         * Ensure that split_info.do_nap is set after setting
3251         * the vcore pointer in the PACA of the secondaries.
3252         */
3253        smp_mb();
3254
3255        /*
3256         * When doing micro-threading, poke the inactive threads as well.
3257         * This gets them to the nap instruction after kvm_do_nap,
3258         * which reduces the time taken to unsplit later.
3259         * For POWER9 HPT guest on radix host, we need all the secondary
3260         * threads woken up so they can do the LPCR/LPIDR change.
3261         */
3262        if (cmd_bit || hpt_on_radix) {
3263                split_info.do_nap = 1;  /* ask secondaries to nap when done */
3264                for (thr = 1; thr < threads_per_subcore; ++thr)
3265                        if (!(active & (1 << thr)))
3266                                kvmppc_ipi_thread(pcpu + thr);
3267        }
3268
3269        vc->vcore_state = VCORE_RUNNING;
3270        preempt_disable();
3271
3272        trace_kvmppc_run_core(vc, 0);
3273
3274        for (sub = 0; sub < core_info.n_subcores; ++sub)
3275                spin_unlock(&core_info.vc[sub]->lock);
3276
3277        guest_enter_irqoff();
3278
3279        srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3280
3281        this_cpu_disable_ftrace();
3282
3283        /*
3284         * Interrupts will be enabled once we get into the guest,
3285         * so tell lockdep that we're about to enable interrupts.
3286         */
3287        trace_hardirqs_on();
3288
3289        trap = __kvmppc_vcore_entry();
3290
3291        trace_hardirqs_off();
3292
3293        this_cpu_enable_ftrace();
3294
3295        srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3296
3297        set_irq_happened(trap);
3298
3299        spin_lock(&vc->lock);
3300        /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3301        vc->vcore_state = VCORE_EXITING;
3302
3303        /* wait for secondary threads to finish writing their state to memory */
3304        kvmppc_wait_for_nap(controlled_threads);
3305
3306        /* Return to whole-core mode if we split the core earlier */
3307        if (cmd_bit) {
3308                unsigned long hid0 = mfspr(SPRN_HID0);
3309                unsigned long loops = 0;
3310
3311                hid0 &= ~HID0_POWER8_DYNLPARDIS;
3312                stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3313                mb();
3314                mtspr(SPRN_HID0, hid0);
3315                isync();
3316                for (;;) {
3317                        hid0 = mfspr(SPRN_HID0);
3318                        if (!(hid0 & stat_bit))
3319                                break;
3320                        cpu_relax();
3321                        ++loops;
3322                }
3323        } else if (hpt_on_radix) {
3324                /* Wait for all threads to have seen final sync */
3325                for (thr = 1; thr < controlled_threads; ++thr) {
3326                        struct paca_struct *paca = paca_ptrs[pcpu + thr];
3327
3328                        while (paca->kvm_hstate.kvm_split_mode) {
3329                                HMT_low();
3330                                barrier();
3331                        }
3332                        HMT_medium();
3333                }
3334        }
3335        split_info.do_nap = 0;
3336
3337        kvmppc_set_host_core(pcpu);
3338
3339        local_irq_enable();
3340        guest_exit();
3341
3342        /* Let secondaries go back to the offline loop */
3343        for (i = 0; i < controlled_threads; ++i) {
3344                kvmppc_release_hwthread(pcpu + i);
3345                if (sip && sip->napped[i])
3346                        kvmppc_ipi_thread(pcpu + i);
3347                cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3348        }
3349
3350        spin_unlock(&vc->lock);
3351
3352        /* make sure updates to secondary vcpu structs are visible now */
3353        smp_mb();
3354
3355        preempt_enable();
3356
3357        for (sub = 0; sub < core_info.n_subcores; ++sub) {
3358                pvc = core_info.vc[sub];
3359                post_guest_process(pvc, pvc == vc);
3360        }
3361
3362        spin_lock(&vc->lock);
3363
3364 out:
3365        vc->vcore_state = VCORE_INACTIVE;
3366        trace_kvmppc_run_core(vc, 1);
3367}
3368
3369/*
3370 * Load up hypervisor-mode registers on P9.
3371 */
3372static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3373                                     unsigned long lpcr)
3374{
3375        struct kvmppc_vcore *vc = vcpu->arch.vcore;
3376        s64 hdec;
3377        u64 tb, purr, spurr;
3378        int trap;
3379        unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3380        unsigned long host_ciabr = mfspr(SPRN_CIABR);
3381        unsigned long host_dawr = mfspr(SPRN_DAWR);
3382        unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3383        unsigned long host_psscr = mfspr(SPRN_PSSCR);
3384        unsigned long host_pidr = mfspr(SPRN_PID);
3385
3386        hdec = time_limit - mftb();
3387        if (hdec < 0)
3388                return BOOK3S_INTERRUPT_HV_DECREMENTER;
3389        mtspr(SPRN_HDEC, hdec);
3390
3391        if (vc->tb_offset) {
3392                u64 new_tb = mftb() + vc->tb_offset;
3393                mtspr(SPRN_TBU40, new_tb);
3394                tb = mftb();
3395                if ((tb & 0xffffff) < (new_tb & 0xffffff))
3396                        mtspr(SPRN_TBU40, new_tb + 0x1000000);
3397                vc->tb_offset_applied = vc->tb_offset;
3398        }
3399
3400        if (vc->pcr)
3401                mtspr(SPRN_PCR, vc->pcr);
3402        mtspr(SPRN_DPDES, vc->dpdes);
3403        mtspr(SPRN_VTB, vc->vtb);
3404
3405        local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3406        local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3407        mtspr(SPRN_PURR, vcpu->arch.purr);
3408        mtspr(SPRN_SPURR, vcpu->arch.spurr);
3409
3410        if (dawr_enabled()) {
3411                mtspr(SPRN_DAWR, vcpu->arch.dawr);
3412                mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3413        }
3414        mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3415        mtspr(SPRN_IC, vcpu->arch.ic);
3416        mtspr(SPRN_PID, vcpu->arch.pid);
3417
3418        mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3419              (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3420
3421        mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3422
3423        mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3424        mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3425        mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3426        mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3427
3428        mtspr(SPRN_AMOR, ~0UL);
3429
3430        mtspr(SPRN_LPCR, lpcr);
3431        isync();
3432
3433        kvmppc_xive_push_vcpu(vcpu);
3434
3435        mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3436        mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3437
3438        trap = __kvmhv_vcpu_entry_p9(vcpu);
3439
3440        /* Advance host PURR/SPURR by the amount used by guest */
3441        purr = mfspr(SPRN_PURR);
3442        spurr = mfspr(SPRN_SPURR);
3443        mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3444              purr - vcpu->arch.purr);
3445        mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3446              spurr - vcpu->arch.spurr);
3447        vcpu->arch.purr = purr;
3448        vcpu->arch.spurr = spurr;
3449
3450        vcpu->arch.ic = mfspr(SPRN_IC);
3451        vcpu->arch.pid = mfspr(SPRN_PID);
3452        vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3453
3454        vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3455        vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3456        vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3457        vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3458
3459        /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3460        mtspr(SPRN_PSSCR, host_psscr |
3461              (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3462        mtspr(SPRN_HFSCR, host_hfscr);
3463        mtspr(SPRN_CIABR, host_ciabr);
3464        mtspr(SPRN_DAWR, host_dawr);
3465        mtspr(SPRN_DAWRX, host_dawrx);
3466        mtspr(SPRN_PID, host_pidr);
3467
3468        /*
3469         * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3470         * case we interrupted the guest between a tlbie and a ptesync.
3471         */
3472        asm volatile("eieio; tlbsync; ptesync");
3473
3474        mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3475        isync();
3476
3477        vc->dpdes = mfspr(SPRN_DPDES);
3478        vc->vtb = mfspr(SPRN_VTB);
3479        mtspr(SPRN_DPDES, 0);
3480        if (vc->pcr)
3481                mtspr(SPRN_PCR, 0);
3482
3483        if (vc->tb_offset_applied) {
3484                u64 new_tb = mftb() - vc->tb_offset_applied;
3485                mtspr(SPRN_TBU40, new_tb);
3486                tb = mftb();
3487                if ((tb & 0xffffff) < (new_tb & 0xffffff))
3488                        mtspr(SPRN_TBU40, new_tb + 0x1000000);
3489                vc->tb_offset_applied = 0;
3490        }
3491
3492        mtspr(SPRN_HDEC, 0x7fffffff);
3493        mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3494
3495        return trap;
3496}
3497
3498/*
3499 * Virtual-mode guest entry for POWER9 and later when the host and
3500 * guest are both using the radix MMU.  The LPIDR has already been set.
3501 */
3502int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3503                         unsigned long lpcr)
3504{
3505        struct kvmppc_vcore *vc = vcpu->arch.vcore;
3506        unsigned long host_dscr = mfspr(SPRN_DSCR);
3507        unsigned long host_tidr = mfspr(SPRN_TIDR);
3508        unsigned long host_iamr = mfspr(SPRN_IAMR);
3509        unsigned long host_amr = mfspr(SPRN_AMR);
3510        s64 dec;
3511        u64 tb;
3512        int trap, save_pmu;
3513
3514        dec = mfspr(SPRN_DEC);
3515        tb = mftb();
3516        if (dec < 512)
3517                return BOOK3S_INTERRUPT_HV_DECREMENTER;
3518        local_paca->kvm_hstate.dec_expires = dec + tb;
3519        if (local_paca->kvm_hstate.dec_expires < time_limit)
3520                time_limit = local_paca->kvm_hstate.dec_expires;
3521
3522        vcpu->arch.ceded = 0;
3523
3524        kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3525
3526        kvmppc_subcore_enter_guest();
3527
3528        vc->entry_exit_map = 1;
3529        vc->in_guest = 1;
3530
3531        if (vcpu->arch.vpa.pinned_addr) {
3532                struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3533                u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3534                lp->yield_count = cpu_to_be32(yield_count);
3535                vcpu->arch.vpa.dirty = 1;
3536        }
3537
3538        if (cpu_has_feature(CPU_FTR_TM) ||
3539            cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3540                kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3541
3542        kvmhv_load_guest_pmu(vcpu);
3543
3544        msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3545        load_fp_state(&vcpu->arch.fp);
3546#ifdef CONFIG_ALTIVEC
3547        load_vr_state(&vcpu->arch.vr);
3548#endif
3549        mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3550
3551        mtspr(SPRN_DSCR, vcpu->arch.dscr);
3552        mtspr(SPRN_IAMR, vcpu->arch.iamr);
3553        mtspr(SPRN_PSPB, vcpu->arch.pspb);
3554        mtspr(SPRN_FSCR, vcpu->arch.fscr);
3555        mtspr(SPRN_TAR, vcpu->arch.tar);
3556        mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3557        mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3558        mtspr(SPRN_BESCR, vcpu->arch.bescr);
3559        mtspr(SPRN_WORT, vcpu->arch.wort);
3560        mtspr(SPRN_TIDR, vcpu->arch.tid);
3561        mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3562        mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3563        mtspr(SPRN_AMR, vcpu->arch.amr);
3564        mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3565
3566        if (!(vcpu->arch.ctrl & 1))
3567                mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3568
3569        mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3570
3571        if (kvmhv_on_pseries()) {
3572                /*
3573                 * We need to save and restore the guest visible part of the
3574                 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3575                 * doesn't do this for us. Note only required if pseries since
3576                 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3577                 */
3578                unsigned long host_psscr;
3579                /* call our hypervisor to load up HV regs and go */
3580                struct hv_guest_state hvregs;
3581
3582                host_psscr = mfspr(SPRN_PSSCR_PR);
3583                mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3584                kvmhv_save_hv_regs(vcpu, &hvregs);
3585                hvregs.lpcr = lpcr;
3586                vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3587                hvregs.version = HV_GUEST_STATE_VERSION;
3588                if (vcpu->arch.nested) {
3589                        hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3590                        hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3591                } else {
3592                        hvregs.lpid = vcpu->kvm->arch.lpid;
3593                        hvregs.vcpu_token = vcpu->vcpu_id;
3594                }
3595                hvregs.hdec_expiry = time_limit;
3596                trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3597                                          __pa(&vcpu->arch.regs));
3598                kvmhv_restore_hv_return_state(vcpu, &hvregs);
3599                vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3600                vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3601                vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3602                vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3603                mtspr(SPRN_PSSCR_PR, host_psscr);
3604
3605                /* H_CEDE has to be handled now, not later */
3606                if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3607                    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3608                        kvmppc_nested_cede(vcpu);
3609                        trap = 0;
3610                }
3611        } else {
3612                trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3613        }
3614
3615        vcpu->arch.slb_max = 0;
3616        dec = mfspr(SPRN_DEC);
3617        if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3618                dec = (s32) dec;
3619        tb = mftb();
3620        vcpu->arch.dec_expires = dec + tb;
3621        vcpu->cpu = -1;
3622        vcpu->arch.thread_cpu = -1;
3623        vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3624
3625        vcpu->arch.iamr = mfspr(SPRN_IAMR);
3626        vcpu->arch.pspb = mfspr(SPRN_PSPB);
3627        vcpu->arch.fscr = mfspr(SPRN_FSCR);
3628        vcpu->arch.tar = mfspr(SPRN_TAR);
3629        vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3630        vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3631        vcpu->arch.bescr = mfspr(SPRN_BESCR);
3632        vcpu->arch.wort = mfspr(SPRN_WORT);
3633        vcpu->arch.tid = mfspr(SPRN_TIDR);
3634        vcpu->arch.amr = mfspr(SPRN_AMR);
3635        vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3636        vcpu->arch.dscr = mfspr(SPRN_DSCR);
3637
3638        mtspr(SPRN_PSPB, 0);
3639        mtspr(SPRN_WORT, 0);
3640        mtspr(SPRN_UAMOR, 0);
3641        mtspr(SPRN_DSCR, host_dscr);
3642        mtspr(SPRN_TIDR, host_tidr);
3643        mtspr(SPRN_IAMR, host_iamr);
3644        mtspr(SPRN_PSPB, 0);
3645
3646        if (host_amr != vcpu->arch.amr)
3647                mtspr(SPRN_AMR, host_amr);
3648
3649        msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3650        store_fp_state(&vcpu->arch.fp);
3651#ifdef CONFIG_ALTIVEC
3652        store_vr_state(&vcpu->arch.vr);
3653#endif
3654        vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3655
3656        if (cpu_has_feature(CPU_FTR_TM) ||
3657            cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3658                kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3659
3660        save_pmu = 1;
3661        if (vcpu->arch.vpa.pinned_addr) {
3662                struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3663                u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3664                lp->yield_count = cpu_to_be32(yield_count);
3665                vcpu->arch.vpa.dirty = 1;
3666                save_pmu = lp->pmcregs_in_use;
3667        }
3668        /* Must save pmu if this guest is capable of running nested guests */
3669        save_pmu |= nesting_enabled(vcpu->kvm);
3670
3671        kvmhv_save_guest_pmu(vcpu, save_pmu);
3672
3673        vc->entry_exit_map = 0x101;
3674        vc->in_guest = 0;
3675
3676        mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3677        mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3678
3679        kvmhv_load_host_pmu();
3680
3681        kvmppc_subcore_exit_guest();
3682
3683        return trap;
3684}
3685
3686/*
3687 * Wait for some other vcpu thread to execute us, and
3688 * wake us up when we need to handle something in the host.
3689 */
3690static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3691                                 struct kvm_vcpu *vcpu, int wait_state)
3692{
3693        DEFINE_WAIT(wait);
3694
3695        prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3696        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3697                spin_unlock(&vc->lock);
3698                schedule();
3699                spin_lock(&vc->lock);
3700        }
3701        finish_wait(&vcpu->arch.cpu_run, &wait);
3702}
3703
3704static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3705{
3706        if (!halt_poll_ns_grow)
3707                return;
3708
3709        vc->halt_poll_ns *= halt_poll_ns_grow;
3710        if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3711                vc->halt_poll_ns = halt_poll_ns_grow_start;
3712}
3713
3714static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3715{
3716        if (halt_poll_ns_shrink == 0)
3717                vc->halt_poll_ns = 0;
3718        else
3719                vc->halt_poll_ns /= halt_poll_ns_shrink;
3720}
3721
3722#ifdef CONFIG_KVM_XICS
3723static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3724{
3725        if (!xics_on_xive())
3726                return false;
3727        return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3728                vcpu->arch.xive_saved_state.cppr;
3729}
3730#else
3731static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3732{
3733        return false;
3734}
3735#endif /* CONFIG_KVM_XICS */
3736
3737static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3738{
3739        if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3740            kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3741                return true;
3742
3743        return false;
3744}
3745
3746/*
3747 * Check to see if any of the runnable vcpus on the vcore have pending
3748 * exceptions or are no longer ceded
3749 */
3750static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3751{
3752        struct kvm_vcpu *vcpu;
3753        int i;
3754
3755        for_each_runnable_thread(i, vcpu, vc) {
3756                if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3757                        return 1;
3758        }
3759
3760        return 0;
3761}
3762
3763/*
3764 * All the vcpus in this vcore are idle, so wait for a decrementer
3765 * or external interrupt to one of the vcpus.  vc->lock is held.
3766 */
3767static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3768{
3769        ktime_t cur, start_poll, start_wait;
3770        int do_sleep = 1;
3771        u64 block_ns;
3772        DECLARE_SWAITQUEUE(wait);
3773
3774        /* Poll for pending exceptions and ceded state */
3775        cur = start_poll = ktime_get();
3776        if (vc->halt_poll_ns) {
3777                ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3778                ++vc->runner->stat.halt_attempted_poll;
3779
3780                vc->vcore_state = VCORE_POLLING;
3781                spin_unlock(&vc->lock);
3782
3783                do {
3784                        if (kvmppc_vcore_check_block(vc)) {
3785                                do_sleep = 0;
3786                                break;
3787                        }
3788                        cur = ktime_get();
3789                } while (single_task_running() && ktime_before(cur, stop));
3790
3791                spin_lock(&vc->lock);
3792                vc->vcore_state = VCORE_INACTIVE;
3793
3794                if (!do_sleep) {
3795                        ++vc->runner->stat.halt_successful_poll;
3796                        goto out;
3797                }
3798        }
3799
3800        prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3801
3802        if (kvmppc_vcore_check_block(vc)) {
3803                finish_swait(&vc->wq, &wait);
3804                do_sleep = 0;
3805                /* If we polled, count this as a successful poll */
3806                if (vc->halt_poll_ns)
3807                        ++vc->runner->stat.halt_successful_poll;
3808                goto out;
3809        }
3810
3811        start_wait = ktime_get();
3812
3813        vc->vcore_state = VCORE_SLEEPING;
3814        trace_kvmppc_vcore_blocked(vc, 0);
3815        spin_unlock(&vc->lock);
3816        schedule();
3817        finish_swait(&vc->wq, &wait);
3818        spin_lock(&vc->lock);
3819        vc->vcore_state = VCORE_INACTIVE;
3820        trace_kvmppc_vcore_blocked(vc, 1);
3821        ++vc->runner->stat.halt_successful_wait;
3822
3823        cur = ktime_get();
3824
3825out:
3826        block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3827
3828        /* Attribute wait time */
3829        if (do_sleep) {
3830                vc->runner->stat.halt_wait_ns +=
3831                        ktime_to_ns(cur) - ktime_to_ns(start_wait);
3832                /* Attribute failed poll time */
3833                if (vc->halt_poll_ns)
3834                        vc->runner->stat.halt_poll_fail_ns +=
3835                                ktime_to_ns(start_wait) -
3836                                ktime_to_ns(start_poll);
3837        } else {
3838                /* Attribute successful poll time */
3839                if (vc->halt_poll_ns)
3840                        vc->runner->stat.halt_poll_success_ns +=
3841                                ktime_to_ns(cur) -
3842                                ktime_to_ns(start_poll);
3843        }
3844
3845        /* Adjust poll time */
3846        if (halt_poll_ns) {
3847                if (block_ns <= vc->halt_poll_ns)
3848                        ;
3849                /* We slept and blocked for longer than the max halt time */
3850                else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3851                        shrink_halt_poll_ns(vc);
3852                /* We slept and our poll time is too small */
3853                else if (vc->halt_poll_ns < halt_poll_ns &&
3854                                block_ns < halt_poll_ns)
3855                        grow_halt_poll_ns(vc);
3856                if (vc->halt_poll_ns > halt_poll_ns)
3857                        vc->halt_poll_ns = halt_poll_ns;
3858        } else
3859                vc->halt_poll_ns = 0;
3860
3861        trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3862}
3863
3864/*
3865 * This never fails for a radix guest, as none of the operations it does
3866 * for a radix guest can fail or have a way to report failure.
3867 * kvmhv_run_single_vcpu() relies on this fact.
3868 */
3869static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3870{
3871        int r = 0;
3872        struct kvm *kvm = vcpu->kvm;
3873
3874        mutex_lock(&kvm->arch.mmu_setup_lock);
3875        if (!kvm->arch.mmu_ready) {
3876                if (!kvm_is_radix(kvm))
3877                        r = kvmppc_hv_setup_htab_rma(vcpu);
3878                if (!r) {
3879                        if (cpu_has_feature(CPU_FTR_ARCH_300))
3880                                kvmppc_setup_partition_table(kvm);
3881                        kvm->arch.mmu_ready = 1;
3882                }
3883        }
3884        mutex_unlock(&kvm->arch.mmu_setup_lock);
3885        return r;
3886}
3887
3888static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3889{
3890        int n_ceded, i, r;
3891        struct kvmppc_vcore *vc;
3892        struct kvm_vcpu *v;
3893
3894        trace_kvmppc_run_vcpu_enter(vcpu);
3895
3896        kvm_run->exit_reason = 0;
3897        vcpu->arch.ret = RESUME_GUEST;
3898        vcpu->arch.trap = 0;
3899        kvmppc_update_vpas(vcpu);
3900
3901        /*
3902         * Synchronize with other threads in this virtual core
3903         */
3904        vc = vcpu->arch.vcore;
3905        spin_lock(&vc->lock);
3906        vcpu->arch.ceded = 0;
3907        vcpu->arch.run_task = current;
3908        vcpu->arch.kvm_run = kvm_run;
3909        vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3910        vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3911        vcpu->arch.busy_preempt = TB_NIL;
3912        WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3913        ++vc->n_runnable;
3914
3915        /*
3916         * This happens the first time this is called for a vcpu.
3917         * If the vcore is already running, we may be able to start
3918         * this thread straight away and have it join in.
3919         */
3920        if (!signal_pending(current)) {
3921                if ((vc->vcore_state == VCORE_PIGGYBACK ||
3922                     vc->vcore_state == VCORE_RUNNING) &&
3923                           !VCORE_IS_EXITING(vc)) {
3924                        kvmppc_create_dtl_entry(vcpu, vc);
3925                        kvmppc_start_thread(vcpu, vc);
3926                        trace_kvm_guest_enter(vcpu);
3927                } else if (vc->vcore_state == VCORE_SLEEPING) {
3928                        swake_up_one(&vc->wq);
3929                }
3930
3931        }
3932
3933        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3934               !signal_pending(current)) {
3935                /* See if the MMU is ready to go */
3936                if (!vcpu->kvm->arch.mmu_ready) {
3937                        spin_unlock(&vc->lock);
3938                        r = kvmhv_setup_mmu(vcpu);
3939                        spin_lock(&vc->lock);
3940                        if (r) {
3941                                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3942                                kvm_run->fail_entry.
3943                                        hardware_entry_failure_reason = 0;
3944                                vcpu->arch.ret = r;
3945                                break;
3946                        }
3947                }
3948
3949                if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3950                        kvmppc_vcore_end_preempt(vc);
3951
3952                if (vc->vcore_state != VCORE_INACTIVE) {
3953                        kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3954                        continue;
3955                }
3956                for_each_runnable_thread(i, v, vc) {
3957                        kvmppc_core_prepare_to_enter(v);
3958                        if (signal_pending(v->arch.run_task)) {
3959                                kvmppc_remove_runnable(vc, v);
3960                                v->stat.signal_exits++;
3961                                v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3962                                v->arch.ret = -EINTR;
3963                                wake_up(&v->arch.cpu_run);
3964                        }
3965                }
3966                if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3967                        break;
3968                n_ceded = 0;
3969                for_each_runnable_thread(i, v, vc) {
3970                        if (!kvmppc_vcpu_woken(v))
3971                                n_ceded += v->arch.ceded;
3972                        else
3973                                v->arch.ceded = 0;
3974                }
3975                vc->runner = vcpu;
3976                if (n_ceded == vc->n_runnable) {
3977                        kvmppc_vcore_blocked(vc);
3978                } else if (need_resched()) {
3979                        kvmppc_vcore_preempt(vc);
3980                        /* Let something else run */
3981                        cond_resched_lock(&vc->lock);
3982                        if (vc->vcore_state == VCORE_PREEMPT)
3983                                kvmppc_vcore_end_preempt(vc);
3984                } else {
3985                        kvmppc_run_core(vc);
3986                }
3987                vc->runner = NULL;
3988        }
3989
3990        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3991               (vc->vcore_state == VCORE_RUNNING ||
3992                vc->vcore_state == VCORE_EXITING ||
3993                vc->vcore_state == VCORE_PIGGYBACK))
3994                kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3995
3996        if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3997                kvmppc_vcore_end_preempt(vc);
3998
3999        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4000                kvmppc_remove_runnable(vc, vcpu);
4001                vcpu->stat.signal_exits++;
4002                kvm_run->exit_reason = KVM_EXIT_INTR;
4003                vcpu->arch.ret = -EINTR;
4004        }
4005
4006        if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4007                /* Wake up some vcpu to run the core */
4008                i = -1;
4009                v = next_runnable_thread(vc, &i);
4010                wake_up(&v->arch.cpu_run);
4011        }
4012
4013        trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4014        spin_unlock(&vc->lock);
4015        return vcpu->arch.ret;
4016}
4017
4018int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4019                          struct kvm_vcpu *vcpu, u64 time_limit,
4020                          unsigned long lpcr)
4021{
4022        int trap, r, pcpu;
4023        int srcu_idx, lpid;
4024        struct kvmppc_vcore *vc;
4025        struct kvm *kvm = vcpu->kvm;
4026        struct kvm_nested_guest *nested = vcpu->arch.nested;
4027
4028        trace_kvmppc_run_vcpu_enter(vcpu);
4029
4030        kvm_run->exit_reason = 0;
4031        vcpu->arch.ret = RESUME_GUEST;
4032        vcpu->arch.trap = 0;
4033
4034        vc = vcpu->arch.vcore;
4035        vcpu->arch.ceded = 0;
4036        vcpu->arch.run_task = current;
4037        vcpu->arch.kvm_run = kvm_run;
4038        vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4039        vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4040        vcpu->arch.busy_preempt = TB_NIL;
4041        vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4042        vc->runnable_threads[0] = vcpu;
4043        vc->n_runnable = 1;
4044        vc->runner = vcpu;
4045
4046        /* See if the MMU is ready to go */
4047        if (!kvm->arch.mmu_ready)
4048                kvmhv_setup_mmu(vcpu);
4049
4050        if (need_resched())
4051                cond_resched();
4052
4053        kvmppc_update_vpas(vcpu);
4054
4055        init_vcore_to_run(vc);
4056        vc->preempt_tb = TB_NIL;
4057
4058        preempt_disable();
4059        pcpu = smp_processor_id();
4060        vc->pcpu = pcpu;
4061        kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4062
4063        local_irq_disable();
4064        hard_irq_disable();
4065        if (signal_pending(current))
4066                goto sigpend;
4067        if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4068                goto out;
4069
4070        if (!nested) {
4071                kvmppc_core_prepare_to_enter(vcpu);
4072                if (vcpu->arch.doorbell_request) {
4073                        vc->dpdes = 1;
4074                        smp_wmb();
4075                        vcpu->arch.doorbell_request = 0;
4076                }
4077                if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4078                             &vcpu->arch.pending_exceptions))
4079                        lpcr |= LPCR_MER;
4080        } else if (vcpu->arch.pending_exceptions ||
4081                   vcpu->arch.doorbell_request ||
4082                   xive_interrupt_pending(vcpu)) {
4083                vcpu->arch.ret = RESUME_HOST;
4084                goto out;
4085        }
4086
4087        kvmppc_clear_host_core(pcpu);
4088
4089        local_paca->kvm_hstate.tid = 0;
4090        local_paca->kvm_hstate.napping = 0;
4091        local_paca->kvm_hstate.kvm_split_mode = NULL;
4092        kvmppc_start_thread(vcpu, vc);
4093        kvmppc_create_dtl_entry(vcpu, vc);
4094        trace_kvm_guest_enter(vcpu);
4095
4096        vc->vcore_state = VCORE_RUNNING;
4097        trace_kvmppc_run_core(vc, 0);
4098
4099        if (cpu_has_feature(CPU_FTR_HVMODE)) {
4100                lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4101                mtspr(SPRN_LPID, lpid);
4102                isync();
4103                kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4104        }
4105
4106        guest_enter_irqoff();
4107
4108        srcu_idx = srcu_read_lock(&kvm->srcu);
4109
4110        this_cpu_disable_ftrace();
4111
4112        /* Tell lockdep that we're about to enable interrupts */
4113        trace_hardirqs_on();
4114
4115        trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4116        vcpu->arch.trap = trap;
4117
4118        trace_hardirqs_off();
4119
4120        this_cpu_enable_ftrace();
4121
4122        srcu_read_unlock(&kvm->srcu, srcu_idx);
4123
4124        if (cpu_has_feature(CPU_FTR_HVMODE)) {
4125                mtspr(SPRN_LPID, kvm->arch.host_lpid);
4126                isync();
4127        }
4128
4129        set_irq_happened(trap);
4130
4131        kvmppc_set_host_core(pcpu);
4132
4133        local_irq_enable();
4134        guest_exit();
4135
4136        cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4137
4138        preempt_enable();
4139
4140        /*
4141         * cancel pending decrementer exception if DEC is now positive, or if
4142         * entering a nested guest in which case the decrementer is now owned
4143         * by L2 and the L1 decrementer is provided in hdec_expires
4144         */
4145        if (kvmppc_core_pending_dec(vcpu) &&
4146                        ((get_tb() < vcpu->arch.dec_expires) ||
4147                         (trap == BOOK3S_INTERRUPT_SYSCALL &&
4148                          kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4149                kvmppc_core_dequeue_dec(vcpu);
4150
4151        trace_kvm_guest_exit(vcpu);
4152        r = RESUME_GUEST;
4153        if (trap) {
4154                if (!nested)
4155                        r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4156                else
4157                        r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4158        }
4159        vcpu->arch.ret = r;
4160
4161        if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4162            !kvmppc_vcpu_woken(vcpu)) {
4163                kvmppc_set_timer(vcpu);
4164                while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4165                        if (signal_pending(current)) {
4166                                vcpu->stat.signal_exits++;
4167                                kvm_run->exit_reason = KVM_EXIT_INTR;
4168                                vcpu->arch.ret = -EINTR;
4169                                break;
4170                        }
4171                        spin_lock(&vc->lock);
4172                        kvmppc_vcore_blocked(vc);
4173                        spin_unlock(&vc->lock);
4174                }
4175        }
4176        vcpu->arch.ceded = 0;
4177
4178        vc->vcore_state = VCORE_INACTIVE;
4179        trace_kvmppc_run_core(vc, 1);
4180
4181 done:
4182        kvmppc_remove_runnable(vc, vcpu);
4183        trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4184
4185        return vcpu->arch.ret;
4186
4187 sigpend:
4188        vcpu->stat.signal_exits++;
4189        kvm_run->exit_reason = KVM_EXIT_INTR;
4190        vcpu->arch.ret = -EINTR;
4191 out:
4192        local_irq_enable();
4193        preempt_enable();
4194        goto done;
4195}
4196
4197static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4198{
4199        int r;
4200        int srcu_idx;
4201        unsigned long ebb_regs[3] = {}; /* shut up GCC */
4202        unsigned long user_tar = 0;
4203        unsigned int user_vrsave;
4204        struct kvm *kvm;
4205
4206        if (!vcpu->arch.sane) {
4207                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4208                return -EINVAL;
4209        }
4210
4211        /*
4212         * Don't allow entry with a suspended transaction, because
4213         * the guest entry/exit code will lose it.
4214         * If the guest has TM enabled, save away their TM-related SPRs
4215         * (they will get restored by the TM unavailable interrupt).
4216         */
4217#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4218        if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4219            (current->thread.regs->msr & MSR_TM)) {
4220                if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4221                        run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4222                        run->fail_entry.hardware_entry_failure_reason = 0;
4223                        return -EINVAL;
4224                }
4225                /* Enable TM so we can read the TM SPRs */
4226                mtmsr(mfmsr() | MSR_TM);
4227                current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4228                current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4229                current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4230                current->thread.regs->msr &= ~MSR_TM;
4231        }
4232#endif
4233
4234        /*
4235         * Force online to 1 for the sake of old userspace which doesn't
4236         * set it.
4237         */
4238        if (!vcpu->arch.online) {
4239                atomic_inc(&vcpu->arch.vcore->online_count);
4240                vcpu->arch.online = 1;
4241        }
4242
4243        kvmppc_core_prepare_to_enter(vcpu);
4244
4245        /* No need to go into the guest when all we'll do is come back out */
4246        if (signal_pending(current)) {
4247                run->exit_reason = KVM_EXIT_INTR;
4248                return -EINTR;
4249        }
4250
4251        kvm = vcpu->kvm;
4252        atomic_inc(&kvm->arch.vcpus_running);
4253        /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4254        smp_mb();
4255
4256        flush_all_to_thread(current);
4257
4258        /* Save userspace EBB and other register values */
4259        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4260                ebb_regs[0] = mfspr(SPRN_EBBHR);
4261                ebb_regs[1] = mfspr(SPRN_EBBRR);
4262                ebb_regs[2] = mfspr(SPRN_BESCR);
4263                user_tar = mfspr(SPRN_TAR);
4264        }
4265        user_vrsave = mfspr(SPRN_VRSAVE);
4266
4267        vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4268        vcpu->arch.pgdir = current->mm->pgd;
4269        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4270
4271        do {
4272                /*
4273                 * The early POWER9 chips that can't mix radix and HPT threads
4274                 * on the same core also need the workaround for the problem
4275                 * where the TLB would prefetch entries in the guest exit path
4276                 * for radix guests using the guest PIDR value and LPID 0.
4277                 * The workaround is in the old path (kvmppc_run_vcpu())
4278                 * but not the new path (kvmhv_run_single_vcpu()).
4279                 */
4280                if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4281                    !no_mixing_hpt_and_radix)
4282                        r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4283                                                  vcpu->arch.vcore->lpcr);
4284                else
4285                        r = kvmppc_run_vcpu(run, vcpu);
4286
4287                if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4288                    !(vcpu->arch.shregs.msr & MSR_PR)) {
4289                        trace_kvm_hcall_enter(vcpu);
4290                        r = kvmppc_pseries_do_hcall(vcpu);
4291                        trace_kvm_hcall_exit(vcpu, r);
4292                        kvmppc_core_prepare_to_enter(vcpu);
4293                } else if (r == RESUME_PAGE_FAULT) {
4294                        srcu_idx = srcu_read_lock(&kvm->srcu);
4295                        r = kvmppc_book3s_hv_page_fault(run, vcpu,
4296                                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4297                        srcu_read_unlock(&kvm->srcu, srcu_idx);
4298                } else if (r == RESUME_PASSTHROUGH) {
4299                        if (WARN_ON(xics_on_xive()))
4300                                r = H_SUCCESS;
4301                        else
4302                                r = kvmppc_xics_rm_complete(vcpu, 0);
4303                }
4304        } while (is_kvmppc_resume_guest(r));
4305
4306        /* Restore userspace EBB and other register values */
4307        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4308                mtspr(SPRN_EBBHR, ebb_regs[0]);
4309                mtspr(SPRN_EBBRR, ebb_regs[1]);
4310                mtspr(SPRN_BESCR, ebb_regs[2]);
4311                mtspr(SPRN_TAR, user_tar);
4312                mtspr(SPRN_FSCR, current->thread.fscr);
4313        }
4314        mtspr(SPRN_VRSAVE, user_vrsave);
4315
4316        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4317        atomic_dec(&kvm->arch.vcpus_running);
4318        return r;
4319}
4320
4321static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4322                                     int shift, int sllp)
4323{
4324        (*sps)->page_shift = shift;
4325        (*sps)->slb_enc = sllp;
4326        (*sps)->enc[0].page_shift = shift;
4327        (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4328        /*
4329         * Add 16MB MPSS support (may get filtered out by userspace)
4330         */
4331        if (shift != 24) {
4332                int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4333                if (penc != -1) {
4334                        (*sps)->enc[1].page_shift = 24;
4335                        (*sps)->enc[1].pte_enc = penc;
4336                }
4337        }
4338        (*sps)++;
4339}
4340
4341static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4342                                         struct kvm_ppc_smmu_info *info)
4343{
4344        struct kvm_ppc_one_seg_page_size *sps;
4345
4346        /*
4347         * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4348         * POWER7 doesn't support keys for instruction accesses,
4349         * POWER8 and POWER9 do.
4350         */
4351        info->data_keys = 32;
4352        info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4353
4354        /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4355        info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4356        info->slb_size = 32;
4357
4358        /* We only support these sizes for now, and no muti-size segments */
4359        sps = &info->sps[0];
4360        kvmppc_add_seg_page_size(&sps, 12, 0);
4361        kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4362        kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4363
4364        /* If running as a nested hypervisor, we don't support HPT guests */
4365        if (kvmhv_on_pseries())
4366                info->flags |= KVM_PPC_NO_HASH;
4367
4368        return 0;
4369}
4370
4371/*
4372 * Get (and clear) the dirty memory log for a memory slot.
4373 */
4374static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4375                                         struct kvm_dirty_log *log)
4376{
4377        struct kvm_memslots *slots;
4378        struct kvm_memory_slot *memslot;
4379        int i, r;
4380        unsigned long n;
4381        unsigned long *buf, *p;
4382        struct kvm_vcpu *vcpu;
4383
4384        mutex_lock(&kvm->slots_lock);
4385
4386        r = -EINVAL;
4387        if (log->slot >= KVM_USER_MEM_SLOTS)
4388                goto out;
4389
4390        slots = kvm_memslots(kvm);
4391        memslot = id_to_memslot(slots, log->slot);
4392        r = -ENOENT;
4393        if (!memslot->dirty_bitmap)
4394                goto out;
4395
4396        /*
4397         * Use second half of bitmap area because both HPT and radix
4398         * accumulate bits in the first half.
4399         */
4400        n = kvm_dirty_bitmap_bytes(memslot);
4401        buf = memslot->dirty_bitmap + n / sizeof(long);
4402        memset(buf, 0, n);
4403
4404        if (kvm_is_radix(kvm))
4405                r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4406        else
4407                r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4408        if (r)
4409                goto out;
4410
4411        /*
4412         * We accumulate dirty bits in the first half of the
4413         * memslot's dirty_bitmap area, for when pages are paged
4414         * out or modified by the host directly.  Pick up these
4415         * bits and add them to the map.
4416         */
4417        p = memslot->dirty_bitmap;
4418        for (i = 0; i < n / sizeof(long); ++i)
4419                buf[i] |= xchg(&p[i], 0);
4420
4421        /* Harvest dirty bits from VPA and DTL updates */
4422        /* Note: we never modify the SLB shadow buffer areas */
4423        kvm_for_each_vcpu(i, vcpu, kvm) {
4424                spin_lock(&vcpu->arch.vpa_update_lock);
4425                kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4426                kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4427                spin_unlock(&vcpu->arch.vpa_update_lock);
4428        }
4429
4430        r = -EFAULT;
4431        if (copy_to_user(log->dirty_bitmap, buf, n))
4432                goto out;
4433
4434        r = 0;
4435out:
4436        mutex_unlock(&kvm->slots_lock);
4437        return r;
4438}
4439
4440static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4441                                        struct kvm_memory_slot *dont)
4442{
4443        if (!dont || free->arch.rmap != dont->arch.rmap) {
4444                vfree(free->arch.rmap);
4445                free->arch.rmap = NULL;
4446        }
4447}
4448
4449static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4450                                         unsigned long npages)
4451{
4452        slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4453        if (!slot->arch.rmap)
4454                return -ENOMEM;
4455
4456        return 0;
4457}
4458
4459static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4460                                        struct kvm_memory_slot *memslot,
4461                                        const struct kvm_userspace_memory_region *mem)
4462{
4463        return 0;
4464}
4465
4466static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4467                                const struct kvm_userspace_memory_region *mem,
4468                                const struct kvm_memory_slot *old,
4469                                const struct kvm_memory_slot *new,
4470                                enum kvm_mr_change change)
4471{
4472        unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4473
4474        /*
4475         * If we are making a new memslot, it might make
4476         * some address that was previously cached as emulated
4477         * MMIO be no longer emulated MMIO, so invalidate
4478         * all the caches of emulated MMIO translations.
4479         */
4480        if (npages)
4481                atomic64_inc(&kvm->arch.mmio_update);
4482
4483        /*
4484         * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4485         * have already called kvm_arch_flush_shadow_memslot() to
4486         * flush shadow mappings.  For KVM_MR_CREATE we have no
4487         * previous mappings.  So the only case to handle is
4488         * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4489         * has been changed.
4490         * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4491         * to get rid of any THP PTEs in the partition-scoped page tables
4492         * so we can track dirtiness at the page level; we flush when
4493         * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4494         * using THP PTEs.
4495         */
4496        if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4497            ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4498                kvmppc_radix_flush_memslot(kvm, old);
4499}
4500
4501/*
4502 * Update LPCR values in kvm->arch and in vcores.
4503 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4504 * of kvm->arch.lpcr update).
4505 */
4506void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4507{
4508        long int i;
4509        u32 cores_done = 0;
4510
4511        if ((kvm->arch.lpcr & mask) == lpcr)
4512                return;
4513
4514        kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4515
4516        for (i = 0; i < KVM_MAX_VCORES; ++i) {
4517                struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4518                if (!vc)
4519                        continue;
4520                spin_lock(&vc->lock);
4521                vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4522                spin_unlock(&vc->lock);
4523                if (++cores_done >= kvm->arch.online_vcores)
4524                        break;
4525        }
4526}
4527
4528static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4529{
4530        return;
4531}
4532
4533void kvmppc_setup_partition_table(struct kvm *kvm)
4534{
4535        unsigned long dw0, dw1;
4536
4537        if (!kvm_is_radix(kvm)) {
4538                /* PS field - page size for VRMA */
4539                dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4540                        ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4541                /* HTABSIZE and HTABORG fields */
4542                dw0 |= kvm->arch.sdr1;
4543
4544                /* Second dword as set by userspace */
4545                dw1 = kvm->arch.process_table;
4546        } else {
4547                dw0 = PATB_HR | radix__get_tree_size() |
4548                        __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4549                dw1 = PATB_GR | kvm->arch.process_table;
4550        }
4551        kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4552}
4553
4554/*
4555 * Set up HPT (hashed page table) and RMA (real-mode area).
4556 * Must be called with kvm->arch.mmu_setup_lock held.
4557 */
4558static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4559{
4560        int err = 0;
4561        struct kvm *kvm = vcpu->kvm;
4562        unsigned long hva;
4563        struct kvm_memory_slot *memslot;
4564        struct vm_area_struct *vma;
4565        unsigned long lpcr = 0, senc;
4566        unsigned long psize, porder;
4567        int srcu_idx;
4568
4569        /* Allocate hashed page table (if not done already) and reset it */
4570        if (!kvm->arch.hpt.virt) {
4571                int order = KVM_DEFAULT_HPT_ORDER;
4572                struct kvm_hpt_info info;
4573
4574                err = kvmppc_allocate_hpt(&info, order);
4575                /* If we get here, it means userspace didn't specify a
4576                 * size explicitly.  So, try successively smaller
4577                 * sizes if the default failed. */
4578                while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4579                        err  = kvmppc_allocate_hpt(&info, order);
4580
4581                if (err < 0) {
4582                        pr_err("KVM: Couldn't alloc HPT\n");
4583                        goto out;
4584                }
4585
4586                kvmppc_set_hpt(kvm, &info);
4587        }
4588
4589        /* Look up the memslot for guest physical address 0 */
4590        srcu_idx = srcu_read_lock(&kvm->srcu);
4591        memslot = gfn_to_memslot(kvm, 0);
4592
4593        /* We must have some memory at 0 by now */
4594        err = -EINVAL;
4595        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4596                goto out_srcu;
4597
4598        /* Look up the VMA for the start of this memory slot */
4599        hva = memslot->userspace_addr;
4600        down_read(&current->mm->mmap_sem);
4601        vma = find_vma(current->mm, hva);
4602        if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4603                goto up_out;
4604
4605        psize = vma_kernel_pagesize(vma);
4606
4607        up_read(&current->mm->mmap_sem);
4608
4609        /* We can handle 4k, 64k or 16M pages in the VRMA */
4610        if (psize >= 0x1000000)
4611                psize = 0x1000000;
4612        else if (psize >= 0x10000)
4613                psize = 0x10000;
4614        else
4615                psize = 0x1000;
4616        porder = __ilog2(psize);
4617
4618        senc = slb_pgsize_encoding(psize);
4619        kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4620                (VRMA_VSID << SLB_VSID_SHIFT_1T);
4621        /* Create HPTEs in the hash page table for the VRMA */
4622        kvmppc_map_vrma(vcpu, memslot, porder);
4623
4624        /* Update VRMASD field in the LPCR */
4625        if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4626                /* the -4 is to account for senc values starting at 0x10 */
4627                lpcr = senc << (LPCR_VRMASD_SH - 4);
4628                kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4629        }
4630
4631        /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4632        smp_wmb();
4633        err = 0;
4634 out_srcu:
4635        srcu_read_unlock(&kvm->srcu, srcu_idx);
4636 out:
4637        return err;
4638
4639 up_out:
4640        up_read(&current->mm->mmap_sem);
4641        goto out_srcu;
4642}
4643
4644/*
4645 * Must be called with kvm->arch.mmu_setup_lock held and
4646 * mmu_ready = 0 and no vcpus running.
4647 */
4648int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4649{
4650        if (nesting_enabled(kvm))
4651                kvmhv_release_all_nested(kvm);
4652        kvmppc_rmap_reset(kvm);
4653        kvm->arch.process_table = 0;
4654        /* Mutual exclusion with kvm_unmap_hva_range etc. */
4655        spin_lock(&kvm->mmu_lock);
4656        kvm->arch.radix = 0;
4657        spin_unlock(&kvm->mmu_lock);
4658        kvmppc_free_radix(kvm);
4659        kvmppc_update_lpcr(kvm, LPCR_VPM1,
4660                           LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4661        return 0;
4662}
4663
4664/*
4665 * Must be called with kvm->arch.mmu_setup_lock held and
4666 * mmu_ready = 0 and no vcpus running.
4667 */
4668int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4669{
4670        int err;
4671
4672        err = kvmppc_init_vm_radix(kvm);
4673        if (err)
4674                return err;
4675        kvmppc_rmap_reset(kvm);
4676        /* Mutual exclusion with kvm_unmap_hva_range etc. */
4677        spin_lock(&kvm->mmu_lock);
4678        kvm->arch.radix = 1;
4679        spin_unlock(&kvm->mmu_lock);
4680        kvmppc_free_hpt(&kvm->arch.hpt);
4681        kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4682                           LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4683        return 0;
4684}
4685
4686#ifdef CONFIG_KVM_XICS
4687/*
4688 * Allocate a per-core structure for managing state about which cores are
4689 * running in the host versus the guest and for exchanging data between
4690 * real mode KVM and CPU running in the host.
4691 * This is only done for the first VM.
4692 * The allocated structure stays even if all VMs have stopped.
4693 * It is only freed when the kvm-hv module is unloaded.
4694 * It's OK for this routine to fail, we just don't support host
4695 * core operations like redirecting H_IPI wakeups.
4696 */
4697void kvmppc_alloc_host_rm_ops(void)
4698{
4699        struct kvmppc_host_rm_ops *ops;
4700        unsigned long l_ops;
4701        int cpu, core;
4702        int size;
4703
4704        /* Not the first time here ? */
4705        if (kvmppc_host_rm_ops_hv != NULL)
4706                return;
4707
4708        ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4709        if (!ops)
4710                return;
4711
4712        size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4713        ops->rm_core = kzalloc(size, GFP_KERNEL);
4714
4715        if (!ops->rm_core) {
4716                kfree(ops);
4717                return;
4718        }
4719
4720        cpus_read_lock();
4721
4722        for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4723                if (!cpu_online(cpu))
4724                        continue;
4725
4726                core = cpu >> threads_shift;
4727                ops->rm_core[core].rm_state.in_host = 1;
4728        }
4729
4730        ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4731
4732        /*
4733         * Make the contents of the kvmppc_host_rm_ops structure visible
4734         * to other CPUs before we assign it to the global variable.
4735         * Do an atomic assignment (no locks used here), but if someone
4736         * beats us to it, just free our copy and return.
4737         */
4738        smp_wmb();
4739        l_ops = (unsigned long) ops;
4740
4741        if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4742                cpus_read_unlock();
4743                kfree(ops->rm_core);
4744                kfree(ops);
4745                return;
4746        }
4747
4748        cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4749                                             "ppc/kvm_book3s:prepare",
4750                                             kvmppc_set_host_core,
4751                                             kvmppc_clear_host_core);
4752        cpus_read_unlock();
4753}
4754
4755void kvmppc_free_host_rm_ops(void)
4756{
4757        if (kvmppc_host_rm_ops_hv) {
4758                cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4759                kfree(kvmppc_host_rm_ops_hv->rm_core);
4760                kfree(kvmppc_host_rm_ops_hv);
4761                kvmppc_host_rm_ops_hv = NULL;
4762        }
4763}
4764#endif
4765
4766static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4767{
4768        unsigned long lpcr, lpid;
4769        char buf[32];
4770        int ret;
4771
4772        mutex_init(&kvm->arch.mmu_setup_lock);
4773
4774        /* Allocate the guest's logical partition ID */
4775
4776        lpid = kvmppc_alloc_lpid();
4777        if ((long)lpid < 0)
4778                return -ENOMEM;
4779        kvm->arch.lpid = lpid;
4780
4781        kvmppc_alloc_host_rm_ops();
4782
4783        kvmhv_vm_nested_init(kvm);
4784
4785        /*
4786         * Since we don't flush the TLB when tearing down a VM,
4787         * and this lpid might have previously been used,
4788         * make sure we flush on each core before running the new VM.
4789         * On POWER9, the tlbie in mmu_partition_table_set_entry()
4790         * does this flush for us.
4791         */
4792        if (!cpu_has_feature(CPU_FTR_ARCH_300))
4793                cpumask_setall(&kvm->arch.need_tlb_flush);
4794
4795        /* Start out with the default set of hcalls enabled */
4796        memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4797               sizeof(kvm->arch.enabled_hcalls));
4798
4799        if (!cpu_has_feature(CPU_FTR_ARCH_300))
4800                kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4801
4802        /* Init LPCR for virtual RMA mode */
4803        if (cpu_has_feature(CPU_FTR_HVMODE)) {
4804                kvm->arch.host_lpid = mfspr(SPRN_LPID);
4805                kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4806                lpcr &= LPCR_PECE | LPCR_LPES;
4807        } else {
4808                lpcr = 0;
4809        }
4810        lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4811                LPCR_VPM0 | LPCR_VPM1;
4812        kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4813                (VRMA_VSID << SLB_VSID_SHIFT_1T);
4814        /* On POWER8 turn on online bit to enable PURR/SPURR */
4815        if (cpu_has_feature(CPU_FTR_ARCH_207S))
4816                lpcr |= LPCR_ONL;
4817        /*
4818         * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4819         * Set HVICE bit to enable hypervisor virtualization interrupts.
4820         * Set HEIC to prevent OS interrupts to go to hypervisor (should
4821         * be unnecessary but better safe than sorry in case we re-enable
4822         * EE in HV mode with this LPCR still set)
4823         */
4824        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4825                lpcr &= ~LPCR_VPM0;
4826                lpcr |= LPCR_HVICE | LPCR_HEIC;
4827
4828                /*
4829                 * If xive is enabled, we route 0x500 interrupts directly
4830                 * to the guest.
4831                 */
4832                if (xics_on_xive())
4833                        lpcr |= LPCR_LPES;
4834        }
4835
4836        /*
4837         * If the host uses radix, the guest starts out as radix.
4838         */
4839        if (radix_enabled()) {
4840                kvm->arch.radix = 1;
4841                kvm->arch.mmu_ready = 1;
4842                lpcr &= ~LPCR_VPM1;
4843                lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4844                ret = kvmppc_init_vm_radix(kvm);
4845                if (ret) {
4846                        kvmppc_free_lpid(kvm->arch.lpid);
4847                        return ret;
4848                }
4849                kvmppc_setup_partition_table(kvm);
4850        }
4851
4852        kvm->arch.lpcr = lpcr;
4853
4854        /* Initialization for future HPT resizes */
4855        kvm->arch.resize_hpt = NULL;
4856
4857        /*
4858         * Work out how many sets the TLB has, for the use of
4859         * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4860         */
4861        if (radix_enabled())
4862                kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4863        else if (cpu_has_feature(CPU_FTR_ARCH_300))
4864                kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4865        else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4866                kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4867        else
4868                kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4869
4870        /*
4871         * Track that we now have a HV mode VM active. This blocks secondary
4872         * CPU threads from coming online.
4873         * On POWER9, we only need to do this if the "indep_threads_mode"
4874         * module parameter has been set to N.
4875         */
4876        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4877                if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4878                        pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4879                        kvm->arch.threads_indep = true;
4880                } else {
4881                        kvm->arch.threads_indep = indep_threads_mode;
4882                }
4883        }
4884        if (!kvm->arch.threads_indep)
4885                kvm_hv_vm_activated();
4886
4887        /*
4888         * Initialize smt_mode depending on processor.
4889         * POWER8 and earlier have to use "strict" threading, where
4890         * all vCPUs in a vcore have to run on the same (sub)core,
4891         * whereas on POWER9 the threads can each run a different
4892         * guest.
4893         */
4894        if (!cpu_has_feature(CPU_FTR_ARCH_300))
4895                kvm->arch.smt_mode = threads_per_subcore;
4896        else
4897                kvm->arch.smt_mode = 1;
4898        kvm->arch.emul_smt_mode = 1;
4899
4900        /*
4901         * Create a debugfs directory for the VM
4902         */
4903        snprintf(buf, sizeof(buf), "vm%d", current->pid);
4904        kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4905        kvmppc_mmu_debugfs_init(kvm);
4906        if (radix_enabled())
4907                kvmhv_radix_debugfs_init(kvm);
4908
4909        return 0;
4910}
4911
4912static void kvmppc_free_vcores(struct kvm *kvm)
4913{
4914        long int i;
4915
4916        for (i = 0; i < KVM_MAX_VCORES; ++i)
4917                kfree(kvm->arch.vcores[i]);
4918        kvm->arch.online_vcores = 0;
4919}
4920
4921static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4922{
4923        debugfs_remove_recursive(kvm->arch.debugfs_dir);
4924
4925        if (!kvm->arch.threads_indep)
4926                kvm_hv_vm_deactivated();
4927
4928        kvmppc_free_vcores(kvm);
4929
4930
4931        if (kvm_is_radix(kvm))
4932                kvmppc_free_radix(kvm);
4933        else
4934                kvmppc_free_hpt(&kvm->arch.hpt);
4935
4936        /* Perform global invalidation and return lpid to the pool */
4937        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4938                if (nesting_enabled(kvm))
4939                        kvmhv_release_all_nested(kvm);
4940                kvm->arch.process_table = 0;
4941                kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4942        }
4943        kvmppc_free_lpid(kvm->arch.lpid);
4944
4945        kvmppc_free_pimap(kvm);
4946}
4947
4948/* We don't need to emulate any privileged instructions or dcbz */
4949static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4950                                     unsigned int inst, int *advance)
4951{
4952        return EMULATE_FAIL;
4953}
4954
4955static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4956                                        ulong spr_val)
4957{
4958        return EMULATE_FAIL;
4959}
4960
4961static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4962                                        ulong *spr_val)
4963{
4964        return EMULATE_FAIL;
4965}
4966
4967static int kvmppc_core_check_processor_compat_hv(void)
4968{
4969        if (cpu_has_feature(CPU_FTR_HVMODE) &&
4970            cpu_has_feature(CPU_FTR_ARCH_206))
4971                return 0;
4972
4973        /* POWER9 in radix mode is capable of being a nested hypervisor. */
4974        if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
4975                return 0;
4976
4977        return -EIO;
4978}
4979
4980#ifdef CONFIG_KVM_XICS
4981
4982void kvmppc_free_pimap(struct kvm *kvm)
4983{
4984        kfree(kvm->arch.pimap);
4985}
4986
4987static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4988{
4989        return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4990}
4991
4992static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4993{
4994        struct irq_desc *desc;
4995        struct kvmppc_irq_map *irq_map;
4996        struct kvmppc_passthru_irqmap *pimap;
4997        struct irq_chip *chip;
4998        int i, rc = 0;
4999
5000        if (!kvm_irq_bypass)
5001                return 1;
5002
5003        desc = irq_to_desc(host_irq);
5004        if (!desc)
5005                return -EIO;
5006
5007        mutex_lock(&kvm->lock);
5008
5009        pimap = kvm->arch.pimap;
5010        if (pimap == NULL) {
5011                /* First call, allocate structure to hold IRQ map */
5012                pimap = kvmppc_alloc_pimap();
5013                if (pimap == NULL) {
5014                        mutex_unlock(&kvm->lock);
5015                        return -ENOMEM;
5016                }
5017                kvm->arch.pimap = pimap;
5018        }
5019
5020        /*
5021         * For now, we only support interrupts for which the EOI operation
5022         * is an OPAL call followed by a write to XIRR, since that's
5023         * what our real-mode EOI code does, or a XIVE interrupt
5024         */
5025        chip = irq_data_get_irq_chip(&desc->irq_data);
5026        if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5027                pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5028                        host_irq, guest_gsi);
5029                mutex_unlock(&kvm->lock);
5030                return -ENOENT;
5031        }
5032
5033        /*
5034         * See if we already have an entry for this guest IRQ number.
5035         * If it's mapped to a hardware IRQ number, that's an error,
5036         * otherwise re-use this entry.
5037         */
5038        for (i = 0; i < pimap->n_mapped; i++) {
5039                if (guest_gsi == pimap->mapped[i].v_hwirq) {
5040                        if (pimap->mapped[i].r_hwirq) {
5041                                mutex_unlock(&kvm->lock);
5042                                return -EINVAL;
5043                        }
5044                        break;
5045                }
5046        }
5047
5048        if (i == KVMPPC_PIRQ_MAPPED) {
5049                mutex_unlock(&kvm->lock);
5050                return -EAGAIN;         /* table is full */
5051        }
5052
5053        irq_map = &pimap->mapped[i];
5054
5055        irq_map->v_hwirq = guest_gsi;
5056        irq_map->desc = desc;
5057
5058        /*
5059         * Order the above two stores before the next to serialize with
5060         * the KVM real mode handler.
5061         */
5062        smp_wmb();
5063        irq_map->r_hwirq = desc->irq_data.hwirq;
5064
5065        if (i == pimap->n_mapped)
5066                pimap->n_mapped++;
5067
5068        if (xics_on_xive())
5069                rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5070        else
5071                kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5072        if (rc)
5073                irq_map->r_hwirq = 0;
5074
5075        mutex_unlock(&kvm->lock);
5076
5077        return 0;
5078}
5079
5080static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5081{
5082        struct irq_desc *desc;
5083        struct kvmppc_passthru_irqmap *pimap;
5084        int i, rc = 0;
5085
5086        if (!kvm_irq_bypass)
5087                return 0;
5088
5089        desc = irq_to_desc(host_irq);
5090        if (!desc)
5091                return -EIO;
5092
5093        mutex_lock(&kvm->lock);
5094        if (!kvm->arch.pimap)
5095                goto unlock;
5096
5097        pimap = kvm->arch.pimap;
5098
5099        for (i = 0; i < pimap->n_mapped; i++) {
5100                if (guest_gsi == pimap->mapped[i].v_hwirq)
5101                        break;
5102        }
5103
5104        if (i == pimap->n_mapped) {
5105                mutex_unlock(&kvm->lock);
5106                return -ENODEV;
5107        }
5108
5109        if (xics_on_xive())
5110                rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5111        else
5112                kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5113
5114        /* invalidate the entry (what do do on error from the above ?) */
5115        pimap->mapped[i].r_hwirq = 0;
5116
5117        /*
5118         * We don't free this structure even when the count goes to
5119         * zero. The structure is freed when we destroy the VM.
5120         */
5121 unlock:
5122        mutex_unlock(&kvm->lock);
5123        return rc;
5124}
5125
5126static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5127                                             struct irq_bypass_producer *prod)
5128{
5129        int ret = 0;
5130        struct kvm_kernel_irqfd *irqfd =
5131                container_of(cons, struct kvm_kernel_irqfd, consumer);
5132
5133        irqfd->producer = prod;
5134
5135        ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5136        if (ret)
5137                pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5138                        prod->irq, irqfd->gsi, ret);
5139
5140        return ret;
5141}
5142
5143static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5144                                              struct irq_bypass_producer *prod)
5145{
5146        int ret;
5147        struct kvm_kernel_irqfd *irqfd =
5148                container_of(cons, struct kvm_kernel_irqfd, consumer);
5149
5150        irqfd->producer = NULL;
5151
5152        /*
5153         * When producer of consumer is unregistered, we change back to
5154         * default external interrupt handling mode - KVM real mode
5155         * will switch back to host.
5156         */
5157        ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5158        if (ret)
5159                pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5160                        prod->irq, irqfd->gsi, ret);
5161}
5162#endif
5163
5164static long kvm_arch_vm_ioctl_hv(struct file *filp,
5165                                 unsigned int ioctl, unsigned long arg)
5166{
5167        struct kvm *kvm __maybe_unused = filp->private_data;
5168        void __user *argp = (void __user *)arg;
5169        long r;
5170
5171        switch (ioctl) {
5172
5173        case KVM_PPC_ALLOCATE_HTAB: {
5174                u32 htab_order;
5175
5176                r = -EFAULT;
5177                if (get_user(htab_order, (u32 __user *)argp))
5178                        break;
5179                r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5180                if (r)
5181                        break;
5182                r = 0;
5183                break;
5184        }
5185
5186        case KVM_PPC_GET_HTAB_FD: {
5187                struct kvm_get_htab_fd ghf;
5188
5189                r = -EFAULT;
5190                if (copy_from_user(&ghf, argp, sizeof(ghf)))
5191                        break;
5192                r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5193                break;
5194        }
5195
5196        case KVM_PPC_RESIZE_HPT_PREPARE: {
5197                struct kvm_ppc_resize_hpt rhpt;
5198
5199                r = -EFAULT;
5200                if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5201                        break;
5202
5203                r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5204                break;
5205        }
5206
5207        case KVM_PPC_RESIZE_HPT_COMMIT: {
5208                struct kvm_ppc_resize_hpt rhpt;
5209
5210                r = -EFAULT;
5211                if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5212                        break;
5213
5214                r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5215                break;
5216        }
5217
5218        default:
5219                r = -ENOTTY;
5220        }
5221
5222        return r;
5223}
5224
5225/*
5226 * List of hcall numbers to enable by default.
5227 * For compatibility with old userspace, we enable by default
5228 * all hcalls that were implemented before the hcall-enabling
5229 * facility was added.  Note this list should not include H_RTAS.
5230 */
5231static unsigned int default_hcall_list[] = {
5232        H_REMOVE,
5233        H_ENTER,
5234        H_READ,
5235        H_PROTECT,
5236        H_BULK_REMOVE,
5237        H_GET_TCE,
5238        H_PUT_TCE,
5239        H_SET_DABR,
5240        H_SET_XDABR,
5241        H_CEDE,
5242        H_PROD,
5243        H_CONFER,
5244        H_REGISTER_VPA,
5245#ifdef CONFIG_KVM_XICS
5246        H_EOI,
5247        H_CPPR,
5248        H_IPI,
5249        H_IPOLL,
5250        H_XIRR,
5251        H_XIRR_X,
5252#endif
5253        0
5254};
5255
5256static void init_default_hcalls(void)
5257{
5258        int i;
5259        unsigned int hcall;
5260
5261        for (i = 0; default_hcall_list[i]; ++i) {
5262                hcall = default_hcall_list[i];
5263                WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5264                __set_bit(hcall / 4, default_enabled_hcalls);
5265        }
5266}
5267
5268static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5269{
5270        unsigned long lpcr;
5271        int radix;
5272        int err;
5273
5274        /* If not on a POWER9, reject it */
5275        if (!cpu_has_feature(CPU_FTR_ARCH_300))
5276                return -ENODEV;
5277
5278        /* If any unknown flags set, reject it */
5279        if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5280                return -EINVAL;
5281
5282        /* GR (guest radix) bit in process_table field must match */
5283        radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5284        if (!!(cfg->process_table & PATB_GR) != radix)
5285                return -EINVAL;
5286
5287        /* Process table size field must be reasonable, i.e. <= 24 */
5288        if ((cfg->process_table & PRTS_MASK) > 24)
5289                return -EINVAL;
5290
5291        /* We can change a guest to/from radix now, if the host is radix */
5292        if (radix && !radix_enabled())
5293                return -EINVAL;
5294
5295        /* If we're a nested hypervisor, we currently only support radix */
5296        if (kvmhv_on_pseries() && !radix)
5297                return -EINVAL;
5298
5299        mutex_lock(&kvm->arch.mmu_setup_lock);
5300        if (radix != kvm_is_radix(kvm)) {
5301                if (kvm->arch.mmu_ready) {
5302                        kvm->arch.mmu_ready = 0;
5303                        /* order mmu_ready vs. vcpus_running */
5304                        smp_mb();
5305                        if (atomic_read(&kvm->arch.vcpus_running)) {
5306                                kvm->arch.mmu_ready = 1;
5307                                err = -EBUSY;
5308                                goto out_unlock;
5309                        }
5310                }
5311                if (radix)
5312                        err = kvmppc_switch_mmu_to_radix(kvm);
5313                else
5314                        err = kvmppc_switch_mmu_to_hpt(kvm);
5315                if (err)
5316                        goto out_unlock;
5317        }
5318
5319        kvm->arch.process_table = cfg->process_table;
5320        kvmppc_setup_partition_table(kvm);
5321
5322        lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5323        kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5324        err = 0;
5325
5326 out_unlock:
5327        mutex_unlock(&kvm->arch.mmu_setup_lock);
5328        return err;
5329}
5330
5331static int kvmhv_enable_nested(struct kvm *kvm)
5332{
5333        if (!nested)
5334                return -EPERM;
5335        if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5336                return -ENODEV;
5337
5338        /* kvm == NULL means the caller is testing if the capability exists */
5339        if (kvm)
5340                kvm->arch.nested_enable = true;
5341        return 0;
5342}
5343
5344static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5345                                 int size)
5346{
5347        int rc = -EINVAL;
5348
5349        if (kvmhv_vcpu_is_radix(vcpu)) {
5350                rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5351
5352                if (rc > 0)
5353                        rc = -EINVAL;
5354        }
5355
5356        /* For now quadrants are the only way to access nested guest memory */
5357        if (rc && vcpu->arch.nested)
5358                rc = -EAGAIN;
5359
5360        return rc;
5361}
5362
5363static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5364                                int size)
5365{
5366        int rc = -EINVAL;
5367
5368        if (kvmhv_vcpu_is_radix(vcpu)) {
5369                rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5370
5371                if (rc > 0)
5372                        rc = -EINVAL;
5373        }
5374
5375        /* For now quadrants are the only way to access nested guest memory */
5376        if (rc && vcpu->arch.nested)
5377                rc = -EAGAIN;
5378
5379        return rc;
5380}
5381
5382static struct kvmppc_ops kvm_ops_hv = {
5383        .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5384        .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5385        .get_one_reg = kvmppc_get_one_reg_hv,
5386        .set_one_reg = kvmppc_set_one_reg_hv,
5387        .vcpu_load   = kvmppc_core_vcpu_load_hv,
5388        .vcpu_put    = kvmppc_core_vcpu_put_hv,
5389        .set_msr     = kvmppc_set_msr_hv,
5390        .vcpu_run    = kvmppc_vcpu_run_hv,
5391        .vcpu_create = kvmppc_core_vcpu_create_hv,
5392        .vcpu_free   = kvmppc_core_vcpu_free_hv,
5393        .check_requests = kvmppc_core_check_requests_hv,
5394        .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5395        .flush_memslot  = kvmppc_core_flush_memslot_hv,
5396        .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5397        .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5398        .unmap_hva_range = kvm_unmap_hva_range_hv,
5399        .age_hva  = kvm_age_hva_hv,
5400        .test_age_hva = kvm_test_age_hva_hv,
5401        .set_spte_hva = kvm_set_spte_hva_hv,
5402        .mmu_destroy  = kvmppc_mmu_destroy_hv,
5403        .free_memslot = kvmppc_core_free_memslot_hv,
5404        .create_memslot = kvmppc_core_create_memslot_hv,
5405        .init_vm =  kvmppc_core_init_vm_hv,
5406        .destroy_vm = kvmppc_core_destroy_vm_hv,
5407        .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5408        .emulate_op = kvmppc_core_emulate_op_hv,
5409        .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5410        .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5411        .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5412        .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5413        .hcall_implemented = kvmppc_hcall_impl_hv,
5414#ifdef CONFIG_KVM_XICS
5415        .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5416        .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5417#endif
5418        .configure_mmu = kvmhv_configure_mmu,
5419        .get_rmmu_info = kvmhv_get_rmmu_info,
5420        .set_smt_mode = kvmhv_set_smt_mode,
5421        .enable_nested = kvmhv_enable_nested,
5422        .load_from_eaddr = kvmhv_load_from_eaddr,
5423        .store_to_eaddr = kvmhv_store_to_eaddr,
5424};
5425
5426static int kvm_init_subcore_bitmap(void)
5427{
5428        int i, j;
5429        int nr_cores = cpu_nr_cores();
5430        struct sibling_subcore_state *sibling_subcore_state;
5431
5432        for (i = 0; i < nr_cores; i++) {
5433                int first_cpu = i * threads_per_core;
5434                int node = cpu_to_node(first_cpu);
5435
5436                /* Ignore if it is already allocated. */
5437                if (paca_ptrs[first_cpu]->sibling_subcore_state)
5438                        continue;
5439
5440                sibling_subcore_state =
5441                        kzalloc_node(sizeof(struct sibling_subcore_state),
5442                                                        GFP_KERNEL, node);
5443                if (!sibling_subcore_state)
5444                        return -ENOMEM;
5445
5446
5447                for (j = 0; j < threads_per_core; j++) {
5448                        int cpu = first_cpu + j;
5449
5450                        paca_ptrs[cpu]->sibling_subcore_state =
5451                                                sibling_subcore_state;
5452                }
5453        }
5454        return 0;
5455}
5456
5457static int kvmppc_radix_possible(void)
5458{
5459        return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5460}
5461
5462static int kvmppc_book3s_init_hv(void)
5463{
5464        int r;
5465        /*
5466         * FIXME!! Do we need to check on all cpus ?
5467         */
5468        r = kvmppc_core_check_processor_compat_hv();
5469        if (r < 0)
5470                return -ENODEV;
5471
5472        r = kvmhv_nested_init();
5473        if (r)
5474                return r;
5475
5476        r = kvm_init_subcore_bitmap();
5477        if (r)
5478                return r;
5479
5480        /*
5481         * We need a way of accessing the XICS interrupt controller,
5482         * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5483         * indirectly, via OPAL.
5484         */
5485#ifdef CONFIG_SMP
5486        if (!xics_on_xive() && !kvmhv_on_pseries() &&
5487            !local_paca->kvm_hstate.xics_phys) {
5488                struct device_node *np;
5489
5490                np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5491                if (!np) {
5492                        pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5493                        return -ENODEV;
5494                }
5495                /* presence of intc confirmed - node can be dropped again */
5496                of_node_put(np);
5497        }
5498#endif
5499
5500        kvm_ops_hv.owner = THIS_MODULE;
5501        kvmppc_hv_ops = &kvm_ops_hv;
5502
5503        init_default_hcalls();
5504
5505        init_vcore_lists();
5506
5507        r = kvmppc_mmu_hv_init();
5508        if (r)
5509                return r;
5510
5511        if (kvmppc_radix_possible())
5512                r = kvmppc_radix_init();
5513
5514        /*
5515         * POWER9 chips before version 2.02 can't have some threads in
5516         * HPT mode and some in radix mode on the same core.
5517         */
5518        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5519                unsigned int pvr = mfspr(SPRN_PVR);
5520                if ((pvr >> 16) == PVR_POWER9 &&
5521                    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5522                     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5523                        no_mixing_hpt_and_radix = true;
5524        }
5525
5526        return r;
5527}
5528
5529static void kvmppc_book3s_exit_hv(void)
5530{
5531        kvmppc_free_host_rm_ops();
5532        if (kvmppc_radix_possible())
5533                kvmppc_radix_exit();
5534        kvmppc_hv_ops = NULL;
5535        kvmhv_nested_exit();
5536}
5537
5538module_init(kvmppc_book3s_init_hv);
5539module_exit(kvmppc_book3s_exit_hv);
5540MODULE_LICENSE("GPL");
5541MODULE_ALIAS_MISCDEV(KVM_MINOR);
5542MODULE_ALIAS("devname:kvm");
5543