linux/arch/powerpc/kvm/book3s_xive.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
   4 */
   5
   6#define pr_fmt(fmt) "xive-kvm: " fmt
   7
   8#include <linux/kernel.h>
   9#include <linux/kvm_host.h>
  10#include <linux/err.h>
  11#include <linux/gfp.h>
  12#include <linux/spinlock.h>
  13#include <linux/delay.h>
  14#include <linux/percpu.h>
  15#include <linux/cpumask.h>
  16#include <linux/uaccess.h>
  17#include <asm/kvm_book3s.h>
  18#include <asm/kvm_ppc.h>
  19#include <asm/hvcall.h>
  20#include <asm/xics.h>
  21#include <asm/xive.h>
  22#include <asm/xive-regs.h>
  23#include <asm/debug.h>
  24#include <asm/debugfs.h>
  25#include <asm/time.h>
  26#include <asm/opal.h>
  27
  28#include <linux/debugfs.h>
  29#include <linux/seq_file.h>
  30
  31#include "book3s_xive.h"
  32
  33
  34/*
  35 * Virtual mode variants of the hcalls for use on radix/radix
  36 * with AIL. They require the VCPU's VP to be "pushed"
  37 *
  38 * We still instantiate them here because we use some of the
  39 * generated utility functions as well in this file.
  40 */
  41#define XIVE_RUNTIME_CHECKS
  42#define X_PFX xive_vm_
  43#define X_STATIC static
  44#define X_STAT_PFX stat_vm_
  45#define __x_tima                xive_tima
  46#define __x_eoi_page(xd)        ((void __iomem *)((xd)->eoi_mmio))
  47#define __x_trig_page(xd)       ((void __iomem *)((xd)->trig_mmio))
  48#define __x_writeb      __raw_writeb
  49#define __x_readw       __raw_readw
  50#define __x_readq       __raw_readq
  51#define __x_writeq      __raw_writeq
  52
  53#include "book3s_xive_template.c"
  54
  55/*
  56 * We leave a gap of a couple of interrupts in the queue to
  57 * account for the IPI and additional safety guard.
  58 */
  59#define XIVE_Q_GAP      2
  60
  61/*
  62 * Push a vcpu's context to the XIVE on guest entry.
  63 * This assumes we are in virtual mode (MMU on)
  64 */
  65void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
  66{
  67        void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
  68        u64 pq;
  69
  70        if (!tima)
  71                return;
  72        eieio();
  73        __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
  74        __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
  75        vcpu->arch.xive_pushed = 1;
  76        eieio();
  77
  78        /*
  79         * We clear the irq_pending flag. There is a small chance of a
  80         * race vs. the escalation interrupt happening on another
  81         * processor setting it again, but the only consequence is to
  82         * cause a spurious wakeup on the next H_CEDE, which is not an
  83         * issue.
  84         */
  85        vcpu->arch.irq_pending = 0;
  86
  87        /*
  88         * In single escalation mode, if the escalation interrupt is
  89         * on, we mask it.
  90         */
  91        if (vcpu->arch.xive_esc_on) {
  92                pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
  93                                                  XIVE_ESB_SET_PQ_01));
  94                mb();
  95
  96                /*
  97                 * We have a possible subtle race here: The escalation
  98                 * interrupt might have fired and be on its way to the
  99                 * host queue while we mask it, and if we unmask it
 100                 * early enough (re-cede right away), there is a
 101                 * theorical possibility that it fires again, thus
 102                 * landing in the target queue more than once which is
 103                 * a big no-no.
 104                 *
 105                 * Fortunately, solving this is rather easy. If the
 106                 * above load setting PQ to 01 returns a previous
 107                 * value where P is set, then we know the escalation
 108                 * interrupt is somewhere on its way to the host. In
 109                 * that case we simply don't clear the xive_esc_on
 110                 * flag below. It will be eventually cleared by the
 111                 * handler for the escalation interrupt.
 112                 *
 113                 * Then, when doing a cede, we check that flag again
 114                 * before re-enabling the escalation interrupt, and if
 115                 * set, we abort the cede.
 116                 */
 117                if (!(pq & XIVE_ESB_VAL_P))
 118                        /* Now P is 0, we can clear the flag */
 119                        vcpu->arch.xive_esc_on = 0;
 120        }
 121}
 122EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
 123
 124/*
 125 * This is a simple trigger for a generic XIVE IRQ. This must
 126 * only be called for interrupts that support a trigger page
 127 */
 128static bool xive_irq_trigger(struct xive_irq_data *xd)
 129{
 130        /* This should be only for MSIs */
 131        if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
 132                return false;
 133
 134        /* Those interrupts should always have a trigger page */
 135        if (WARN_ON(!xd->trig_mmio))
 136                return false;
 137
 138        out_be64(xd->trig_mmio, 0);
 139
 140        return true;
 141}
 142
 143static irqreturn_t xive_esc_irq(int irq, void *data)
 144{
 145        struct kvm_vcpu *vcpu = data;
 146
 147        vcpu->arch.irq_pending = 1;
 148        smp_mb();
 149        if (vcpu->arch.ceded)
 150                kvmppc_fast_vcpu_kick(vcpu);
 151
 152        /* Since we have the no-EOI flag, the interrupt is effectively
 153         * disabled now. Clearing xive_esc_on means we won't bother
 154         * doing so on the next entry.
 155         *
 156         * This also allows the entry code to know that if a PQ combination
 157         * of 10 is observed while xive_esc_on is true, it means the queue
 158         * contains an unprocessed escalation interrupt. We don't make use of
 159         * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
 160         */
 161        vcpu->arch.xive_esc_on = false;
 162
 163        return IRQ_HANDLED;
 164}
 165
 166int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
 167                                  bool single_escalation)
 168{
 169        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 170        struct xive_q *q = &xc->queues[prio];
 171        char *name = NULL;
 172        int rc;
 173
 174        /* Already there ? */
 175        if (xc->esc_virq[prio])
 176                return 0;
 177
 178        /* Hook up the escalation interrupt */
 179        xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
 180        if (!xc->esc_virq[prio]) {
 181                pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
 182                       prio, xc->server_num);
 183                return -EIO;
 184        }
 185
 186        if (single_escalation)
 187                name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
 188                                 vcpu->kvm->arch.lpid, xc->server_num);
 189        else
 190                name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
 191                                 vcpu->kvm->arch.lpid, xc->server_num, prio);
 192        if (!name) {
 193                pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
 194                       prio, xc->server_num);
 195                rc = -ENOMEM;
 196                goto error;
 197        }
 198
 199        pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
 200
 201        rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
 202                         IRQF_NO_THREAD, name, vcpu);
 203        if (rc) {
 204                pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
 205                       prio, xc->server_num);
 206                goto error;
 207        }
 208        xc->esc_virq_names[prio] = name;
 209
 210        /* In single escalation mode, we grab the ESB MMIO of the
 211         * interrupt and mask it. Also populate the VCPU v/raddr
 212         * of the ESB page for use by asm entry/exit code. Finally
 213         * set the XIVE_IRQ_NO_EOI flag which will prevent the
 214         * core code from performing an EOI on the escalation
 215         * interrupt, thus leaving it effectively masked after
 216         * it fires once.
 217         */
 218        if (single_escalation) {
 219                struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
 220                struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 221
 222                xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
 223                vcpu->arch.xive_esc_raddr = xd->eoi_page;
 224                vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
 225                xd->flags |= XIVE_IRQ_NO_EOI;
 226        }
 227
 228        return 0;
 229error:
 230        irq_dispose_mapping(xc->esc_virq[prio]);
 231        xc->esc_virq[prio] = 0;
 232        kfree(name);
 233        return rc;
 234}
 235
 236static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
 237{
 238        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 239        struct kvmppc_xive *xive = xc->xive;
 240        struct xive_q *q =  &xc->queues[prio];
 241        void *qpage;
 242        int rc;
 243
 244        if (WARN_ON(q->qpage))
 245                return 0;
 246
 247        /* Allocate the queue and retrieve infos on current node for now */
 248        qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
 249        if (!qpage) {
 250                pr_err("Failed to allocate queue %d for VCPU %d\n",
 251                       prio, xc->server_num);
 252                return -ENOMEM;
 253        }
 254        memset(qpage, 0, 1 << xive->q_order);
 255
 256        /*
 257         * Reconfigure the queue. This will set q->qpage only once the
 258         * queue is fully configured. This is a requirement for prio 0
 259         * as we will stop doing EOIs for every IPI as soon as we observe
 260         * qpage being non-NULL, and instead will only EOI when we receive
 261         * corresponding queue 0 entries
 262         */
 263        rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
 264                                         xive->q_order, true);
 265        if (rc)
 266                pr_err("Failed to configure queue %d for VCPU %d\n",
 267                       prio, xc->server_num);
 268        return rc;
 269}
 270
 271/* Called with xive->lock held */
 272static int xive_check_provisioning(struct kvm *kvm, u8 prio)
 273{
 274        struct kvmppc_xive *xive = kvm->arch.xive;
 275        struct kvm_vcpu *vcpu;
 276        int i, rc;
 277
 278        lockdep_assert_held(&xive->lock);
 279
 280        /* Already provisioned ? */
 281        if (xive->qmap & (1 << prio))
 282                return 0;
 283
 284        pr_devel("Provisioning prio... %d\n", prio);
 285
 286        /* Provision each VCPU and enable escalations if needed */
 287        kvm_for_each_vcpu(i, vcpu, kvm) {
 288                if (!vcpu->arch.xive_vcpu)
 289                        continue;
 290                rc = xive_provision_queue(vcpu, prio);
 291                if (rc == 0 && !xive->single_escalation)
 292                        kvmppc_xive_attach_escalation(vcpu, prio,
 293                                                      xive->single_escalation);
 294                if (rc)
 295                        return rc;
 296        }
 297
 298        /* Order previous stores and mark it as provisioned */
 299        mb();
 300        xive->qmap |= (1 << prio);
 301        return 0;
 302}
 303
 304static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
 305{
 306        struct kvm_vcpu *vcpu;
 307        struct kvmppc_xive_vcpu *xc;
 308        struct xive_q *q;
 309
 310        /* Locate target server */
 311        vcpu = kvmppc_xive_find_server(kvm, server);
 312        if (!vcpu) {
 313                pr_warn("%s: Can't find server %d\n", __func__, server);
 314                return;
 315        }
 316        xc = vcpu->arch.xive_vcpu;
 317        if (WARN_ON(!xc))
 318                return;
 319
 320        q = &xc->queues[prio];
 321        atomic_inc(&q->pending_count);
 322}
 323
 324static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
 325{
 326        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 327        struct xive_q *q;
 328        u32 max;
 329
 330        if (WARN_ON(!xc))
 331                return -ENXIO;
 332        if (!xc->valid)
 333                return -ENXIO;
 334
 335        q = &xc->queues[prio];
 336        if (WARN_ON(!q->qpage))
 337                return -ENXIO;
 338
 339        /* Calculate max number of interrupts in that queue. */
 340        max = (q->msk + 1) - XIVE_Q_GAP;
 341        return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
 342}
 343
 344int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
 345{
 346        struct kvm_vcpu *vcpu;
 347        int i, rc;
 348
 349        /* Locate target server */
 350        vcpu = kvmppc_xive_find_server(kvm, *server);
 351        if (!vcpu) {
 352                pr_devel("Can't find server %d\n", *server);
 353                return -EINVAL;
 354        }
 355
 356        pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
 357
 358        /* Try pick it */
 359        rc = xive_try_pick_queue(vcpu, prio);
 360        if (rc == 0)
 361                return rc;
 362
 363        pr_devel(" .. failed, looking up candidate...\n");
 364
 365        /* Failed, pick another VCPU */
 366        kvm_for_each_vcpu(i, vcpu, kvm) {
 367                if (!vcpu->arch.xive_vcpu)
 368                        continue;
 369                rc = xive_try_pick_queue(vcpu, prio);
 370                if (rc == 0) {
 371                        *server = vcpu->arch.xive_vcpu->server_num;
 372                        pr_devel("  found on 0x%x/%d\n", *server, prio);
 373                        return rc;
 374                }
 375        }
 376        pr_devel("  no available target !\n");
 377
 378        /* No available target ! */
 379        return -EBUSY;
 380}
 381
 382static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
 383                             struct kvmppc_xive_src_block *sb,
 384                             struct kvmppc_xive_irq_state *state)
 385{
 386        struct xive_irq_data *xd;
 387        u32 hw_num;
 388        u8 old_prio;
 389        u64 val;
 390
 391        /*
 392         * Take the lock, set masked, try again if racing
 393         * with H_EOI
 394         */
 395        for (;;) {
 396                arch_spin_lock(&sb->lock);
 397                old_prio = state->guest_priority;
 398                state->guest_priority = MASKED;
 399                mb();
 400                if (!state->in_eoi)
 401                        break;
 402                state->guest_priority = old_prio;
 403                arch_spin_unlock(&sb->lock);
 404        }
 405
 406        /* No change ? Bail */
 407        if (old_prio == MASKED)
 408                return old_prio;
 409
 410        /* Get the right irq */
 411        kvmppc_xive_select_irq(state, &hw_num, &xd);
 412
 413        /*
 414         * If the interrupt is marked as needing masking via
 415         * firmware, we do it here. Firmware masking however
 416         * is "lossy", it won't return the old p and q bits
 417         * and won't set the interrupt to a state where it will
 418         * record queued ones. If this is an issue we should do
 419         * lazy masking instead.
 420         *
 421         * For now, we work around this in unmask by forcing
 422         * an interrupt whenever we unmask a non-LSI via FW
 423         * (if ever).
 424         */
 425        if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
 426                xive_native_configure_irq(hw_num,
 427                                kvmppc_xive_vp(xive, state->act_server),
 428                                MASKED, state->number);
 429                /* set old_p so we can track if an H_EOI was done */
 430                state->old_p = true;
 431                state->old_q = false;
 432        } else {
 433                /* Set PQ to 10, return old P and old Q and remember them */
 434                val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
 435                state->old_p = !!(val & 2);
 436                state->old_q = !!(val & 1);
 437
 438                /*
 439                 * Synchronize hardware to sensure the queues are updated
 440                 * when masking
 441                 */
 442                xive_native_sync_source(hw_num);
 443        }
 444
 445        return old_prio;
 446}
 447
 448static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
 449                                 struct kvmppc_xive_irq_state *state)
 450{
 451        /*
 452         * Take the lock try again if racing with H_EOI
 453         */
 454        for (;;) {
 455                arch_spin_lock(&sb->lock);
 456                if (!state->in_eoi)
 457                        break;
 458                arch_spin_unlock(&sb->lock);
 459        }
 460}
 461
 462static void xive_finish_unmask(struct kvmppc_xive *xive,
 463                               struct kvmppc_xive_src_block *sb,
 464                               struct kvmppc_xive_irq_state *state,
 465                               u8 prio)
 466{
 467        struct xive_irq_data *xd;
 468        u32 hw_num;
 469
 470        /* If we aren't changing a thing, move on */
 471        if (state->guest_priority != MASKED)
 472                goto bail;
 473
 474        /* Get the right irq */
 475        kvmppc_xive_select_irq(state, &hw_num, &xd);
 476
 477        /*
 478         * See command in xive_lock_and_mask() concerning masking
 479         * via firmware.
 480         */
 481        if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
 482                xive_native_configure_irq(hw_num,
 483                                kvmppc_xive_vp(xive, state->act_server),
 484                                state->act_priority, state->number);
 485                /* If an EOI is needed, do it here */
 486                if (!state->old_p)
 487                        xive_vm_source_eoi(hw_num, xd);
 488                /* If this is not an LSI, force a trigger */
 489                if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
 490                        xive_irq_trigger(xd);
 491                goto bail;
 492        }
 493
 494        /* Old Q set, set PQ to 11 */
 495        if (state->old_q)
 496                xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
 497
 498        /*
 499         * If not old P, then perform an "effective" EOI,
 500         * on the source. This will handle the cases where
 501         * FW EOI is needed.
 502         */
 503        if (!state->old_p)
 504                xive_vm_source_eoi(hw_num, xd);
 505
 506        /* Synchronize ordering and mark unmasked */
 507        mb();
 508bail:
 509        state->guest_priority = prio;
 510}
 511
 512/*
 513 * Target an interrupt to a given server/prio, this will fallback
 514 * to another server if necessary and perform the HW targetting
 515 * updates as needed
 516 *
 517 * NOTE: Must be called with the state lock held
 518 */
 519static int xive_target_interrupt(struct kvm *kvm,
 520                                 struct kvmppc_xive_irq_state *state,
 521                                 u32 server, u8 prio)
 522{
 523        struct kvmppc_xive *xive = kvm->arch.xive;
 524        u32 hw_num;
 525        int rc;
 526
 527        /*
 528         * This will return a tentative server and actual
 529         * priority. The count for that new target will have
 530         * already been incremented.
 531         */
 532        rc = kvmppc_xive_select_target(kvm, &server, prio);
 533
 534        /*
 535         * We failed to find a target ? Not much we can do
 536         * at least until we support the GIQ.
 537         */
 538        if (rc)
 539                return rc;
 540
 541        /*
 542         * Increment the old queue pending count if there
 543         * was one so that the old queue count gets adjusted later
 544         * when observed to be empty.
 545         */
 546        if (state->act_priority != MASKED)
 547                xive_inc_q_pending(kvm,
 548                                   state->act_server,
 549                                   state->act_priority);
 550        /*
 551         * Update state and HW
 552         */
 553        state->act_priority = prio;
 554        state->act_server = server;
 555
 556        /* Get the right irq */
 557        kvmppc_xive_select_irq(state, &hw_num, NULL);
 558
 559        return xive_native_configure_irq(hw_num,
 560                                         kvmppc_xive_vp(xive, server),
 561                                         prio, state->number);
 562}
 563
 564/*
 565 * Targetting rules: In order to avoid losing track of
 566 * pending interrupts accross mask and unmask, which would
 567 * allow queue overflows, we implement the following rules:
 568 *
 569 *  - Unless it was never enabled (or we run out of capacity)
 570 *    an interrupt is always targetted at a valid server/queue
 571 *    pair even when "masked" by the guest. This pair tends to
 572 *    be the last one used but it can be changed under some
 573 *    circumstances. That allows us to separate targetting
 574 *    from masking, we only handle accounting during (re)targetting,
 575 *    this also allows us to let an interrupt drain into its target
 576 *    queue after masking, avoiding complex schemes to remove
 577 *    interrupts out of remote processor queues.
 578 *
 579 *  - When masking, we set PQ to 10 and save the previous value
 580 *    of P and Q.
 581 *
 582 *  - When unmasking, if saved Q was set, we set PQ to 11
 583 *    otherwise we leave PQ to the HW state which will be either
 584 *    10 if nothing happened or 11 if the interrupt fired while
 585 *    masked. Effectively we are OR'ing the previous Q into the
 586 *    HW Q.
 587 *
 588 *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
 589 *    which will unmask the interrupt and shoot a new one if Q was
 590 *    set.
 591 *
 592 *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
 593 *    effectively meaning an H_EOI from the guest is still expected
 594 *    for that interrupt).
 595 *
 596 *  - If H_EOI occurs while masked, we clear the saved P.
 597 *
 598 *  - When changing target, we account on the new target and
 599 *    increment a separate "pending" counter on the old one.
 600 *    This pending counter will be used to decrement the old
 601 *    target's count when its queue has been observed empty.
 602 */
 603
 604int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
 605                         u32 priority)
 606{
 607        struct kvmppc_xive *xive = kvm->arch.xive;
 608        struct kvmppc_xive_src_block *sb;
 609        struct kvmppc_xive_irq_state *state;
 610        u8 new_act_prio;
 611        int rc = 0;
 612        u16 idx;
 613
 614        if (!xive)
 615                return -ENODEV;
 616
 617        pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
 618                 irq, server, priority);
 619
 620        /* First, check provisioning of queues */
 621        if (priority != MASKED) {
 622                mutex_lock(&xive->lock);
 623                rc = xive_check_provisioning(xive->kvm,
 624                              xive_prio_from_guest(priority));
 625                mutex_unlock(&xive->lock);
 626        }
 627        if (rc) {
 628                pr_devel("  provisioning failure %d !\n", rc);
 629                return rc;
 630        }
 631
 632        sb = kvmppc_xive_find_source(xive, irq, &idx);
 633        if (!sb)
 634                return -EINVAL;
 635        state = &sb->irq_state[idx];
 636
 637        /*
 638         * We first handle masking/unmasking since the locking
 639         * might need to be retried due to EOIs, we'll handle
 640         * targetting changes later. These functions will return
 641         * with the SB lock held.
 642         *
 643         * xive_lock_and_mask() will also set state->guest_priority
 644         * but won't otherwise change other fields of the state.
 645         *
 646         * xive_lock_for_unmask will not actually unmask, this will
 647         * be done later by xive_finish_unmask() once the targetting
 648         * has been done, so we don't try to unmask an interrupt
 649         * that hasn't yet been targetted.
 650         */
 651        if (priority == MASKED)
 652                xive_lock_and_mask(xive, sb, state);
 653        else
 654                xive_lock_for_unmask(sb, state);
 655
 656
 657        /*
 658         * Then we handle targetting.
 659         *
 660         * First calculate a new "actual priority"
 661         */
 662        new_act_prio = state->act_priority;
 663        if (priority != MASKED)
 664                new_act_prio = xive_prio_from_guest(priority);
 665
 666        pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
 667                 new_act_prio, state->act_server, state->act_priority);
 668
 669        /*
 670         * Then check if we actually need to change anything,
 671         *
 672         * The condition for re-targetting the interrupt is that
 673         * we have a valid new priority (new_act_prio is not 0xff)
 674         * and either the server or the priority changed.
 675         *
 676         * Note: If act_priority was ff and the new priority is
 677         *       also ff, we don't do anything and leave the interrupt
 678         *       untargetted. An attempt of doing an int_on on an
 679         *       untargetted interrupt will fail. If that is a problem
 680         *       we could initialize interrupts with valid default
 681         */
 682
 683        if (new_act_prio != MASKED &&
 684            (state->act_server != server ||
 685             state->act_priority != new_act_prio))
 686                rc = xive_target_interrupt(kvm, state, server, new_act_prio);
 687
 688        /*
 689         * Perform the final unmasking of the interrupt source
 690         * if necessary
 691         */
 692        if (priority != MASKED)
 693                xive_finish_unmask(xive, sb, state, priority);
 694
 695        /*
 696         * Finally Update saved_priority to match. Only int_on/off
 697         * set this field to a different value.
 698         */
 699        state->saved_priority = priority;
 700
 701        arch_spin_unlock(&sb->lock);
 702        return rc;
 703}
 704
 705int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
 706                         u32 *priority)
 707{
 708        struct kvmppc_xive *xive = kvm->arch.xive;
 709        struct kvmppc_xive_src_block *sb;
 710        struct kvmppc_xive_irq_state *state;
 711        u16 idx;
 712
 713        if (!xive)
 714                return -ENODEV;
 715
 716        sb = kvmppc_xive_find_source(xive, irq, &idx);
 717        if (!sb)
 718                return -EINVAL;
 719        state = &sb->irq_state[idx];
 720        arch_spin_lock(&sb->lock);
 721        *server = state->act_server;
 722        *priority = state->guest_priority;
 723        arch_spin_unlock(&sb->lock);
 724
 725        return 0;
 726}
 727
 728int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
 729{
 730        struct kvmppc_xive *xive = kvm->arch.xive;
 731        struct kvmppc_xive_src_block *sb;
 732        struct kvmppc_xive_irq_state *state;
 733        u16 idx;
 734
 735        if (!xive)
 736                return -ENODEV;
 737
 738        sb = kvmppc_xive_find_source(xive, irq, &idx);
 739        if (!sb)
 740                return -EINVAL;
 741        state = &sb->irq_state[idx];
 742
 743        pr_devel("int_on(irq=0x%x)\n", irq);
 744
 745        /*
 746         * Check if interrupt was not targetted
 747         */
 748        if (state->act_priority == MASKED) {
 749                pr_devel("int_on on untargetted interrupt\n");
 750                return -EINVAL;
 751        }
 752
 753        /* If saved_priority is 0xff, do nothing */
 754        if (state->saved_priority == MASKED)
 755                return 0;
 756
 757        /*
 758         * Lock and unmask it.
 759         */
 760        xive_lock_for_unmask(sb, state);
 761        xive_finish_unmask(xive, sb, state, state->saved_priority);
 762        arch_spin_unlock(&sb->lock);
 763
 764        return 0;
 765}
 766
 767int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
 768{
 769        struct kvmppc_xive *xive = kvm->arch.xive;
 770        struct kvmppc_xive_src_block *sb;
 771        struct kvmppc_xive_irq_state *state;
 772        u16 idx;
 773
 774        if (!xive)
 775                return -ENODEV;
 776
 777        sb = kvmppc_xive_find_source(xive, irq, &idx);
 778        if (!sb)
 779                return -EINVAL;
 780        state = &sb->irq_state[idx];
 781
 782        pr_devel("int_off(irq=0x%x)\n", irq);
 783
 784        /*
 785         * Lock and mask
 786         */
 787        state->saved_priority = xive_lock_and_mask(xive, sb, state);
 788        arch_spin_unlock(&sb->lock);
 789
 790        return 0;
 791}
 792
 793static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
 794{
 795        struct kvmppc_xive_src_block *sb;
 796        struct kvmppc_xive_irq_state *state;
 797        u16 idx;
 798
 799        sb = kvmppc_xive_find_source(xive, irq, &idx);
 800        if (!sb)
 801                return false;
 802        state = &sb->irq_state[idx];
 803        if (!state->valid)
 804                return false;
 805
 806        /*
 807         * Trigger the IPI. This assumes we never restore a pass-through
 808         * interrupt which should be safe enough
 809         */
 810        xive_irq_trigger(&state->ipi_data);
 811
 812        return true;
 813}
 814
 815u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
 816{
 817        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 818
 819        if (!xc)
 820                return 0;
 821
 822        /* Return the per-cpu state for state saving/migration */
 823        return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
 824               (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
 825               (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
 826}
 827
 828int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
 829{
 830        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
 831        struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
 832        u8 cppr, mfrr;
 833        u32 xisr;
 834
 835        if (!xc || !xive)
 836                return -ENOENT;
 837
 838        /* Grab individual state fields. We don't use pending_pri */
 839        cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
 840        xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
 841                KVM_REG_PPC_ICP_XISR_MASK;
 842        mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
 843
 844        pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
 845                 xc->server_num, cppr, mfrr, xisr);
 846
 847        /*
 848         * We can't update the state of a "pushed" VCPU, but that
 849         * shouldn't happen because the vcpu->mutex makes running a
 850         * vcpu mutually exclusive with doing one_reg get/set on it.
 851         */
 852        if (WARN_ON(vcpu->arch.xive_pushed))
 853                return -EIO;
 854
 855        /* Update VCPU HW saved state */
 856        vcpu->arch.xive_saved_state.cppr = cppr;
 857        xc->hw_cppr = xc->cppr = cppr;
 858
 859        /*
 860         * Update MFRR state. If it's not 0xff, we mark the VCPU as
 861         * having a pending MFRR change, which will re-evaluate the
 862         * target. The VCPU will thus potentially get a spurious
 863         * interrupt but that's not a big deal.
 864         */
 865        xc->mfrr = mfrr;
 866        if (mfrr < cppr)
 867                xive_irq_trigger(&xc->vp_ipi_data);
 868
 869        /*
 870         * Now saved XIRR is "interesting". It means there's something in
 871         * the legacy "1 element" queue... for an IPI we simply ignore it,
 872         * as the MFRR restore will handle that. For anything else we need
 873         * to force a resend of the source.
 874         * However the source may not have been setup yet. If that's the
 875         * case, we keep that info and increment a counter in the xive to
 876         * tell subsequent xive_set_source() to go look.
 877         */
 878        if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
 879                xc->delayed_irq = xisr;
 880                xive->delayed_irqs++;
 881                pr_devel("  xisr restore delayed\n");
 882        }
 883
 884        return 0;
 885}
 886
 887int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
 888                           struct irq_desc *host_desc)
 889{
 890        struct kvmppc_xive *xive = kvm->arch.xive;
 891        struct kvmppc_xive_src_block *sb;
 892        struct kvmppc_xive_irq_state *state;
 893        struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
 894        unsigned int host_irq = irq_desc_get_irq(host_desc);
 895        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
 896        u16 idx;
 897        u8 prio;
 898        int rc;
 899
 900        if (!xive)
 901                return -ENODEV;
 902
 903        pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
 904
 905        sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
 906        if (!sb)
 907                return -EINVAL;
 908        state = &sb->irq_state[idx];
 909
 910        /*
 911         * Mark the passed-through interrupt as going to a VCPU,
 912         * this will prevent further EOIs and similar operations
 913         * from the XIVE code. It will also mask the interrupt
 914         * to either PQ=10 or 11 state, the latter if the interrupt
 915         * is pending. This will allow us to unmask or retrigger it
 916         * after routing it to the guest with a simple EOI.
 917         *
 918         * The "state" argument is a "token", all it needs is to be
 919         * non-NULL to switch to passed-through or NULL for the
 920         * other way around. We may not yet have an actual VCPU
 921         * target here and we don't really care.
 922         */
 923        rc = irq_set_vcpu_affinity(host_irq, state);
 924        if (rc) {
 925                pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
 926                return rc;
 927        }
 928
 929        /*
 930         * Mask and read state of IPI. We need to know if its P bit
 931         * is set as that means it's potentially already using a
 932         * queue entry in the target
 933         */
 934        prio = xive_lock_and_mask(xive, sb, state);
 935        pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
 936                 state->old_p, state->old_q);
 937
 938        /* Turn the IPI hard off */
 939        xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
 940
 941        /*
 942         * Reset ESB guest mapping. Needed when ESB pages are exposed
 943         * to the guest in XIVE native mode
 944         */
 945        if (xive->ops && xive->ops->reset_mapped)
 946                xive->ops->reset_mapped(kvm, guest_irq);
 947
 948        /* Grab info about irq */
 949        state->pt_number = hw_irq;
 950        state->pt_data = irq_data_get_irq_handler_data(host_data);
 951
 952        /*
 953         * Configure the IRQ to match the existing configuration of
 954         * the IPI if it was already targetted. Otherwise this will
 955         * mask the interrupt in a lossy way (act_priority is 0xff)
 956         * which is fine for a never started interrupt.
 957         */
 958        xive_native_configure_irq(hw_irq,
 959                                  kvmppc_xive_vp(xive, state->act_server),
 960                                  state->act_priority, state->number);
 961
 962        /*
 963         * We do an EOI to enable the interrupt (and retrigger if needed)
 964         * if the guest has the interrupt unmasked and the P bit was *not*
 965         * set in the IPI. If it was set, we know a slot may still be in
 966         * use in the target queue thus we have to wait for a guest
 967         * originated EOI
 968         */
 969        if (prio != MASKED && !state->old_p)
 970                xive_vm_source_eoi(hw_irq, state->pt_data);
 971
 972        /* Clear old_p/old_q as they are no longer relevant */
 973        state->old_p = state->old_q = false;
 974
 975        /* Restore guest prio (unlocks EOI) */
 976        mb();
 977        state->guest_priority = prio;
 978        arch_spin_unlock(&sb->lock);
 979
 980        return 0;
 981}
 982EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
 983
 984int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
 985                           struct irq_desc *host_desc)
 986{
 987        struct kvmppc_xive *xive = kvm->arch.xive;
 988        struct kvmppc_xive_src_block *sb;
 989        struct kvmppc_xive_irq_state *state;
 990        unsigned int host_irq = irq_desc_get_irq(host_desc);
 991        u16 idx;
 992        u8 prio;
 993        int rc;
 994
 995        if (!xive)
 996                return -ENODEV;
 997
 998        pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
 999
1000        sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1001        if (!sb)
1002                return -EINVAL;
1003        state = &sb->irq_state[idx];
1004
1005        /*
1006         * Mask and read state of IRQ. We need to know if its P bit
1007         * is set as that means it's potentially already using a
1008         * queue entry in the target
1009         */
1010        prio = xive_lock_and_mask(xive, sb, state);
1011        pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1012                 state->old_p, state->old_q);
1013
1014        /*
1015         * If old_p is set, the interrupt is pending, we switch it to
1016         * PQ=11. This will force a resend in the host so the interrupt
1017         * isn't lost to whatver host driver may pick it up
1018         */
1019        if (state->old_p)
1020                xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1021
1022        /* Release the passed-through interrupt to the host */
1023        rc = irq_set_vcpu_affinity(host_irq, NULL);
1024        if (rc) {
1025                pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
1026                return rc;
1027        }
1028
1029        /* Forget about the IRQ */
1030        state->pt_number = 0;
1031        state->pt_data = NULL;
1032
1033        /*
1034         * Reset ESB guest mapping. Needed when ESB pages are exposed
1035         * to the guest in XIVE native mode
1036         */
1037        if (xive->ops && xive->ops->reset_mapped) {
1038                xive->ops->reset_mapped(kvm, guest_irq);
1039        }
1040
1041        /* Reconfigure the IPI */
1042        xive_native_configure_irq(state->ipi_number,
1043                                  kvmppc_xive_vp(xive, state->act_server),
1044                                  state->act_priority, state->number);
1045
1046        /*
1047         * If old_p is set (we have a queue entry potentially
1048         * occupied) or the interrupt is masked, we set the IPI
1049         * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1050         */
1051        if (prio == MASKED || state->old_p)
1052                xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1053        else
1054                xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1055
1056        /* Restore guest prio (unlocks EOI) */
1057        mb();
1058        state->guest_priority = prio;
1059        arch_spin_unlock(&sb->lock);
1060
1061        return 0;
1062}
1063EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1064
1065void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1066{
1067        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1068        struct kvm *kvm = vcpu->kvm;
1069        struct kvmppc_xive *xive = kvm->arch.xive;
1070        int i, j;
1071
1072        for (i = 0; i <= xive->max_sbid; i++) {
1073                struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1074
1075                if (!sb)
1076                        continue;
1077                for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1078                        struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1079
1080                        if (!state->valid)
1081                                continue;
1082                        if (state->act_priority == MASKED)
1083                                continue;
1084                        if (state->act_server != xc->server_num)
1085                                continue;
1086
1087                        /* Clean it up */
1088                        arch_spin_lock(&sb->lock);
1089                        state->act_priority = MASKED;
1090                        xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1091                        xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1092                        if (state->pt_number) {
1093                                xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1094                                xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1095                        }
1096                        arch_spin_unlock(&sb->lock);
1097                }
1098        }
1099
1100        /* Disable vcpu's escalation interrupt */
1101        if (vcpu->arch.xive_esc_on) {
1102                __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1103                                             XIVE_ESB_SET_PQ_01));
1104                vcpu->arch.xive_esc_on = false;
1105        }
1106
1107        /*
1108         * Clear pointers to escalation interrupt ESB.
1109         * This is safe because the vcpu->mutex is held, preventing
1110         * any other CPU from concurrently executing a KVM_RUN ioctl.
1111         */
1112        vcpu->arch.xive_esc_vaddr = 0;
1113        vcpu->arch.xive_esc_raddr = 0;
1114}
1115
1116void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1117{
1118        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1119        struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1120        int i;
1121
1122        if (!kvmppc_xics_enabled(vcpu))
1123                return;
1124
1125        if (!xc)
1126                return;
1127
1128        pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1129
1130        /* Ensure no interrupt is still routed to that VP */
1131        xc->valid = false;
1132        kvmppc_xive_disable_vcpu_interrupts(vcpu);
1133
1134        /* Mask the VP IPI */
1135        xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1136
1137        /* Disable the VP */
1138        xive_native_disable_vp(xc->vp_id);
1139
1140        /* Free the queues & associated interrupts */
1141        for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1142                struct xive_q *q = &xc->queues[i];
1143
1144                /* Free the escalation irq */
1145                if (xc->esc_virq[i]) {
1146                        free_irq(xc->esc_virq[i], vcpu);
1147                        irq_dispose_mapping(xc->esc_virq[i]);
1148                        kfree(xc->esc_virq_names[i]);
1149                }
1150                /* Free the queue */
1151                xive_native_disable_queue(xc->vp_id, q, i);
1152                if (q->qpage) {
1153                        free_pages((unsigned long)q->qpage,
1154                                   xive->q_page_order);
1155                        q->qpage = NULL;
1156                }
1157        }
1158
1159        /* Free the IPI */
1160        if (xc->vp_ipi) {
1161                xive_cleanup_irq_data(&xc->vp_ipi_data);
1162                xive_native_free_irq(xc->vp_ipi);
1163        }
1164        /* Free the VP */
1165        kfree(xc);
1166
1167        /* Cleanup the vcpu */
1168        vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1169        vcpu->arch.xive_vcpu = NULL;
1170}
1171
1172int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1173                             struct kvm_vcpu *vcpu, u32 cpu)
1174{
1175        struct kvmppc_xive *xive = dev->private;
1176        struct kvmppc_xive_vcpu *xc;
1177        int i, r = -EBUSY;
1178
1179        pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1180
1181        if (dev->ops != &kvm_xive_ops) {
1182                pr_devel("Wrong ops !\n");
1183                return -EPERM;
1184        }
1185        if (xive->kvm != vcpu->kvm)
1186                return -EPERM;
1187        if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1188                return -EBUSY;
1189        if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1190                pr_devel("Duplicate !\n");
1191                return -EEXIST;
1192        }
1193        if (cpu >= (KVM_MAX_VCPUS * vcpu->kvm->arch.emul_smt_mode)) {
1194                pr_devel("Out of bounds !\n");
1195                return -EINVAL;
1196        }
1197        xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1198        if (!xc)
1199                return -ENOMEM;
1200
1201        /* We need to synchronize with queue provisioning */
1202        mutex_lock(&xive->lock);
1203        vcpu->arch.xive_vcpu = xc;
1204        xc->xive = xive;
1205        xc->vcpu = vcpu;
1206        xc->server_num = cpu;
1207        xc->vp_id = kvmppc_xive_vp(xive, cpu);
1208        xc->mfrr = 0xff;
1209        xc->valid = true;
1210
1211        r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1212        if (r)
1213                goto bail;
1214
1215        /* Configure VCPU fields for use by assembly push/pull */
1216        vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1217        vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1218
1219        /* Allocate IPI */
1220        xc->vp_ipi = xive_native_alloc_irq();
1221        if (!xc->vp_ipi) {
1222                pr_err("Failed to allocate xive irq for VCPU IPI\n");
1223                r = -EIO;
1224                goto bail;
1225        }
1226        pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1227
1228        r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1229        if (r)
1230                goto bail;
1231
1232        /*
1233         * Enable the VP first as the single escalation mode will
1234         * affect escalation interrupts numbering
1235         */
1236        r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1237        if (r) {
1238                pr_err("Failed to enable VP in OPAL, err %d\n", r);
1239                goto bail;
1240        }
1241
1242        /*
1243         * Initialize queues. Initially we set them all for no queueing
1244         * and we enable escalation for queue 0 only which we'll use for
1245         * our mfrr change notifications. If the VCPU is hot-plugged, we
1246         * do handle provisioning however based on the existing "map"
1247         * of enabled queues.
1248         */
1249        for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1250                struct xive_q *q = &xc->queues[i];
1251
1252                /* Single escalation, no queue 7 */
1253                if (i == 7 && xive->single_escalation)
1254                        break;
1255
1256                /* Is queue already enabled ? Provision it */
1257                if (xive->qmap & (1 << i)) {
1258                        r = xive_provision_queue(vcpu, i);
1259                        if (r == 0 && !xive->single_escalation)
1260                                kvmppc_xive_attach_escalation(
1261                                        vcpu, i, xive->single_escalation);
1262                        if (r)
1263                                goto bail;
1264                } else {
1265                        r = xive_native_configure_queue(xc->vp_id,
1266                                                        q, i, NULL, 0, true);
1267                        if (r) {
1268                                pr_err("Failed to configure queue %d for VCPU %d\n",
1269                                       i, cpu);
1270                                goto bail;
1271                        }
1272                }
1273        }
1274
1275        /* If not done above, attach priority 0 escalation */
1276        r = kvmppc_xive_attach_escalation(vcpu, 0, xive->single_escalation);
1277        if (r)
1278                goto bail;
1279
1280        /* Route the IPI */
1281        r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1282        if (!r)
1283                xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1284
1285bail:
1286        mutex_unlock(&xive->lock);
1287        if (r) {
1288                kvmppc_xive_cleanup_vcpu(vcpu);
1289                return r;
1290        }
1291
1292        vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1293        return 0;
1294}
1295
1296/*
1297 * Scanning of queues before/after migration save
1298 */
1299static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1300{
1301        struct kvmppc_xive_src_block *sb;
1302        struct kvmppc_xive_irq_state *state;
1303        u16 idx;
1304
1305        sb = kvmppc_xive_find_source(xive, irq, &idx);
1306        if (!sb)
1307                return;
1308
1309        state = &sb->irq_state[idx];
1310
1311        /* Some sanity checking */
1312        if (!state->valid) {
1313                pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1314                return;
1315        }
1316
1317        /*
1318         * If the interrupt is in a queue it should have P set.
1319         * We warn so that gets reported. A backtrace isn't useful
1320         * so no need to use a WARN_ON.
1321         */
1322        if (!state->saved_p)
1323                pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1324
1325        /* Set flag */
1326        state->in_queue = true;
1327}
1328
1329static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1330                                   struct kvmppc_xive_src_block *sb,
1331                                   u32 irq)
1332{
1333        struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1334
1335        if (!state->valid)
1336                return;
1337
1338        /* Mask and save state, this will also sync HW queues */
1339        state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1340
1341        /* Transfer P and Q */
1342        state->saved_p = state->old_p;
1343        state->saved_q = state->old_q;
1344
1345        /* Unlock */
1346        arch_spin_unlock(&sb->lock);
1347}
1348
1349static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1350                                     struct kvmppc_xive_src_block *sb,
1351                                     u32 irq)
1352{
1353        struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1354
1355        if (!state->valid)
1356                return;
1357
1358        /*
1359         * Lock / exclude EOI (not technically necessary if the
1360         * guest isn't running concurrently. If this becomes a
1361         * performance issue we can probably remove the lock.
1362         */
1363        xive_lock_for_unmask(sb, state);
1364
1365        /* Restore mask/prio if it wasn't masked */
1366        if (state->saved_scan_prio != MASKED)
1367                xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1368
1369        /* Unlock */
1370        arch_spin_unlock(&sb->lock);
1371}
1372
1373static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1374{
1375        u32 idx = q->idx;
1376        u32 toggle = q->toggle;
1377        u32 irq;
1378
1379        do {
1380                irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1381                if (irq > XICS_IPI)
1382                        xive_pre_save_set_queued(xive, irq);
1383        } while(irq);
1384}
1385
1386static void xive_pre_save_scan(struct kvmppc_xive *xive)
1387{
1388        struct kvm_vcpu *vcpu = NULL;
1389        int i, j;
1390
1391        /*
1392         * See comment in xive_get_source() about how this
1393         * work. Collect a stable state for all interrupts
1394         */
1395        for (i = 0; i <= xive->max_sbid; i++) {
1396                struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1397                if (!sb)
1398                        continue;
1399                for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1400                        xive_pre_save_mask_irq(xive, sb, j);
1401        }
1402
1403        /* Then scan the queues and update the "in_queue" flag */
1404        kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1405                struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1406                if (!xc)
1407                        continue;
1408                for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1409                        if (xc->queues[j].qpage)
1410                                xive_pre_save_queue(xive, &xc->queues[j]);
1411                }
1412        }
1413
1414        /* Finally restore interrupt states */
1415        for (i = 0; i <= xive->max_sbid; i++) {
1416                struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1417                if (!sb)
1418                        continue;
1419                for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1420                        xive_pre_save_unmask_irq(xive, sb, j);
1421        }
1422}
1423
1424static void xive_post_save_scan(struct kvmppc_xive *xive)
1425{
1426        u32 i, j;
1427
1428        /* Clear all the in_queue flags */
1429        for (i = 0; i <= xive->max_sbid; i++) {
1430                struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1431                if (!sb)
1432                        continue;
1433                for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1434                        sb->irq_state[j].in_queue = false;
1435        }
1436
1437        /* Next get_source() will do a new scan */
1438        xive->saved_src_count = 0;
1439}
1440
1441/*
1442 * This returns the source configuration and state to user space.
1443 */
1444static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1445{
1446        struct kvmppc_xive_src_block *sb;
1447        struct kvmppc_xive_irq_state *state;
1448        u64 __user *ubufp = (u64 __user *) addr;
1449        u64 val, prio;
1450        u16 idx;
1451
1452        sb = kvmppc_xive_find_source(xive, irq, &idx);
1453        if (!sb)
1454                return -ENOENT;
1455
1456        state = &sb->irq_state[idx];
1457
1458        if (!state->valid)
1459                return -ENOENT;
1460
1461        pr_devel("get_source(%ld)...\n", irq);
1462
1463        /*
1464         * So to properly save the state into something that looks like a
1465         * XICS migration stream we cannot treat interrupts individually.
1466         *
1467         * We need, instead, mask them all (& save their previous PQ state)
1468         * to get a stable state in the HW, then sync them to ensure that
1469         * any interrupt that had already fired hits its queue, and finally
1470         * scan all the queues to collect which interrupts are still present
1471         * in the queues, so we can set the "pending" flag on them and
1472         * they can be resent on restore.
1473         *
1474         * So we do it all when the "first" interrupt gets saved, all the
1475         * state is collected at that point, the rest of xive_get_source()
1476         * will merely collect and convert that state to the expected
1477         * userspace bit mask.
1478         */
1479        if (xive->saved_src_count == 0)
1480                xive_pre_save_scan(xive);
1481        xive->saved_src_count++;
1482
1483        /* Convert saved state into something compatible with xics */
1484        val = state->act_server;
1485        prio = state->saved_scan_prio;
1486
1487        if (prio == MASKED) {
1488                val |= KVM_XICS_MASKED;
1489                prio = state->saved_priority;
1490        }
1491        val |= prio << KVM_XICS_PRIORITY_SHIFT;
1492        if (state->lsi) {
1493                val |= KVM_XICS_LEVEL_SENSITIVE;
1494                if (state->saved_p)
1495                        val |= KVM_XICS_PENDING;
1496        } else {
1497                if (state->saved_p)
1498                        val |= KVM_XICS_PRESENTED;
1499
1500                if (state->saved_q)
1501                        val |= KVM_XICS_QUEUED;
1502
1503                /*
1504                 * We mark it pending (which will attempt a re-delivery)
1505                 * if we are in a queue *or* we were masked and had
1506                 * Q set which is equivalent to the XICS "masked pending"
1507                 * state
1508                 */
1509                if (state->in_queue || (prio == MASKED && state->saved_q))
1510                        val |= KVM_XICS_PENDING;
1511        }
1512
1513        /*
1514         * If that was the last interrupt saved, reset the
1515         * in_queue flags
1516         */
1517        if (xive->saved_src_count == xive->src_count)
1518                xive_post_save_scan(xive);
1519
1520        /* Copy the result to userspace */
1521        if (put_user(val, ubufp))
1522                return -EFAULT;
1523
1524        return 0;
1525}
1526
1527struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
1528        struct kvmppc_xive *xive, int irq)
1529{
1530        struct kvmppc_xive_src_block *sb;
1531        int i, bid;
1532
1533        bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1534
1535        mutex_lock(&xive->lock);
1536
1537        /* block already exists - somebody else got here first */
1538        if (xive->src_blocks[bid])
1539                goto out;
1540
1541        /* Create the ICS */
1542        sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1543        if (!sb)
1544                goto out;
1545
1546        sb->id = bid;
1547
1548        for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1549                sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1550                sb->irq_state[i].eisn = 0;
1551                sb->irq_state[i].guest_priority = MASKED;
1552                sb->irq_state[i].saved_priority = MASKED;
1553                sb->irq_state[i].act_priority = MASKED;
1554        }
1555        smp_wmb();
1556        xive->src_blocks[bid] = sb;
1557
1558        if (bid > xive->max_sbid)
1559                xive->max_sbid = bid;
1560
1561out:
1562        mutex_unlock(&xive->lock);
1563        return xive->src_blocks[bid];
1564}
1565
1566static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1567{
1568        struct kvm *kvm = xive->kvm;
1569        struct kvm_vcpu *vcpu = NULL;
1570        int i;
1571
1572        kvm_for_each_vcpu(i, vcpu, kvm) {
1573                struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1574
1575                if (!xc)
1576                        continue;
1577
1578                if (xc->delayed_irq == irq) {
1579                        xc->delayed_irq = 0;
1580                        xive->delayed_irqs--;
1581                        return true;
1582                }
1583        }
1584        return false;
1585}
1586
1587static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1588{
1589        struct kvmppc_xive_src_block *sb;
1590        struct kvmppc_xive_irq_state *state;
1591        u64 __user *ubufp = (u64 __user *) addr;
1592        u16 idx;
1593        u64 val;
1594        u8 act_prio, guest_prio;
1595        u32 server;
1596        int rc = 0;
1597
1598        if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1599                return -ENOENT;
1600
1601        pr_devel("set_source(irq=0x%lx)\n", irq);
1602
1603        /* Find the source */
1604        sb = kvmppc_xive_find_source(xive, irq, &idx);
1605        if (!sb) {
1606                pr_devel("No source, creating source block...\n");
1607                sb = kvmppc_xive_create_src_block(xive, irq);
1608                if (!sb) {
1609                        pr_devel("Failed to create block...\n");
1610                        return -ENOMEM;
1611                }
1612        }
1613        state = &sb->irq_state[idx];
1614
1615        /* Read user passed data */
1616        if (get_user(val, ubufp)) {
1617                pr_devel("fault getting user info !\n");
1618                return -EFAULT;
1619        }
1620
1621        server = val & KVM_XICS_DESTINATION_MASK;
1622        guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1623
1624        pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1625                 val, server, guest_prio);
1626
1627        /*
1628         * If the source doesn't already have an IPI, allocate
1629         * one and get the corresponding data
1630         */
1631        if (!state->ipi_number) {
1632                state->ipi_number = xive_native_alloc_irq();
1633                if (state->ipi_number == 0) {
1634                        pr_devel("Failed to allocate IPI !\n");
1635                        return -ENOMEM;
1636                }
1637                xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1638                pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1639        }
1640
1641        /*
1642         * We use lock_and_mask() to set us in the right masked
1643         * state. We will override that state from the saved state
1644         * further down, but this will handle the cases of interrupts
1645         * that need FW masking. We set the initial guest_priority to
1646         * 0 before calling it to ensure it actually performs the masking.
1647         */
1648        state->guest_priority = 0;
1649        xive_lock_and_mask(xive, sb, state);
1650
1651        /*
1652         * Now, we select a target if we have one. If we don't we
1653         * leave the interrupt untargetted. It means that an interrupt
1654         * can become "untargetted" accross migration if it was masked
1655         * by set_xive() but there is little we can do about it.
1656         */
1657
1658        /* First convert prio and mark interrupt as untargetted */
1659        act_prio = xive_prio_from_guest(guest_prio);
1660        state->act_priority = MASKED;
1661
1662        /*
1663         * We need to drop the lock due to the mutex below. Hopefully
1664         * nothing is touching that interrupt yet since it hasn't been
1665         * advertized to a running guest yet
1666         */
1667        arch_spin_unlock(&sb->lock);
1668
1669        /* If we have a priority target the interrupt */
1670        if (act_prio != MASKED) {
1671                /* First, check provisioning of queues */
1672                mutex_lock(&xive->lock);
1673                rc = xive_check_provisioning(xive->kvm, act_prio);
1674                mutex_unlock(&xive->lock);
1675
1676                /* Target interrupt */
1677                if (rc == 0)
1678                        rc = xive_target_interrupt(xive->kvm, state,
1679                                                   server, act_prio);
1680                /*
1681                 * If provisioning or targetting failed, leave it
1682                 * alone and masked. It will remain disabled until
1683                 * the guest re-targets it.
1684                 */
1685        }
1686
1687        /*
1688         * Find out if this was a delayed irq stashed in an ICP,
1689         * in which case, treat it as pending
1690         */
1691        if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1692                val |= KVM_XICS_PENDING;
1693                pr_devel("  Found delayed ! forcing PENDING !\n");
1694        }
1695
1696        /* Cleanup the SW state */
1697        state->old_p = false;
1698        state->old_q = false;
1699        state->lsi = false;
1700        state->asserted = false;
1701
1702        /* Restore LSI state */
1703        if (val & KVM_XICS_LEVEL_SENSITIVE) {
1704                state->lsi = true;
1705                if (val & KVM_XICS_PENDING)
1706                        state->asserted = true;
1707                pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1708        }
1709
1710        /*
1711         * Restore P and Q. If the interrupt was pending, we
1712         * force Q and !P, which will trigger a resend.
1713         *
1714         * That means that a guest that had both an interrupt
1715         * pending (queued) and Q set will restore with only
1716         * one instance of that interrupt instead of 2, but that
1717         * is perfectly fine as coalescing interrupts that haven't
1718         * been presented yet is always allowed.
1719         */
1720        if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1721                state->old_p = true;
1722        if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1723                state->old_q = true;
1724
1725        pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1726
1727        /*
1728         * If the interrupt was unmasked, update guest priority and
1729         * perform the appropriate state transition and do a
1730         * re-trigger if necessary.
1731         */
1732        if (val & KVM_XICS_MASKED) {
1733                pr_devel("  masked, saving prio\n");
1734                state->guest_priority = MASKED;
1735                state->saved_priority = guest_prio;
1736        } else {
1737                pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1738                xive_finish_unmask(xive, sb, state, guest_prio);
1739                state->saved_priority = guest_prio;
1740        }
1741
1742        /* Increment the number of valid sources and mark this one valid */
1743        if (!state->valid)
1744                xive->src_count++;
1745        state->valid = true;
1746
1747        return 0;
1748}
1749
1750int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1751                        bool line_status)
1752{
1753        struct kvmppc_xive *xive = kvm->arch.xive;
1754        struct kvmppc_xive_src_block *sb;
1755        struct kvmppc_xive_irq_state *state;
1756        u16 idx;
1757
1758        if (!xive)
1759                return -ENODEV;
1760
1761        sb = kvmppc_xive_find_source(xive, irq, &idx);
1762        if (!sb)
1763                return -EINVAL;
1764
1765        /* Perform locklessly .... (we need to do some RCUisms here...) */
1766        state = &sb->irq_state[idx];
1767        if (!state->valid)
1768                return -EINVAL;
1769
1770        /* We don't allow a trigger on a passed-through interrupt */
1771        if (state->pt_number)
1772                return -EINVAL;
1773
1774        if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1775                state->asserted = 1;
1776        else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1777                state->asserted = 0;
1778                return 0;
1779        }
1780
1781        /* Trigger the IPI */
1782        xive_irq_trigger(&state->ipi_data);
1783
1784        return 0;
1785}
1786
1787static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1788{
1789        struct kvmppc_xive *xive = dev->private;
1790
1791        /* We honor the existing XICS ioctl */
1792        switch (attr->group) {
1793        case KVM_DEV_XICS_GRP_SOURCES:
1794                return xive_set_source(xive, attr->attr, attr->addr);
1795        }
1796        return -ENXIO;
1797}
1798
1799static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1800{
1801        struct kvmppc_xive *xive = dev->private;
1802
1803        /* We honor the existing XICS ioctl */
1804        switch (attr->group) {
1805        case KVM_DEV_XICS_GRP_SOURCES:
1806                return xive_get_source(xive, attr->attr, attr->addr);
1807        }
1808        return -ENXIO;
1809}
1810
1811static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1812{
1813        /* We honor the same limits as XICS, at least for now */
1814        switch (attr->group) {
1815        case KVM_DEV_XICS_GRP_SOURCES:
1816                if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1817                    attr->attr < KVMPPC_XICS_NR_IRQS)
1818                        return 0;
1819                break;
1820        }
1821        return -ENXIO;
1822}
1823
1824static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1825{
1826        xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1827        xive_native_configure_irq(hw_num, 0, MASKED, 0);
1828}
1829
1830void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1831{
1832        int i;
1833
1834        for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1835                struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1836
1837                if (!state->valid)
1838                        continue;
1839
1840                kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1841                xive_cleanup_irq_data(&state->ipi_data);
1842                xive_native_free_irq(state->ipi_number);
1843
1844                /* Pass-through, cleanup too but keep IRQ hw data */
1845                if (state->pt_number)
1846                        kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1847
1848                state->valid = false;
1849        }
1850}
1851
1852/*
1853 * Called when device fd is closed.  kvm->lock is held.
1854 */
1855static void kvmppc_xive_release(struct kvm_device *dev)
1856{
1857        struct kvmppc_xive *xive = dev->private;
1858        struct kvm *kvm = xive->kvm;
1859        struct kvm_vcpu *vcpu;
1860        int i;
1861
1862        pr_devel("Releasing xive device\n");
1863
1864        /*
1865         * Since this is the device release function, we know that
1866         * userspace does not have any open fd referring to the
1867         * device.  Therefore there can not be any of the device
1868         * attribute set/get functions being executed concurrently,
1869         * and similarly, the connect_vcpu and set/clr_mapped
1870         * functions also cannot be being executed.
1871         */
1872
1873        debugfs_remove(xive->dentry);
1874
1875        /*
1876         * We should clean up the vCPU interrupt presenters first.
1877         */
1878        kvm_for_each_vcpu(i, vcpu, kvm) {
1879                /*
1880                 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
1881                 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
1882                 * Holding the vcpu->mutex also means that the vcpu cannot
1883                 * be executing the KVM_RUN ioctl, and therefore it cannot
1884                 * be executing the XIVE push or pull code or accessing
1885                 * the XIVE MMIO regions.
1886                 */
1887                mutex_lock(&vcpu->mutex);
1888                kvmppc_xive_cleanup_vcpu(vcpu);
1889                mutex_unlock(&vcpu->mutex);
1890        }
1891
1892        /*
1893         * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
1894         * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
1895         * against xive code getting called during vcpu execution or
1896         * set/get one_reg operations.
1897         */
1898        kvm->arch.xive = NULL;
1899
1900        /* Mask and free interrupts */
1901        for (i = 0; i <= xive->max_sbid; i++) {
1902                if (xive->src_blocks[i])
1903                        kvmppc_xive_free_sources(xive->src_blocks[i]);
1904                kfree(xive->src_blocks[i]);
1905                xive->src_blocks[i] = NULL;
1906        }
1907
1908        if (xive->vp_base != XIVE_INVALID_VP)
1909                xive_native_free_vp_block(xive->vp_base);
1910
1911        /*
1912         * A reference of the kvmppc_xive pointer is now kept under
1913         * the xive_devices struct of the machine for reuse. It is
1914         * freed when the VM is destroyed for now until we fix all the
1915         * execution paths.
1916         */
1917
1918        kfree(dev);
1919}
1920
1921/*
1922 * When the guest chooses the interrupt mode (XICS legacy or XIVE
1923 * native), the VM will switch of KVM device. The previous device will
1924 * be "released" before the new one is created.
1925 *
1926 * Until we are sure all execution paths are well protected, provide a
1927 * fail safe (transitional) method for device destruction, in which
1928 * the XIVE device pointer is recycled and not directly freed.
1929 */
1930struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
1931{
1932        struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
1933                &kvm->arch.xive_devices.native :
1934                &kvm->arch.xive_devices.xics_on_xive;
1935        struct kvmppc_xive *xive = *kvm_xive_device;
1936
1937        if (!xive) {
1938                xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1939                *kvm_xive_device = xive;
1940        } else {
1941                memset(xive, 0, sizeof(*xive));
1942        }
1943
1944        return xive;
1945}
1946
1947/*
1948 * Create a XICS device with XIVE backend.  kvm->lock is held.
1949 */
1950static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1951{
1952        struct kvmppc_xive *xive;
1953        struct kvm *kvm = dev->kvm;
1954        int ret = 0;
1955
1956        pr_devel("Creating xive for partition\n");
1957
1958        xive = kvmppc_xive_get_device(kvm, type);
1959        if (!xive)
1960                return -ENOMEM;
1961
1962        dev->private = xive;
1963        xive->dev = dev;
1964        xive->kvm = kvm;
1965        mutex_init(&xive->lock);
1966
1967        /* Already there ? */
1968        if (kvm->arch.xive)
1969                ret = -EEXIST;
1970        else
1971                kvm->arch.xive = xive;
1972
1973        /* We use the default queue size set by the host */
1974        xive->q_order = xive_native_default_eq_shift();
1975        if (xive->q_order < PAGE_SHIFT)
1976                xive->q_page_order = 0;
1977        else
1978                xive->q_page_order = xive->q_order - PAGE_SHIFT;
1979
1980        /* Allocate a bunch of VPs */
1981        xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1982        pr_devel("VP_Base=%x\n", xive->vp_base);
1983
1984        if (xive->vp_base == XIVE_INVALID_VP)
1985                ret = -ENOMEM;
1986
1987        xive->single_escalation = xive_native_has_single_escalation();
1988
1989        if (ret)
1990                return ret;
1991
1992        return 0;
1993}
1994
1995int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
1996{
1997        struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1998        unsigned int i;
1999
2000        for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2001                struct xive_q *q = &xc->queues[i];
2002                u32 i0, i1, idx;
2003
2004                if (!q->qpage && !xc->esc_virq[i])
2005                        continue;
2006
2007                seq_printf(m, " [q%d]: ", i);
2008
2009                if (q->qpage) {
2010                        idx = q->idx;
2011                        i0 = be32_to_cpup(q->qpage + idx);
2012                        idx = (idx + 1) & q->msk;
2013                        i1 = be32_to_cpup(q->qpage + idx);
2014                        seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2015                                   i0, i1);
2016                }
2017                if (xc->esc_virq[i]) {
2018                        struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
2019                        struct xive_irq_data *xd =
2020                                irq_data_get_irq_handler_data(d);
2021                        u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2022
2023                        seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
2024                                   (pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
2025                                   (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
2026                                   xc->esc_virq[i], pq, xd->eoi_page);
2027                        seq_puts(m, "\n");
2028                }
2029        }
2030        return 0;
2031}
2032
2033static int xive_debug_show(struct seq_file *m, void *private)
2034{
2035        struct kvmppc_xive *xive = m->private;
2036        struct kvm *kvm = xive->kvm;
2037        struct kvm_vcpu *vcpu;
2038        u64 t_rm_h_xirr = 0;
2039        u64 t_rm_h_ipoll = 0;
2040        u64 t_rm_h_cppr = 0;
2041        u64 t_rm_h_eoi = 0;
2042        u64 t_rm_h_ipi = 0;
2043        u64 t_vm_h_xirr = 0;
2044        u64 t_vm_h_ipoll = 0;
2045        u64 t_vm_h_cppr = 0;
2046        u64 t_vm_h_eoi = 0;
2047        u64 t_vm_h_ipi = 0;
2048        unsigned int i;
2049
2050        if (!kvm)
2051                return 0;
2052
2053        seq_printf(m, "=========\nVCPU state\n=========\n");
2054
2055        kvm_for_each_vcpu(i, vcpu, kvm) {
2056                struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2057
2058                if (!xc)
2059                        continue;
2060
2061                seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
2062                           " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2063                           xc->server_num, xc->cppr, xc->hw_cppr,
2064                           xc->mfrr, xc->pending,
2065                           xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2066
2067                kvmppc_xive_debug_show_queues(m, vcpu);
2068
2069                t_rm_h_xirr += xc->stat_rm_h_xirr;
2070                t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2071                t_rm_h_cppr += xc->stat_rm_h_cppr;
2072                t_rm_h_eoi += xc->stat_rm_h_eoi;
2073                t_rm_h_ipi += xc->stat_rm_h_ipi;
2074                t_vm_h_xirr += xc->stat_vm_h_xirr;
2075                t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2076                t_vm_h_cppr += xc->stat_vm_h_cppr;
2077                t_vm_h_eoi += xc->stat_vm_h_eoi;
2078                t_vm_h_ipi += xc->stat_vm_h_ipi;
2079        }
2080
2081        seq_printf(m, "Hcalls totals\n");
2082        seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2083        seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2084        seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2085        seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2086        seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2087
2088        return 0;
2089}
2090
2091DEFINE_SHOW_ATTRIBUTE(xive_debug);
2092
2093static void xive_debugfs_init(struct kvmppc_xive *xive)
2094{
2095        char *name;
2096
2097        name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
2098        if (!name) {
2099                pr_err("%s: no memory for name\n", __func__);
2100                return;
2101        }
2102
2103        xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
2104                                           xive, &xive_debug_fops);
2105
2106        pr_debug("%s: created %s\n", __func__, name);
2107        kfree(name);
2108}
2109
2110static void kvmppc_xive_init(struct kvm_device *dev)
2111{
2112        struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
2113
2114        /* Register some debug interfaces */
2115        xive_debugfs_init(xive);
2116}
2117
2118struct kvm_device_ops kvm_xive_ops = {
2119        .name = "kvm-xive",
2120        .create = kvmppc_xive_create,
2121        .init = kvmppc_xive_init,
2122        .release = kvmppc_xive_release,
2123        .set_attr = xive_set_attr,
2124        .get_attr = xive_get_attr,
2125        .has_attr = xive_has_attr,
2126};
2127
2128void kvmppc_xive_init_module(void)
2129{
2130        __xive_vm_h_xirr = xive_vm_h_xirr;
2131        __xive_vm_h_ipoll = xive_vm_h_ipoll;
2132        __xive_vm_h_ipi = xive_vm_h_ipi;
2133        __xive_vm_h_cppr = xive_vm_h_cppr;
2134        __xive_vm_h_eoi = xive_vm_h_eoi;
2135}
2136
2137void kvmppc_xive_exit_module(void)
2138{
2139        __xive_vm_h_xirr = NULL;
2140        __xive_vm_h_ipoll = NULL;
2141        __xive_vm_h_ipi = NULL;
2142        __xive_vm_h_cppr = NULL;
2143        __xive_vm_h_eoi = NULL;
2144}
2145