linux/arch/powerpc/mm/book3s64/pgtable.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/mm_types.h>
   8#include <linux/memblock.h>
   9#include <misc/cxl-base.h>
  10
  11#include <asm/pgalloc.h>
  12#include <asm/tlb.h>
  13#include <asm/trace.h>
  14#include <asm/powernv.h>
  15
  16#include <mm/mmu_decl.h>
  17#include <trace/events/thp.h>
  18
  19unsigned long __pmd_frag_nr;
  20EXPORT_SYMBOL(__pmd_frag_nr);
  21unsigned long __pmd_frag_size_shift;
  22EXPORT_SYMBOL(__pmd_frag_size_shift);
  23
  24int (*register_process_table)(unsigned long base, unsigned long page_size,
  25                              unsigned long tbl_size);
  26
  27#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  28/*
  29 * This is called when relaxing access to a hugepage. It's also called in the page
  30 * fault path when we don't hit any of the major fault cases, ie, a minor
  31 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
  32 * handled those two for us, we additionally deal with missing execute
  33 * permission here on some processors
  34 */
  35int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
  36                          pmd_t *pmdp, pmd_t entry, int dirty)
  37{
  38        int changed;
  39#ifdef CONFIG_DEBUG_VM
  40        WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
  41        assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
  42#endif
  43        changed = !pmd_same(*(pmdp), entry);
  44        if (changed) {
  45                /*
  46                 * We can use MMU_PAGE_2M here, because only radix
  47                 * path look at the psize.
  48                 */
  49                __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
  50                                        pmd_pte(entry), address, MMU_PAGE_2M);
  51        }
  52        return changed;
  53}
  54
  55int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  56                              unsigned long address, pmd_t *pmdp)
  57{
  58        return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
  59}
  60/*
  61 * set a new huge pmd. We should not be called for updating
  62 * an existing pmd entry. That should go via pmd_hugepage_update.
  63 */
  64void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  65                pmd_t *pmdp, pmd_t pmd)
  66{
  67#ifdef CONFIG_DEBUG_VM
  68        /*
  69         * Make sure hardware valid bit is not set. We don't do
  70         * tlb flush for this update.
  71         */
  72
  73        WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
  74        assert_spin_locked(pmd_lockptr(mm, pmdp));
  75        WARN_ON(!(pmd_large(pmd)));
  76#endif
  77        trace_hugepage_set_pmd(addr, pmd_val(pmd));
  78        return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
  79}
  80
  81static void do_nothing(void *unused)
  82{
  83
  84}
  85/*
  86 * Serialize against find_current_mm_pte which does lock-less
  87 * lookup in page tables with local interrupts disabled. For huge pages
  88 * it casts pmd_t to pte_t. Since format of pte_t is different from
  89 * pmd_t we want to prevent transit from pmd pointing to page table
  90 * to pmd pointing to huge page (and back) while interrupts are disabled.
  91 * We clear pmd to possibly replace it with page table pointer in
  92 * different code paths. So make sure we wait for the parallel
  93 * find_current_mm_pte to finish.
  94 */
  95void serialize_against_pte_lookup(struct mm_struct *mm)
  96{
  97        smp_mb();
  98        smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
  99}
 100
 101/*
 102 * We use this to invalidate a pmdp entry before switching from a
 103 * hugepte to regular pmd entry.
 104 */
 105pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 106                     pmd_t *pmdp)
 107{
 108        unsigned long old_pmd;
 109
 110        old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
 111        flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
 112        /*
 113         * This ensures that generic code that rely on IRQ disabling
 114         * to prevent a parallel THP split work as expected.
 115         *
 116         * Marking the entry with _PAGE_INVALID && ~_PAGE_PRESENT requires
 117         * a special case check in pmd_access_permitted.
 118         */
 119        serialize_against_pte_lookup(vma->vm_mm);
 120        return __pmd(old_pmd);
 121}
 122
 123static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
 124{
 125        return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
 126}
 127
 128pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
 129{
 130        unsigned long pmdv;
 131
 132        pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
 133        return pmd_set_protbits(__pmd(pmdv), pgprot);
 134}
 135
 136pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
 137{
 138        return pfn_pmd(page_to_pfn(page), pgprot);
 139}
 140
 141pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
 142{
 143        unsigned long pmdv;
 144
 145        pmdv = pmd_val(pmd);
 146        pmdv &= _HPAGE_CHG_MASK;
 147        return pmd_set_protbits(__pmd(pmdv), newprot);
 148}
 149
 150/*
 151 * This is called at the end of handling a user page fault, when the
 152 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
 153 * We use it to preload an HPTE into the hash table corresponding to
 154 * the updated linux HUGE PMD entry.
 155 */
 156void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 157                          pmd_t *pmd)
 158{
 159        if (radix_enabled())
 160                prefetch((void *)addr);
 161}
 162#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 163
 164/* For use by kexec */
 165void mmu_cleanup_all(void)
 166{
 167        if (radix_enabled())
 168                radix__mmu_cleanup_all();
 169        else if (mmu_hash_ops.hpte_clear_all)
 170                mmu_hash_ops.hpte_clear_all();
 171}
 172
 173#ifdef CONFIG_MEMORY_HOTPLUG
 174int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
 175{
 176        if (radix_enabled())
 177                return radix__create_section_mapping(start, end, nid);
 178
 179        return hash__create_section_mapping(start, end, nid);
 180}
 181
 182int __meminit remove_section_mapping(unsigned long start, unsigned long end)
 183{
 184        if (radix_enabled())
 185                return radix__remove_section_mapping(start, end);
 186
 187        return hash__remove_section_mapping(start, end);
 188}
 189#endif /* CONFIG_MEMORY_HOTPLUG */
 190
 191void __init mmu_partition_table_init(void)
 192{
 193        unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
 194        unsigned long ptcr;
 195
 196        BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
 197        /* Initialize the Partition Table with no entries */
 198        partition_tb = memblock_alloc(patb_size, patb_size);
 199        if (!partition_tb)
 200                panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 201                      __func__, patb_size, patb_size);
 202
 203        /*
 204         * update partition table control register,
 205         * 64 K size.
 206         */
 207        ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
 208        mtspr(SPRN_PTCR, ptcr);
 209        powernv_set_nmmu_ptcr(ptcr);
 210}
 211
 212void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
 213                                   unsigned long dw1)
 214{
 215        unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
 216
 217        partition_tb[lpid].patb0 = cpu_to_be64(dw0);
 218        partition_tb[lpid].patb1 = cpu_to_be64(dw1);
 219
 220        /*
 221         * Global flush of TLBs and partition table caches for this lpid.
 222         * The type of flush (hash or radix) depends on what the previous
 223         * use of this partition ID was, not the new use.
 224         */
 225        asm volatile("ptesync" : : : "memory");
 226        if (old & PATB_HR) {
 227                asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
 228                             "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
 229                asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
 230                             "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
 231                trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1);
 232        } else {
 233                asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
 234                             "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
 235                trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
 236        }
 237        /* do we need fixup here ?*/
 238        asm volatile("eieio; tlbsync; ptesync" : : : "memory");
 239}
 240EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
 241
 242static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
 243{
 244        void *pmd_frag, *ret;
 245
 246        if (PMD_FRAG_NR == 1)
 247                return NULL;
 248
 249        spin_lock(&mm->page_table_lock);
 250        ret = mm->context.pmd_frag;
 251        if (ret) {
 252                pmd_frag = ret + PMD_FRAG_SIZE;
 253                /*
 254                 * If we have taken up all the fragments mark PTE page NULL
 255                 */
 256                if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
 257                        pmd_frag = NULL;
 258                mm->context.pmd_frag = pmd_frag;
 259        }
 260        spin_unlock(&mm->page_table_lock);
 261        return (pmd_t *)ret;
 262}
 263
 264static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
 265{
 266        void *ret = NULL;
 267        struct page *page;
 268        gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
 269
 270        if (mm == &init_mm)
 271                gfp &= ~__GFP_ACCOUNT;
 272        page = alloc_page(gfp);
 273        if (!page)
 274                return NULL;
 275        if (!pgtable_pmd_page_ctor(page)) {
 276                __free_pages(page, 0);
 277                return NULL;
 278        }
 279
 280        atomic_set(&page->pt_frag_refcount, 1);
 281
 282        ret = page_address(page);
 283        /*
 284         * if we support only one fragment just return the
 285         * allocated page.
 286         */
 287        if (PMD_FRAG_NR == 1)
 288                return ret;
 289
 290        spin_lock(&mm->page_table_lock);
 291        /*
 292         * If we find pgtable_page set, we return
 293         * the allocated page with single fragement
 294         * count.
 295         */
 296        if (likely(!mm->context.pmd_frag)) {
 297                atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
 298                mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
 299        }
 300        spin_unlock(&mm->page_table_lock);
 301
 302        return (pmd_t *)ret;
 303}
 304
 305pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
 306{
 307        pmd_t *pmd;
 308
 309        pmd = get_pmd_from_cache(mm);
 310        if (pmd)
 311                return pmd;
 312
 313        return __alloc_for_pmdcache(mm);
 314}
 315
 316void pmd_fragment_free(unsigned long *pmd)
 317{
 318        struct page *page = virt_to_page(pmd);
 319
 320        BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
 321        if (atomic_dec_and_test(&page->pt_frag_refcount)) {
 322                pgtable_pmd_page_dtor(page);
 323                __free_page(page);
 324        }
 325}
 326
 327static inline void pgtable_free(void *table, int index)
 328{
 329        switch (index) {
 330        case PTE_INDEX:
 331                pte_fragment_free(table, 0);
 332                break;
 333        case PMD_INDEX:
 334                pmd_fragment_free(table);
 335                break;
 336        case PUD_INDEX:
 337                kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
 338                break;
 339#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
 340                /* 16M hugepd directory at pud level */
 341        case HTLB_16M_INDEX:
 342                BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
 343                kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
 344                break;
 345                /* 16G hugepd directory at the pgd level */
 346        case HTLB_16G_INDEX:
 347                BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
 348                kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
 349                break;
 350#endif
 351                /* We don't free pgd table via RCU callback */
 352        default:
 353                BUG();
 354        }
 355}
 356
 357#ifdef CONFIG_SMP
 358void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
 359{
 360        unsigned long pgf = (unsigned long)table;
 361
 362        BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
 363        pgf |= index;
 364        tlb_remove_table(tlb, (void *)pgf);
 365}
 366
 367void __tlb_remove_table(void *_table)
 368{
 369        void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
 370        unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
 371
 372        return pgtable_free(table, index);
 373}
 374#else
 375void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
 376{
 377        return pgtable_free(table, index);
 378}
 379#endif
 380
 381#ifdef CONFIG_PROC_FS
 382atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
 383
 384void arch_report_meminfo(struct seq_file *m)
 385{
 386        /*
 387         * Hash maps the memory with one size mmu_linear_psize.
 388         * So don't bother to print these on hash
 389         */
 390        if (!radix_enabled())
 391                return;
 392        seq_printf(m, "DirectMap4k:    %8lu kB\n",
 393                   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
 394        seq_printf(m, "DirectMap64k:    %8lu kB\n",
 395                   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
 396        seq_printf(m, "DirectMap2M:    %8lu kB\n",
 397                   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
 398        seq_printf(m, "DirectMap1G:    %8lu kB\n",
 399                   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
 400}
 401#endif /* CONFIG_PROC_FS */
 402
 403pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
 404                             pte_t *ptep)
 405{
 406        unsigned long pte_val;
 407
 408        /*
 409         * Clear the _PAGE_PRESENT so that no hardware parallel update is
 410         * possible. Also keep the pte_present true so that we don't take
 411         * wrong fault.
 412         */
 413        pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
 414
 415        return __pte(pte_val);
 416
 417}
 418
 419void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
 420                             pte_t *ptep, pte_t old_pte, pte_t pte)
 421{
 422        if (radix_enabled())
 423                return radix__ptep_modify_prot_commit(vma, addr,
 424                                                      ptep, old_pte, pte);
 425        set_pte_at(vma->vm_mm, addr, ptep, pte);
 426}
 427
 428/*
 429 * For hash translation mode, we use the deposited table to store hash slot
 430 * information and they are stored at PTRS_PER_PMD offset from related pmd
 431 * location. Hence a pmd move requires deposit and withdraw.
 432 *
 433 * For radix translation with split pmd ptl, we store the deposited table in the
 434 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
 435 * move.
 436 *
 437 * With hash we use deposited table always irrespective of anon or not.
 438 * With radix we use deposited table only for anonymous mapping.
 439 */
 440int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
 441                           struct spinlock *old_pmd_ptl,
 442                           struct vm_area_struct *vma)
 443{
 444        if (radix_enabled())
 445                return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
 446
 447        return true;
 448}
 449
 450int ioremap_range(unsigned long ea, phys_addr_t pa, unsigned long size, pgprot_t prot, int nid)
 451{
 452        unsigned long i;
 453
 454        if (radix_enabled())
 455                return radix__ioremap_range(ea, pa, size, prot, nid);
 456
 457        for (i = 0; i < size; i += PAGE_SIZE) {
 458                int err = map_kernel_page(ea + i, pa + i, prot);
 459                if (err) {
 460                        if (slab_is_available())
 461                                unmap_kernel_range(ea, size);
 462                        else
 463                                WARN_ON_ONCE(1); /* Should clean up */
 464                        return err;
 465                }
 466        }
 467
 468        return 0;
 469}
 470