linux/arch/powerpc/mm/book3s64/pkeys.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * PowerPC Memory Protection Keys management
   4 *
   5 * Copyright 2017, Ram Pai, IBM Corporation.
   6 */
   7
   8#include <asm/mman.h>
   9#include <asm/mmu_context.h>
  10#include <asm/mmu.h>
  11#include <asm/setup.h>
  12#include <linux/pkeys.h>
  13#include <linux/of_device.h>
  14
  15DEFINE_STATIC_KEY_TRUE(pkey_disabled);
  16int  pkeys_total;               /* Total pkeys as per device tree */
  17u32  initial_allocation_mask;   /* Bits set for the initially allocated keys */
  18u32  reserved_allocation_mask;  /* Bits set for reserved keys */
  19static bool pkey_execute_disable_supported;
  20static bool pkeys_devtree_defined;      /* property exported by device tree */
  21static u64 pkey_amr_mask;               /* Bits in AMR not to be touched */
  22static u64 pkey_iamr_mask;              /* Bits in AMR not to be touched */
  23static u64 pkey_uamor_mask;             /* Bits in UMOR not to be touched */
  24static int execute_only_key = 2;
  25
  26#define AMR_BITS_PER_PKEY 2
  27#define AMR_RD_BIT 0x1UL
  28#define AMR_WR_BIT 0x2UL
  29#define IAMR_EX_BIT 0x1UL
  30#define PKEY_REG_BITS (sizeof(u64)*8)
  31#define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
  32
  33static void scan_pkey_feature(void)
  34{
  35        u32 vals[2];
  36        struct device_node *cpu;
  37
  38        cpu = of_find_node_by_type(NULL, "cpu");
  39        if (!cpu)
  40                return;
  41
  42        if (of_property_read_u32_array(cpu,
  43                        "ibm,processor-storage-keys", vals, 2))
  44                return;
  45
  46        /*
  47         * Since any pkey can be used for data or execute, we will just treat
  48         * all keys as equal and track them as one entity.
  49         */
  50        pkeys_total = vals[0];
  51        pkeys_devtree_defined = true;
  52}
  53
  54static inline bool pkey_mmu_enabled(void)
  55{
  56        if (firmware_has_feature(FW_FEATURE_LPAR))
  57                return pkeys_total;
  58        else
  59                return cpu_has_feature(CPU_FTR_PKEY);
  60}
  61
  62static int pkey_initialize(void)
  63{
  64        int os_reserved, i;
  65
  66        /*
  67         * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
  68         * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
  69         * Ensure that the bits a distinct.
  70         */
  71        BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
  72                     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
  73
  74        /*
  75         * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
  76         * in the vmaflag. Make sure that is really the case.
  77         */
  78        BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
  79                     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
  80                                != (sizeof(u64) * BITS_PER_BYTE));
  81
  82        /* scan the device tree for pkey feature */
  83        scan_pkey_feature();
  84
  85        /*
  86         * Let's assume 32 pkeys on P8 bare metal, if its not defined by device
  87         * tree. We make this exception since skiboot forgot to expose this
  88         * property on power8.
  89         */
  90        if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR) &&
  91                        cpu_has_feature(CPU_FTRS_POWER8))
  92                pkeys_total = 32;
  93
  94        /*
  95         * Adjust the upper limit, based on the number of bits supported by
  96         * arch-neutral code.
  97         */
  98        pkeys_total = min_t(int, pkeys_total,
  99                        ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)+1));
 100
 101        if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total)
 102                static_branch_enable(&pkey_disabled);
 103        else
 104                static_branch_disable(&pkey_disabled);
 105
 106        if (static_branch_likely(&pkey_disabled))
 107                return 0;
 108
 109        /*
 110         * The device tree cannot be relied to indicate support for
 111         * execute_disable support. Instead we use a PVR check.
 112         */
 113        if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
 114                pkey_execute_disable_supported = false;
 115        else
 116                pkey_execute_disable_supported = true;
 117
 118#ifdef CONFIG_PPC_4K_PAGES
 119        /*
 120         * The OS can manage only 8 pkeys due to its inability to represent them
 121         * in the Linux 4K PTE.
 122         */
 123        os_reserved = pkeys_total - 8;
 124#else
 125        os_reserved = 0;
 126#endif
 127        /* Bits are in LE format. */
 128        reserved_allocation_mask = (0x1 << 1) | (0x1 << execute_only_key);
 129
 130        /* register mask is in BE format */
 131        pkey_amr_mask = ~0x0ul;
 132        pkey_amr_mask &= ~(0x3ul << pkeyshift(0));
 133
 134        pkey_iamr_mask = ~0x0ul;
 135        pkey_iamr_mask &= ~(0x3ul << pkeyshift(0));
 136        pkey_iamr_mask &= ~(0x3ul << pkeyshift(execute_only_key));
 137
 138        pkey_uamor_mask = ~0x0ul;
 139        pkey_uamor_mask &= ~(0x3ul << pkeyshift(0));
 140        pkey_uamor_mask &= ~(0x3ul << pkeyshift(execute_only_key));
 141
 142        /* mark the rest of the keys as reserved and hence unavailable */
 143        for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) {
 144                reserved_allocation_mask |= (0x1 << i);
 145                pkey_uamor_mask &= ~(0x3ul << pkeyshift(i));
 146        }
 147        initial_allocation_mask = reserved_allocation_mask | (0x1 << 0);
 148
 149        if (unlikely((pkeys_total - os_reserved) <= execute_only_key)) {
 150                /*
 151                 * Insufficient number of keys to support
 152                 * execute only key. Mark it unavailable.
 153                 * Any AMR, UAMOR, IAMR bit set for
 154                 * this key is irrelevant since this key
 155                 * can never be allocated.
 156                 */
 157                execute_only_key = -1;
 158        }
 159
 160        return 0;
 161}
 162
 163arch_initcall(pkey_initialize);
 164
 165void pkey_mm_init(struct mm_struct *mm)
 166{
 167        if (static_branch_likely(&pkey_disabled))
 168                return;
 169        mm_pkey_allocation_map(mm) = initial_allocation_mask;
 170        mm->context.execute_only_pkey = execute_only_key;
 171}
 172
 173static inline u64 read_amr(void)
 174{
 175        return mfspr(SPRN_AMR);
 176}
 177
 178static inline void write_amr(u64 value)
 179{
 180        mtspr(SPRN_AMR, value);
 181}
 182
 183static inline u64 read_iamr(void)
 184{
 185        if (!likely(pkey_execute_disable_supported))
 186                return 0x0UL;
 187
 188        return mfspr(SPRN_IAMR);
 189}
 190
 191static inline void write_iamr(u64 value)
 192{
 193        if (!likely(pkey_execute_disable_supported))
 194                return;
 195
 196        mtspr(SPRN_IAMR, value);
 197}
 198
 199static inline u64 read_uamor(void)
 200{
 201        return mfspr(SPRN_UAMOR);
 202}
 203
 204static inline void write_uamor(u64 value)
 205{
 206        mtspr(SPRN_UAMOR, value);
 207}
 208
 209static bool is_pkey_enabled(int pkey)
 210{
 211        u64 uamor = read_uamor();
 212        u64 pkey_bits = 0x3ul << pkeyshift(pkey);
 213        u64 uamor_pkey_bits = (uamor & pkey_bits);
 214
 215        /*
 216         * Both the bits in UAMOR corresponding to the key should be set or
 217         * reset.
 218         */
 219        WARN_ON(uamor_pkey_bits && (uamor_pkey_bits != pkey_bits));
 220        return !!(uamor_pkey_bits);
 221}
 222
 223static inline void init_amr(int pkey, u8 init_bits)
 224{
 225        u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
 226        u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
 227
 228        write_amr(old_amr | new_amr_bits);
 229}
 230
 231static inline void init_iamr(int pkey, u8 init_bits)
 232{
 233        u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
 234        u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
 235
 236        write_iamr(old_iamr | new_iamr_bits);
 237}
 238
 239/*
 240 * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
 241 * specified in @init_val.
 242 */
 243int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
 244                                unsigned long init_val)
 245{
 246        u64 new_amr_bits = 0x0ul;
 247        u64 new_iamr_bits = 0x0ul;
 248
 249        if (!is_pkey_enabled(pkey))
 250                return -EINVAL;
 251
 252        if (init_val & PKEY_DISABLE_EXECUTE) {
 253                if (!pkey_execute_disable_supported)
 254                        return -EINVAL;
 255                new_iamr_bits |= IAMR_EX_BIT;
 256        }
 257        init_iamr(pkey, new_iamr_bits);
 258
 259        /* Set the bits we need in AMR: */
 260        if (init_val & PKEY_DISABLE_ACCESS)
 261                new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
 262        else if (init_val & PKEY_DISABLE_WRITE)
 263                new_amr_bits |= AMR_WR_BIT;
 264
 265        init_amr(pkey, new_amr_bits);
 266        return 0;
 267}
 268
 269void thread_pkey_regs_save(struct thread_struct *thread)
 270{
 271        if (static_branch_likely(&pkey_disabled))
 272                return;
 273
 274        /*
 275         * TODO: Skip saving registers if @thread hasn't used any keys yet.
 276         */
 277        thread->amr = read_amr();
 278        thread->iamr = read_iamr();
 279        thread->uamor = read_uamor();
 280}
 281
 282void thread_pkey_regs_restore(struct thread_struct *new_thread,
 283                              struct thread_struct *old_thread)
 284{
 285        if (static_branch_likely(&pkey_disabled))
 286                return;
 287
 288        if (old_thread->amr != new_thread->amr)
 289                write_amr(new_thread->amr);
 290        if (old_thread->iamr != new_thread->iamr)
 291                write_iamr(new_thread->iamr);
 292        if (old_thread->uamor != new_thread->uamor)
 293                write_uamor(new_thread->uamor);
 294}
 295
 296void thread_pkey_regs_init(struct thread_struct *thread)
 297{
 298        if (static_branch_likely(&pkey_disabled))
 299                return;
 300
 301        thread->amr = pkey_amr_mask;
 302        thread->iamr = pkey_iamr_mask;
 303        thread->uamor = pkey_uamor_mask;
 304
 305        write_uamor(pkey_uamor_mask);
 306        write_amr(pkey_amr_mask);
 307        write_iamr(pkey_iamr_mask);
 308}
 309
 310static inline bool pkey_allows_readwrite(int pkey)
 311{
 312        int pkey_shift = pkeyshift(pkey);
 313
 314        if (!is_pkey_enabled(pkey))
 315                return true;
 316
 317        return !(read_amr() & ((AMR_RD_BIT|AMR_WR_BIT) << pkey_shift));
 318}
 319
 320int __execute_only_pkey(struct mm_struct *mm)
 321{
 322        return mm->context.execute_only_pkey;
 323}
 324
 325static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
 326{
 327        /* Do this check first since the vm_flags should be hot */
 328        if ((vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) != VM_EXEC)
 329                return false;
 330
 331        return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
 332}
 333
 334/*
 335 * This should only be called for *plain* mprotect calls.
 336 */
 337int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
 338                                  int pkey)
 339{
 340        /*
 341         * If the currently associated pkey is execute-only, but the requested
 342         * protection is not execute-only, move it back to the default pkey.
 343         */
 344        if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
 345                return 0;
 346
 347        /*
 348         * The requested protection is execute-only. Hence let's use an
 349         * execute-only pkey.
 350         */
 351        if (prot == PROT_EXEC) {
 352                pkey = execute_only_pkey(vma->vm_mm);
 353                if (pkey > 0)
 354                        return pkey;
 355        }
 356
 357        /* Nothing to override. */
 358        return vma_pkey(vma);
 359}
 360
 361static bool pkey_access_permitted(int pkey, bool write, bool execute)
 362{
 363        int pkey_shift;
 364        u64 amr;
 365
 366        if (!is_pkey_enabled(pkey))
 367                return true;
 368
 369        pkey_shift = pkeyshift(pkey);
 370        if (execute && !(read_iamr() & (IAMR_EX_BIT << pkey_shift)))
 371                return true;
 372
 373        amr = read_amr(); /* Delay reading amr until absolutely needed */
 374        return ((!write && !(amr & (AMR_RD_BIT << pkey_shift))) ||
 375                (write &&  !(amr & (AMR_WR_BIT << pkey_shift))));
 376}
 377
 378bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
 379{
 380        if (static_branch_likely(&pkey_disabled))
 381                return true;
 382
 383        return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
 384}
 385
 386/*
 387 * We only want to enforce protection keys on the current thread because we
 388 * effectively have no access to AMR/IAMR for other threads or any way to tell
 389 * which AMR/IAMR in a threaded process we could use.
 390 *
 391 * So do not enforce things if the VMA is not from the current mm, or if we are
 392 * in a kernel thread.
 393 */
 394static inline bool vma_is_foreign(struct vm_area_struct *vma)
 395{
 396        if (!current->mm)
 397                return true;
 398
 399        /* if it is not our ->mm, it has to be foreign */
 400        if (current->mm != vma->vm_mm)
 401                return true;
 402
 403        return false;
 404}
 405
 406bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
 407                               bool execute, bool foreign)
 408{
 409        if (static_branch_likely(&pkey_disabled))
 410                return true;
 411        /*
 412         * Do not enforce our key-permissions on a foreign vma.
 413         */
 414        if (foreign || vma_is_foreign(vma))
 415                return true;
 416
 417        return pkey_access_permitted(vma_pkey(vma), write, execute);
 418}
 419
 420void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
 421{
 422        if (static_branch_likely(&pkey_disabled))
 423                return;
 424
 425        /* Duplicate the oldmm pkey state in mm: */
 426        mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
 427        mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
 428}
 429