linux/arch/powerpc/mm/book3s64/radix_pgtable.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Page table handling routines for radix page table.
   4 *
   5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
   6 */
   7
   8#define pr_fmt(fmt) "radix-mmu: " fmt
   9
  10#include <linux/io.h>
  11#include <linux/kernel.h>
  12#include <linux/sched/mm.h>
  13#include <linux/memblock.h>
  14#include <linux/of_fdt.h>
  15#include <linux/mm.h>
  16#include <linux/string_helpers.h>
  17#include <linux/stop_machine.h>
  18
  19#include <asm/pgtable.h>
  20#include <asm/pgalloc.h>
  21#include <asm/mmu_context.h>
  22#include <asm/dma.h>
  23#include <asm/machdep.h>
  24#include <asm/mmu.h>
  25#include <asm/firmware.h>
  26#include <asm/powernv.h>
  27#include <asm/sections.h>
  28#include <asm/trace.h>
  29#include <asm/uaccess.h>
  30
  31#include <trace/events/thp.h>
  32
  33unsigned int mmu_pid_bits;
  34unsigned int mmu_base_pid;
  35
  36static int native_register_process_table(unsigned long base, unsigned long pg_sz,
  37                                         unsigned long table_size)
  38{
  39        unsigned long patb0, patb1;
  40
  41        patb0 = be64_to_cpu(partition_tb[0].patb0);
  42        patb1 = base | table_size | PATB_GR;
  43
  44        mmu_partition_table_set_entry(0, patb0, patb1);
  45
  46        return 0;
  47}
  48
  49static __ref void *early_alloc_pgtable(unsigned long size, int nid,
  50                        unsigned long region_start, unsigned long region_end)
  51{
  52        phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
  53        phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
  54        void *ptr;
  55
  56        if (region_start)
  57                min_addr = region_start;
  58        if (region_end)
  59                max_addr = region_end;
  60
  61        ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
  62
  63        if (!ptr)
  64                panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
  65                      __func__, size, size, nid, &min_addr, &max_addr);
  66
  67        return ptr;
  68}
  69
  70static int early_map_kernel_page(unsigned long ea, unsigned long pa,
  71                          pgprot_t flags,
  72                          unsigned int map_page_size,
  73                          int nid,
  74                          unsigned long region_start, unsigned long region_end)
  75{
  76        unsigned long pfn = pa >> PAGE_SHIFT;
  77        pgd_t *pgdp;
  78        pud_t *pudp;
  79        pmd_t *pmdp;
  80        pte_t *ptep;
  81
  82        pgdp = pgd_offset_k(ea);
  83        if (pgd_none(*pgdp)) {
  84                pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
  85                                                region_start, region_end);
  86                pgd_populate(&init_mm, pgdp, pudp);
  87        }
  88        pudp = pud_offset(pgdp, ea);
  89        if (map_page_size == PUD_SIZE) {
  90                ptep = (pte_t *)pudp;
  91                goto set_the_pte;
  92        }
  93        if (pud_none(*pudp)) {
  94                pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
  95                                                region_start, region_end);
  96                pud_populate(&init_mm, pudp, pmdp);
  97        }
  98        pmdp = pmd_offset(pudp, ea);
  99        if (map_page_size == PMD_SIZE) {
 100                ptep = pmdp_ptep(pmdp);
 101                goto set_the_pte;
 102        }
 103        if (!pmd_present(*pmdp)) {
 104                ptep = early_alloc_pgtable(PAGE_SIZE, nid,
 105                                                region_start, region_end);
 106                pmd_populate_kernel(&init_mm, pmdp, ptep);
 107        }
 108        ptep = pte_offset_kernel(pmdp, ea);
 109
 110set_the_pte:
 111        set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
 112        smp_wmb();
 113        return 0;
 114}
 115
 116/*
 117 * nid, region_start, and region_end are hints to try to place the page
 118 * table memory in the same node or region.
 119 */
 120static int __map_kernel_page(unsigned long ea, unsigned long pa,
 121                          pgprot_t flags,
 122                          unsigned int map_page_size,
 123                          int nid,
 124                          unsigned long region_start, unsigned long region_end)
 125{
 126        unsigned long pfn = pa >> PAGE_SHIFT;
 127        pgd_t *pgdp;
 128        pud_t *pudp;
 129        pmd_t *pmdp;
 130        pte_t *ptep;
 131        /*
 132         * Make sure task size is correct as per the max adddr
 133         */
 134        BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
 135
 136#ifdef CONFIG_PPC_64K_PAGES
 137        BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
 138#endif
 139
 140        if (unlikely(!slab_is_available()))
 141                return early_map_kernel_page(ea, pa, flags, map_page_size,
 142                                                nid, region_start, region_end);
 143
 144        /*
 145         * Should make page table allocation functions be able to take a
 146         * node, so we can place kernel page tables on the right nodes after
 147         * boot.
 148         */
 149        pgdp = pgd_offset_k(ea);
 150        pudp = pud_alloc(&init_mm, pgdp, ea);
 151        if (!pudp)
 152                return -ENOMEM;
 153        if (map_page_size == PUD_SIZE) {
 154                ptep = (pte_t *)pudp;
 155                goto set_the_pte;
 156        }
 157        pmdp = pmd_alloc(&init_mm, pudp, ea);
 158        if (!pmdp)
 159                return -ENOMEM;
 160        if (map_page_size == PMD_SIZE) {
 161                ptep = pmdp_ptep(pmdp);
 162                goto set_the_pte;
 163        }
 164        ptep = pte_alloc_kernel(pmdp, ea);
 165        if (!ptep)
 166                return -ENOMEM;
 167
 168set_the_pte:
 169        set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
 170        smp_wmb();
 171        return 0;
 172}
 173
 174int radix__map_kernel_page(unsigned long ea, unsigned long pa,
 175                          pgprot_t flags,
 176                          unsigned int map_page_size)
 177{
 178        return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
 179}
 180
 181#ifdef CONFIG_STRICT_KERNEL_RWX
 182void radix__change_memory_range(unsigned long start, unsigned long end,
 183                                unsigned long clear)
 184{
 185        unsigned long idx;
 186        pgd_t *pgdp;
 187        pud_t *pudp;
 188        pmd_t *pmdp;
 189        pte_t *ptep;
 190
 191        start = ALIGN_DOWN(start, PAGE_SIZE);
 192        end = PAGE_ALIGN(end); // aligns up
 193
 194        pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
 195                 start, end, clear);
 196
 197        for (idx = start; idx < end; idx += PAGE_SIZE) {
 198                pgdp = pgd_offset_k(idx);
 199                pudp = pud_alloc(&init_mm, pgdp, idx);
 200                if (!pudp)
 201                        continue;
 202                if (pud_is_leaf(*pudp)) {
 203                        ptep = (pte_t *)pudp;
 204                        goto update_the_pte;
 205                }
 206                pmdp = pmd_alloc(&init_mm, pudp, idx);
 207                if (!pmdp)
 208                        continue;
 209                if (pmd_is_leaf(*pmdp)) {
 210                        ptep = pmdp_ptep(pmdp);
 211                        goto update_the_pte;
 212                }
 213                ptep = pte_alloc_kernel(pmdp, idx);
 214                if (!ptep)
 215                        continue;
 216update_the_pte:
 217                radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
 218        }
 219
 220        radix__flush_tlb_kernel_range(start, end);
 221}
 222
 223void radix__mark_rodata_ro(void)
 224{
 225        unsigned long start, end;
 226
 227        start = (unsigned long)_stext;
 228        end = (unsigned long)__init_begin;
 229
 230        radix__change_memory_range(start, end, _PAGE_WRITE);
 231}
 232
 233void radix__mark_initmem_nx(void)
 234{
 235        unsigned long start = (unsigned long)__init_begin;
 236        unsigned long end = (unsigned long)__init_end;
 237
 238        radix__change_memory_range(start, end, _PAGE_EXEC);
 239}
 240#endif /* CONFIG_STRICT_KERNEL_RWX */
 241
 242static inline void __meminit
 243print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
 244{
 245        char buf[10];
 246
 247        if (end <= start)
 248                return;
 249
 250        string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
 251
 252        pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
 253                exec ? " (exec)" : "");
 254}
 255
 256static unsigned long next_boundary(unsigned long addr, unsigned long end)
 257{
 258#ifdef CONFIG_STRICT_KERNEL_RWX
 259        if (addr < __pa_symbol(__init_begin))
 260                return __pa_symbol(__init_begin);
 261#endif
 262        return end;
 263}
 264
 265static int __meminit create_physical_mapping(unsigned long start,
 266                                             unsigned long end,
 267                                             int nid)
 268{
 269        unsigned long vaddr, addr, mapping_size = 0;
 270        bool prev_exec, exec = false;
 271        pgprot_t prot;
 272        int psize;
 273
 274        start = _ALIGN_UP(start, PAGE_SIZE);
 275        for (addr = start; addr < end; addr += mapping_size) {
 276                unsigned long gap, previous_size;
 277                int rc;
 278
 279                gap = next_boundary(addr, end) - addr;
 280                previous_size = mapping_size;
 281                prev_exec = exec;
 282
 283                if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
 284                    mmu_psize_defs[MMU_PAGE_1G].shift) {
 285                        mapping_size = PUD_SIZE;
 286                        psize = MMU_PAGE_1G;
 287                } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
 288                           mmu_psize_defs[MMU_PAGE_2M].shift) {
 289                        mapping_size = PMD_SIZE;
 290                        psize = MMU_PAGE_2M;
 291                } else {
 292                        mapping_size = PAGE_SIZE;
 293                        psize = mmu_virtual_psize;
 294                }
 295
 296                vaddr = (unsigned long)__va(addr);
 297
 298                if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
 299                    overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
 300                        prot = PAGE_KERNEL_X;
 301                        exec = true;
 302                } else {
 303                        prot = PAGE_KERNEL;
 304                        exec = false;
 305                }
 306
 307                if (mapping_size != previous_size || exec != prev_exec) {
 308                        print_mapping(start, addr, previous_size, prev_exec);
 309                        start = addr;
 310                }
 311
 312                rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
 313                if (rc)
 314                        return rc;
 315
 316                update_page_count(psize, 1);
 317        }
 318
 319        print_mapping(start, addr, mapping_size, exec);
 320        return 0;
 321}
 322
 323static void __init radix_init_pgtable(void)
 324{
 325        unsigned long rts_field;
 326        struct memblock_region *reg;
 327
 328        /* We don't support slb for radix */
 329        mmu_slb_size = 0;
 330        /*
 331         * Create the linear mapping, using standard page size for now
 332         */
 333        for_each_memblock(memory, reg) {
 334                /*
 335                 * The memblock allocator  is up at this point, so the
 336                 * page tables will be allocated within the range. No
 337                 * need or a node (which we don't have yet).
 338                 */
 339
 340                if ((reg->base + reg->size) >= RADIX_VMALLOC_START) {
 341                        pr_warn("Outside the supported range\n");
 342                        continue;
 343                }
 344
 345                WARN_ON(create_physical_mapping(reg->base,
 346                                                reg->base + reg->size,
 347                                                -1));
 348        }
 349
 350        /* Find out how many PID bits are supported */
 351        if (cpu_has_feature(CPU_FTR_HVMODE)) {
 352                if (!mmu_pid_bits)
 353                        mmu_pid_bits = 20;
 354#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 355                /*
 356                 * When KVM is possible, we only use the top half of the
 357                 * PID space to avoid collisions between host and guest PIDs
 358                 * which can cause problems due to prefetch when exiting the
 359                 * guest with AIL=3
 360                 */
 361                mmu_base_pid = 1 << (mmu_pid_bits - 1);
 362#else
 363                mmu_base_pid = 1;
 364#endif
 365        } else {
 366                /* The guest uses the bottom half of the PID space */
 367                if (!mmu_pid_bits)
 368                        mmu_pid_bits = 19;
 369                mmu_base_pid = 1;
 370        }
 371
 372        /*
 373         * Allocate Partition table and process table for the
 374         * host.
 375         */
 376        BUG_ON(PRTB_SIZE_SHIFT > 36);
 377        process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
 378        /*
 379         * Fill in the process table.
 380         */
 381        rts_field = radix__get_tree_size();
 382        process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
 383        /*
 384         * Fill in the partition table. We are suppose to use effective address
 385         * of process table here. But our linear mapping also enable us to use
 386         * physical address here.
 387         */
 388        register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
 389        pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
 390        asm volatile("ptesync" : : : "memory");
 391        asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
 392                     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
 393        asm volatile("eieio; tlbsync; ptesync" : : : "memory");
 394        trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
 395
 396        /*
 397         * The init_mm context is given the first available (non-zero) PID,
 398         * which is the "guard PID" and contains no page table. PIDR should
 399         * never be set to zero because that duplicates the kernel address
 400         * space at the 0x0... offset (quadrant 0)!
 401         *
 402         * An arbitrary PID that may later be allocated by the PID allocator
 403         * for userspace processes must not be used either, because that
 404         * would cause stale user mappings for that PID on CPUs outside of
 405         * the TLB invalidation scheme (because it won't be in mm_cpumask).
 406         *
 407         * So permanently carve out one PID for the purpose of a guard PID.
 408         */
 409        init_mm.context.id = mmu_base_pid;
 410        mmu_base_pid++;
 411}
 412
 413static void __init radix_init_partition_table(void)
 414{
 415        unsigned long rts_field, dw0;
 416
 417        mmu_partition_table_init();
 418        rts_field = radix__get_tree_size();
 419        dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
 420        mmu_partition_table_set_entry(0, dw0, 0);
 421
 422        pr_info("Initializing Radix MMU\n");
 423        pr_info("Partition table %p\n", partition_tb);
 424}
 425
 426void __init radix_init_native(void)
 427{
 428        register_process_table = native_register_process_table;
 429}
 430
 431static int __init get_idx_from_shift(unsigned int shift)
 432{
 433        int idx = -1;
 434
 435        switch (shift) {
 436        case 0xc:
 437                idx = MMU_PAGE_4K;
 438                break;
 439        case 0x10:
 440                idx = MMU_PAGE_64K;
 441                break;
 442        case 0x15:
 443                idx = MMU_PAGE_2M;
 444                break;
 445        case 0x1e:
 446                idx = MMU_PAGE_1G;
 447                break;
 448        }
 449        return idx;
 450}
 451
 452static int __init radix_dt_scan_page_sizes(unsigned long node,
 453                                           const char *uname, int depth,
 454                                           void *data)
 455{
 456        int size = 0;
 457        int shift, idx;
 458        unsigned int ap;
 459        const __be32 *prop;
 460        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 461
 462        /* We are scanning "cpu" nodes only */
 463        if (type == NULL || strcmp(type, "cpu") != 0)
 464                return 0;
 465
 466        /* Find MMU PID size */
 467        prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
 468        if (prop && size == 4)
 469                mmu_pid_bits = be32_to_cpup(prop);
 470
 471        /* Grab page size encodings */
 472        prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
 473        if (!prop)
 474                return 0;
 475
 476        pr_info("Page sizes from device-tree:\n");
 477        for (; size >= 4; size -= 4, ++prop) {
 478
 479                struct mmu_psize_def *def;
 480
 481                /* top 3 bit is AP encoding */
 482                shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
 483                ap = be32_to_cpu(prop[0]) >> 29;
 484                pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
 485
 486                idx = get_idx_from_shift(shift);
 487                if (idx < 0)
 488                        continue;
 489
 490                def = &mmu_psize_defs[idx];
 491                def->shift = shift;
 492                def->ap  = ap;
 493        }
 494
 495        /* needed ? */
 496        cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 497        return 1;
 498}
 499
 500void __init radix__early_init_devtree(void)
 501{
 502        int rc;
 503
 504        /*
 505         * Try to find the available page sizes in the device-tree
 506         */
 507        rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
 508        if (rc != 0)  /* Found */
 509                goto found;
 510        /*
 511         * let's assume we have page 4k and 64k support
 512         */
 513        mmu_psize_defs[MMU_PAGE_4K].shift = 12;
 514        mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
 515
 516        mmu_psize_defs[MMU_PAGE_64K].shift = 16;
 517        mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
 518found:
 519        return;
 520}
 521
 522static void radix_init_amor(void)
 523{
 524        /*
 525        * In HV mode, we init AMOR (Authority Mask Override Register) so that
 526        * the hypervisor and guest can setup IAMR (Instruction Authority Mask
 527        * Register), enable key 0 and set it to 1.
 528        *
 529        * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
 530        */
 531        mtspr(SPRN_AMOR, (3ul << 62));
 532}
 533
 534#ifdef CONFIG_PPC_KUEP
 535void setup_kuep(bool disabled)
 536{
 537        if (disabled || !early_radix_enabled())
 538                return;
 539
 540        if (smp_processor_id() == boot_cpuid)
 541                pr_info("Activating Kernel Userspace Execution Prevention\n");
 542
 543        /*
 544         * Radix always uses key0 of the IAMR to determine if an access is
 545         * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
 546         * fetch.
 547         */
 548        mtspr(SPRN_IAMR, (1ul << 62));
 549}
 550#endif
 551
 552#ifdef CONFIG_PPC_KUAP
 553void setup_kuap(bool disabled)
 554{
 555        if (disabled || !early_radix_enabled())
 556                return;
 557
 558        if (smp_processor_id() == boot_cpuid) {
 559                pr_info("Activating Kernel Userspace Access Prevention\n");
 560                cur_cpu_spec->mmu_features |= MMU_FTR_RADIX_KUAP;
 561        }
 562
 563        /* Make sure userspace can't change the AMR */
 564        mtspr(SPRN_UAMOR, 0);
 565        mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
 566        isync();
 567}
 568#endif
 569
 570void __init radix__early_init_mmu(void)
 571{
 572        unsigned long lpcr;
 573
 574#ifdef CONFIG_PPC_64K_PAGES
 575        /* PAGE_SIZE mappings */
 576        mmu_virtual_psize = MMU_PAGE_64K;
 577#else
 578        mmu_virtual_psize = MMU_PAGE_4K;
 579#endif
 580
 581#ifdef CONFIG_SPARSEMEM_VMEMMAP
 582        /* vmemmap mapping */
 583        if (mmu_psize_defs[MMU_PAGE_2M].shift) {
 584                /*
 585                 * map vmemmap using 2M if available
 586                 */
 587                mmu_vmemmap_psize = MMU_PAGE_2M;
 588        } else
 589                mmu_vmemmap_psize = mmu_virtual_psize;
 590#endif
 591        /*
 592         * initialize page table size
 593         */
 594        __pte_index_size = RADIX_PTE_INDEX_SIZE;
 595        __pmd_index_size = RADIX_PMD_INDEX_SIZE;
 596        __pud_index_size = RADIX_PUD_INDEX_SIZE;
 597        __pgd_index_size = RADIX_PGD_INDEX_SIZE;
 598        __pud_cache_index = RADIX_PUD_INDEX_SIZE;
 599        __pte_table_size = RADIX_PTE_TABLE_SIZE;
 600        __pmd_table_size = RADIX_PMD_TABLE_SIZE;
 601        __pud_table_size = RADIX_PUD_TABLE_SIZE;
 602        __pgd_table_size = RADIX_PGD_TABLE_SIZE;
 603
 604        __pmd_val_bits = RADIX_PMD_VAL_BITS;
 605        __pud_val_bits = RADIX_PUD_VAL_BITS;
 606        __pgd_val_bits = RADIX_PGD_VAL_BITS;
 607
 608        __kernel_virt_start = RADIX_KERN_VIRT_START;
 609        __vmalloc_start = RADIX_VMALLOC_START;
 610        __vmalloc_end = RADIX_VMALLOC_END;
 611        __kernel_io_start = RADIX_KERN_IO_START;
 612        __kernel_io_end = RADIX_KERN_IO_END;
 613        vmemmap = (struct page *)RADIX_VMEMMAP_START;
 614        ioremap_bot = IOREMAP_BASE;
 615
 616#ifdef CONFIG_PCI
 617        pci_io_base = ISA_IO_BASE;
 618#endif
 619        __pte_frag_nr = RADIX_PTE_FRAG_NR;
 620        __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
 621        __pmd_frag_nr = RADIX_PMD_FRAG_NR;
 622        __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
 623
 624        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 625                radix_init_native();
 626                lpcr = mfspr(SPRN_LPCR);
 627                mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
 628                radix_init_partition_table();
 629                radix_init_amor();
 630        } else {
 631                radix_init_pseries();
 632        }
 633
 634        memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 635
 636        radix_init_pgtable();
 637        /* Switch to the guard PID before turning on MMU */
 638        radix__switch_mmu_context(NULL, &init_mm);
 639        if (cpu_has_feature(CPU_FTR_HVMODE))
 640                tlbiel_all();
 641}
 642
 643void radix__early_init_mmu_secondary(void)
 644{
 645        unsigned long lpcr;
 646        /*
 647         * update partition table control register and UPRT
 648         */
 649        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 650                lpcr = mfspr(SPRN_LPCR);
 651                mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
 652
 653                mtspr(SPRN_PTCR,
 654                      __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
 655                radix_init_amor();
 656        }
 657
 658        radix__switch_mmu_context(NULL, &init_mm);
 659        if (cpu_has_feature(CPU_FTR_HVMODE))
 660                tlbiel_all();
 661}
 662
 663void radix__mmu_cleanup_all(void)
 664{
 665        unsigned long lpcr;
 666
 667        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 668                lpcr = mfspr(SPRN_LPCR);
 669                mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
 670                mtspr(SPRN_PTCR, 0);
 671                powernv_set_nmmu_ptcr(0);
 672                radix__flush_tlb_all();
 673        }
 674}
 675
 676void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
 677                                phys_addr_t first_memblock_size)
 678{
 679        /*
 680         * We don't currently support the first MEMBLOCK not mapping 0
 681         * physical on those processors
 682         */
 683        BUG_ON(first_memblock_base != 0);
 684
 685        /*
 686         * Radix mode is not limited by RMA / VRMA addressing.
 687         */
 688        ppc64_rma_size = ULONG_MAX;
 689}
 690
 691#ifdef CONFIG_MEMORY_HOTPLUG
 692static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
 693{
 694        pte_t *pte;
 695        int i;
 696
 697        for (i = 0; i < PTRS_PER_PTE; i++) {
 698                pte = pte_start + i;
 699                if (!pte_none(*pte))
 700                        return;
 701        }
 702
 703        pte_free_kernel(&init_mm, pte_start);
 704        pmd_clear(pmd);
 705}
 706
 707static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
 708{
 709        pmd_t *pmd;
 710        int i;
 711
 712        for (i = 0; i < PTRS_PER_PMD; i++) {
 713                pmd = pmd_start + i;
 714                if (!pmd_none(*pmd))
 715                        return;
 716        }
 717
 718        pmd_free(&init_mm, pmd_start);
 719        pud_clear(pud);
 720}
 721
 722struct change_mapping_params {
 723        pte_t *pte;
 724        unsigned long start;
 725        unsigned long end;
 726        unsigned long aligned_start;
 727        unsigned long aligned_end;
 728};
 729
 730static int __meminit stop_machine_change_mapping(void *data)
 731{
 732        struct change_mapping_params *params =
 733                        (struct change_mapping_params *)data;
 734
 735        if (!data)
 736                return -1;
 737
 738        spin_unlock(&init_mm.page_table_lock);
 739        pte_clear(&init_mm, params->aligned_start, params->pte);
 740        create_physical_mapping(params->aligned_start, params->start, -1);
 741        create_physical_mapping(params->end, params->aligned_end, -1);
 742        spin_lock(&init_mm.page_table_lock);
 743        return 0;
 744}
 745
 746static void remove_pte_table(pte_t *pte_start, unsigned long addr,
 747                             unsigned long end)
 748{
 749        unsigned long next;
 750        pte_t *pte;
 751
 752        pte = pte_start + pte_index(addr);
 753        for (; addr < end; addr = next, pte++) {
 754                next = (addr + PAGE_SIZE) & PAGE_MASK;
 755                if (next > end)
 756                        next = end;
 757
 758                if (!pte_present(*pte))
 759                        continue;
 760
 761                if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
 762                        /*
 763                         * The vmemmap_free() and remove_section_mapping()
 764                         * codepaths call us with aligned addresses.
 765                         */
 766                        WARN_ONCE(1, "%s: unaligned range\n", __func__);
 767                        continue;
 768                }
 769
 770                pte_clear(&init_mm, addr, pte);
 771        }
 772}
 773
 774/*
 775 * clear the pte and potentially split the mapping helper
 776 */
 777static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
 778                                unsigned long size, pte_t *pte)
 779{
 780        unsigned long mask = ~(size - 1);
 781        unsigned long aligned_start = addr & mask;
 782        unsigned long aligned_end = addr + size;
 783        struct change_mapping_params params;
 784        bool split_region = false;
 785
 786        if ((end - addr) < size) {
 787                /*
 788                 * We're going to clear the PTE, but not flushed
 789                 * the mapping, time to remap and flush. The
 790                 * effects if visible outside the processor or
 791                 * if we are running in code close to the
 792                 * mapping we cleared, we are in trouble.
 793                 */
 794                if (overlaps_kernel_text(aligned_start, addr) ||
 795                        overlaps_kernel_text(end, aligned_end)) {
 796                        /*
 797                         * Hack, just return, don't pte_clear
 798                         */
 799                        WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
 800                                  "text, not splitting\n", addr, end);
 801                        return;
 802                }
 803                split_region = true;
 804        }
 805
 806        if (split_region) {
 807                params.pte = pte;
 808                params.start = addr;
 809                params.end = end;
 810                params.aligned_start = addr & ~(size - 1);
 811                params.aligned_end = min_t(unsigned long, aligned_end,
 812                                (unsigned long)__va(memblock_end_of_DRAM()));
 813                stop_machine(stop_machine_change_mapping, &params, NULL);
 814                return;
 815        }
 816
 817        pte_clear(&init_mm, addr, pte);
 818}
 819
 820static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
 821                             unsigned long end)
 822{
 823        unsigned long next;
 824        pte_t *pte_base;
 825        pmd_t *pmd;
 826
 827        pmd = pmd_start + pmd_index(addr);
 828        for (; addr < end; addr = next, pmd++) {
 829                next = pmd_addr_end(addr, end);
 830
 831                if (!pmd_present(*pmd))
 832                        continue;
 833
 834                if (pmd_is_leaf(*pmd)) {
 835                        split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
 836                        continue;
 837                }
 838
 839                pte_base = (pte_t *)pmd_page_vaddr(*pmd);
 840                remove_pte_table(pte_base, addr, next);
 841                free_pte_table(pte_base, pmd);
 842        }
 843}
 844
 845static void remove_pud_table(pud_t *pud_start, unsigned long addr,
 846                             unsigned long end)
 847{
 848        unsigned long next;
 849        pmd_t *pmd_base;
 850        pud_t *pud;
 851
 852        pud = pud_start + pud_index(addr);
 853        for (; addr < end; addr = next, pud++) {
 854                next = pud_addr_end(addr, end);
 855
 856                if (!pud_present(*pud))
 857                        continue;
 858
 859                if (pud_is_leaf(*pud)) {
 860                        split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
 861                        continue;
 862                }
 863
 864                pmd_base = (pmd_t *)pud_page_vaddr(*pud);
 865                remove_pmd_table(pmd_base, addr, next);
 866                free_pmd_table(pmd_base, pud);
 867        }
 868}
 869
 870static void __meminit remove_pagetable(unsigned long start, unsigned long end)
 871{
 872        unsigned long addr, next;
 873        pud_t *pud_base;
 874        pgd_t *pgd;
 875
 876        spin_lock(&init_mm.page_table_lock);
 877
 878        for (addr = start; addr < end; addr = next) {
 879                next = pgd_addr_end(addr, end);
 880
 881                pgd = pgd_offset_k(addr);
 882                if (!pgd_present(*pgd))
 883                        continue;
 884
 885                if (pgd_is_leaf(*pgd)) {
 886                        split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
 887                        continue;
 888                }
 889
 890                pud_base = (pud_t *)pgd_page_vaddr(*pgd);
 891                remove_pud_table(pud_base, addr, next);
 892        }
 893
 894        spin_unlock(&init_mm.page_table_lock);
 895        radix__flush_tlb_kernel_range(start, end);
 896}
 897
 898int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
 899{
 900        if (end >= RADIX_VMALLOC_START) {
 901                pr_warn("Outside the supported range\n");
 902                return -1;
 903        }
 904
 905        return create_physical_mapping(start, end, nid);
 906}
 907
 908int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
 909{
 910        remove_pagetable(start, end);
 911        return 0;
 912}
 913#endif /* CONFIG_MEMORY_HOTPLUG */
 914
 915#ifdef CONFIG_SPARSEMEM_VMEMMAP
 916static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
 917                                 pgprot_t flags, unsigned int map_page_size,
 918                                 int nid)
 919{
 920        return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
 921}
 922
 923int __meminit radix__vmemmap_create_mapping(unsigned long start,
 924                                      unsigned long page_size,
 925                                      unsigned long phys)
 926{
 927        /* Create a PTE encoding */
 928        unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
 929        int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
 930        int ret;
 931
 932        if ((start + page_size) >= RADIX_VMEMMAP_END) {
 933                pr_warn("Outside the supported range\n");
 934                return -1;
 935        }
 936
 937        ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
 938        BUG_ON(ret);
 939
 940        return 0;
 941}
 942
 943#ifdef CONFIG_MEMORY_HOTPLUG
 944void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
 945{
 946        remove_pagetable(start, start + page_size);
 947}
 948#endif
 949#endif
 950
 951#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 952
 953unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
 954                                  pmd_t *pmdp, unsigned long clr,
 955                                  unsigned long set)
 956{
 957        unsigned long old;
 958
 959#ifdef CONFIG_DEBUG_VM
 960        WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
 961        assert_spin_locked(pmd_lockptr(mm, pmdp));
 962#endif
 963
 964        old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
 965        trace_hugepage_update(addr, old, clr, set);
 966
 967        return old;
 968}
 969
 970pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
 971                        pmd_t *pmdp)
 972
 973{
 974        pmd_t pmd;
 975
 976        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 977        VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
 978        VM_BUG_ON(pmd_devmap(*pmdp));
 979        /*
 980         * khugepaged calls this for normal pmd
 981         */
 982        pmd = *pmdp;
 983        pmd_clear(pmdp);
 984
 985        /*FIXME!!  Verify whether we need this kick below */
 986        serialize_against_pte_lookup(vma->vm_mm);
 987
 988        radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
 989
 990        return pmd;
 991}
 992
 993/*
 994 * For us pgtable_t is pte_t *. Inorder to save the deposisted
 995 * page table, we consider the allocated page table as a list
 996 * head. On withdraw we need to make sure we zero out the used
 997 * list_head memory area.
 998 */
 999void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1000                                 pgtable_t pgtable)
1001{
1002        struct list_head *lh = (struct list_head *) pgtable;
1003
1004        assert_spin_locked(pmd_lockptr(mm, pmdp));
1005
1006        /* FIFO */
1007        if (!pmd_huge_pte(mm, pmdp))
1008                INIT_LIST_HEAD(lh);
1009        else
1010                list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1011        pmd_huge_pte(mm, pmdp) = pgtable;
1012}
1013
1014pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1015{
1016        pte_t *ptep;
1017        pgtable_t pgtable;
1018        struct list_head *lh;
1019
1020        assert_spin_locked(pmd_lockptr(mm, pmdp));
1021
1022        /* FIFO */
1023        pgtable = pmd_huge_pte(mm, pmdp);
1024        lh = (struct list_head *) pgtable;
1025        if (list_empty(lh))
1026                pmd_huge_pte(mm, pmdp) = NULL;
1027        else {
1028                pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1029                list_del(lh);
1030        }
1031        ptep = (pte_t *) pgtable;
1032        *ptep = __pte(0);
1033        ptep++;
1034        *ptep = __pte(0);
1035        return pgtable;
1036}
1037
1038pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1039                                     unsigned long addr, pmd_t *pmdp)
1040{
1041        pmd_t old_pmd;
1042        unsigned long old;
1043
1044        old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1045        old_pmd = __pmd(old);
1046        /*
1047         * Serialize against find_current_mm_pte which does lock-less
1048         * lookup in page tables with local interrupts disabled. For huge pages
1049         * it casts pmd_t to pte_t. Since format of pte_t is different from
1050         * pmd_t we want to prevent transit from pmd pointing to page table
1051         * to pmd pointing to huge page (and back) while interrupts are disabled.
1052         * We clear pmd to possibly replace it with page table pointer in
1053         * different code paths. So make sure we wait for the parallel
1054         * find_current_mm_pte to finish.
1055         */
1056        serialize_against_pte_lookup(mm);
1057        return old_pmd;
1058}
1059
1060int radix__has_transparent_hugepage(void)
1061{
1062        /* For radix 2M at PMD level means thp */
1063        if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
1064                return 1;
1065        return 0;
1066}
1067#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1068
1069void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1070                                  pte_t entry, unsigned long address, int psize)
1071{
1072        struct mm_struct *mm = vma->vm_mm;
1073        unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1074                                              _PAGE_RW | _PAGE_EXEC);
1075
1076        unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1077        /*
1078         * To avoid NMMU hang while relaxing access, we need mark
1079         * the pte invalid in between.
1080         */
1081        if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1082                unsigned long old_pte, new_pte;
1083
1084                old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1085                /*
1086                 * new value of pte
1087                 */
1088                new_pte = old_pte | set;
1089                radix__flush_tlb_page_psize(mm, address, psize);
1090                __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1091        } else {
1092                __radix_pte_update(ptep, 0, set);
1093                /*
1094                 * Book3S does not require a TLB flush when relaxing access
1095                 * restrictions when the address space is not attached to a
1096                 * NMMU, because the core MMU will reload the pte after taking
1097                 * an access fault, which is defined by the architectue.
1098                 */
1099        }
1100        /* See ptesync comment in radix__set_pte_at */
1101}
1102
1103void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1104                                    unsigned long addr, pte_t *ptep,
1105                                    pte_t old_pte, pte_t pte)
1106{
1107        struct mm_struct *mm = vma->vm_mm;
1108
1109        /*
1110         * To avoid NMMU hang while relaxing access we need to flush the tlb before
1111         * we set the new value. We need to do this only for radix, because hash
1112         * translation does flush when updating the linux pte.
1113         */
1114        if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1115            (atomic_read(&mm->context.copros) > 0))
1116                radix__flush_tlb_page(vma, addr);
1117
1118        set_pte_at(mm, addr, ptep, pte);
1119}
1120
1121int __init arch_ioremap_pud_supported(void)
1122{
1123        /* HPT does not cope with large pages in the vmalloc area */
1124        return radix_enabled();
1125}
1126
1127int __init arch_ioremap_pmd_supported(void)
1128{
1129        return radix_enabled();
1130}
1131
1132int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1133{
1134        return 0;
1135}
1136
1137int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1138{
1139        pte_t *ptep = (pte_t *)pud;
1140        pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1141
1142        if (!radix_enabled())
1143                return 0;
1144
1145        set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1146
1147        return 1;
1148}
1149
1150int pud_clear_huge(pud_t *pud)
1151{
1152        if (pud_huge(*pud)) {
1153                pud_clear(pud);
1154                return 1;
1155        }
1156
1157        return 0;
1158}
1159
1160int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1161{
1162        pmd_t *pmd;
1163        int i;
1164
1165        pmd = (pmd_t *)pud_page_vaddr(*pud);
1166        pud_clear(pud);
1167
1168        flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1169
1170        for (i = 0; i < PTRS_PER_PMD; i++) {
1171                if (!pmd_none(pmd[i])) {
1172                        pte_t *pte;
1173                        pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1174
1175                        pte_free_kernel(&init_mm, pte);
1176                }
1177        }
1178
1179        pmd_free(&init_mm, pmd);
1180
1181        return 1;
1182}
1183
1184int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1185{
1186        pte_t *ptep = (pte_t *)pmd;
1187        pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1188
1189        if (!radix_enabled())
1190                return 0;
1191
1192        set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1193
1194        return 1;
1195}
1196
1197int pmd_clear_huge(pmd_t *pmd)
1198{
1199        if (pmd_huge(*pmd)) {
1200                pmd_clear(pmd);
1201                return 1;
1202        }
1203
1204        return 0;
1205}
1206
1207int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1208{
1209        pte_t *pte;
1210
1211        pte = (pte_t *)pmd_page_vaddr(*pmd);
1212        pmd_clear(pmd);
1213
1214        flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1215
1216        pte_free_kernel(&init_mm, pte);
1217
1218        return 1;
1219}
1220
1221int radix__ioremap_range(unsigned long ea, phys_addr_t pa, unsigned long size,
1222                        pgprot_t prot, int nid)
1223{
1224        if (likely(slab_is_available())) {
1225                int err = ioremap_page_range(ea, ea + size, pa, prot);
1226                if (err)
1227                        unmap_kernel_range(ea, size);
1228                return err;
1229        } else {
1230                unsigned long i;
1231
1232                for (i = 0; i < size; i += PAGE_SIZE) {
1233                        int err = map_kernel_page(ea + i, pa + i, prot);
1234                        if (WARN_ON_ONCE(err)) /* Should clean up */
1235                                return err;
1236                }
1237                return 0;
1238        }
1239}
1240
1241int __init arch_ioremap_p4d_supported(void)
1242{
1243        return 0;
1244}
1245