linux/arch/powerpc/mm/fault.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  PowerPC version
   4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   5 *
   6 *  Derived from "arch/i386/mm/fault.c"
   7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *
   9 *  Modified by Cort Dougan and Paul Mackerras.
  10 *
  11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  12 */
  13
  14#include <linux/signal.h>
  15#include <linux/sched.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/kernel.h>
  18#include <linux/errno.h>
  19#include <linux/string.h>
  20#include <linux/types.h>
  21#include <linux/pagemap.h>
  22#include <linux/ptrace.h>
  23#include <linux/mman.h>
  24#include <linux/mm.h>
  25#include <linux/interrupt.h>
  26#include <linux/highmem.h>
  27#include <linux/extable.h>
  28#include <linux/kprobes.h>
  29#include <linux/kdebug.h>
  30#include <linux/perf_event.h>
  31#include <linux/ratelimit.h>
  32#include <linux/context_tracking.h>
  33#include <linux/hugetlb.h>
  34#include <linux/uaccess.h>
  35
  36#include <asm/firmware.h>
  37#include <asm/page.h>
  38#include <asm/pgtable.h>
  39#include <asm/mmu.h>
  40#include <asm/mmu_context.h>
  41#include <asm/siginfo.h>
  42#include <asm/debug.h>
  43#include <asm/kup.h>
  44
  45/*
  46 * Check whether the instruction inst is a store using
  47 * an update addressing form which will update r1.
  48 */
  49static bool store_updates_sp(unsigned int inst)
  50{
  51        /* check for 1 in the rA field */
  52        if (((inst >> 16) & 0x1f) != 1)
  53                return false;
  54        /* check major opcode */
  55        switch (inst >> 26) {
  56        case OP_STWU:
  57        case OP_STBU:
  58        case OP_STHU:
  59        case OP_STFSU:
  60        case OP_STFDU:
  61                return true;
  62        case OP_STD:    /* std or stdu */
  63                return (inst & 3) == 1;
  64        case OP_31:
  65                /* check minor opcode */
  66                switch ((inst >> 1) & 0x3ff) {
  67                case OP_31_XOP_STDUX:
  68                case OP_31_XOP_STWUX:
  69                case OP_31_XOP_STBUX:
  70                case OP_31_XOP_STHUX:
  71                case OP_31_XOP_STFSUX:
  72                case OP_31_XOP_STFDUX:
  73                        return true;
  74                }
  75        }
  76        return false;
  77}
  78/*
  79 * do_page_fault error handling helpers
  80 */
  81
  82static int
  83__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
  84{
  85        /*
  86         * If we are in kernel mode, bail out with a SEGV, this will
  87         * be caught by the assembly which will restore the non-volatile
  88         * registers before calling bad_page_fault()
  89         */
  90        if (!user_mode(regs))
  91                return SIGSEGV;
  92
  93        _exception(SIGSEGV, regs, si_code, address);
  94
  95        return 0;
  96}
  97
  98static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
  99{
 100        return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
 101}
 102
 103static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
 104{
 105        struct mm_struct *mm = current->mm;
 106
 107        /*
 108         * Something tried to access memory that isn't in our memory map..
 109         * Fix it, but check if it's kernel or user first..
 110         */
 111        up_read(&mm->mmap_sem);
 112
 113        return __bad_area_nosemaphore(regs, address, si_code);
 114}
 115
 116static noinline int bad_area(struct pt_regs *regs, unsigned long address)
 117{
 118        return __bad_area(regs, address, SEGV_MAPERR);
 119}
 120
 121static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
 122                                    int pkey)
 123{
 124        /*
 125         * If we are in kernel mode, bail out with a SEGV, this will
 126         * be caught by the assembly which will restore the non-volatile
 127         * registers before calling bad_page_fault()
 128         */
 129        if (!user_mode(regs))
 130                return SIGSEGV;
 131
 132        _exception_pkey(regs, address, pkey);
 133
 134        return 0;
 135}
 136
 137static noinline int bad_access(struct pt_regs *regs, unsigned long address)
 138{
 139        return __bad_area(regs, address, SEGV_ACCERR);
 140}
 141
 142static int do_sigbus(struct pt_regs *regs, unsigned long address,
 143                     vm_fault_t fault)
 144{
 145        if (!user_mode(regs))
 146                return SIGBUS;
 147
 148        current->thread.trap_nr = BUS_ADRERR;
 149#ifdef CONFIG_MEMORY_FAILURE
 150        if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 151                unsigned int lsb = 0; /* shutup gcc */
 152
 153                pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 154                        current->comm, current->pid, address);
 155
 156                if (fault & VM_FAULT_HWPOISON_LARGE)
 157                        lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 158                if (fault & VM_FAULT_HWPOISON)
 159                        lsb = PAGE_SHIFT;
 160
 161                force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 162                return 0;
 163        }
 164
 165#endif
 166        force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 167        return 0;
 168}
 169
 170static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
 171                                vm_fault_t fault)
 172{
 173        /*
 174         * Kernel page fault interrupted by SIGKILL. We have no reason to
 175         * continue processing.
 176         */
 177        if (fatal_signal_pending(current) && !user_mode(regs))
 178                return SIGKILL;
 179
 180        /* Out of memory */
 181        if (fault & VM_FAULT_OOM) {
 182                /*
 183                 * We ran out of memory, or some other thing happened to us that
 184                 * made us unable to handle the page fault gracefully.
 185                 */
 186                if (!user_mode(regs))
 187                        return SIGSEGV;
 188                pagefault_out_of_memory();
 189        } else {
 190                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 191                             VM_FAULT_HWPOISON_LARGE))
 192                        return do_sigbus(regs, addr, fault);
 193                else if (fault & VM_FAULT_SIGSEGV)
 194                        return bad_area_nosemaphore(regs, addr);
 195                else
 196                        BUG();
 197        }
 198        return 0;
 199}
 200
 201/* Is this a bad kernel fault ? */
 202static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
 203                             unsigned long address, bool is_write)
 204{
 205        int is_exec = TRAP(regs) == 0x400;
 206
 207        /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
 208        if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
 209                                      DSISR_PROTFAULT))) {
 210                pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
 211                                    address >= TASK_SIZE ? "exec-protected" : "user",
 212                                    address,
 213                                    from_kuid(&init_user_ns, current_uid()));
 214
 215                // Kernel exec fault is always bad
 216                return true;
 217        }
 218
 219        if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
 220            !search_exception_tables(regs->nip)) {
 221                pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
 222                                    address,
 223                                    from_kuid(&init_user_ns, current_uid()));
 224        }
 225
 226        // Kernel fault on kernel address is bad
 227        if (address >= TASK_SIZE)
 228                return true;
 229
 230        // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
 231        if (!search_exception_tables(regs->nip))
 232                return true;
 233
 234        // Read/write fault in a valid region (the exception table search passed
 235        // above), but blocked by KUAP is bad, it can never succeed.
 236        if (bad_kuap_fault(regs, is_write))
 237                return true;
 238
 239        // What's left? Kernel fault on user in well defined regions (extable
 240        // matched), and allowed by KUAP in the faulting context.
 241        return false;
 242}
 243
 244static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
 245                                struct vm_area_struct *vma, unsigned int flags,
 246                                bool *must_retry)
 247{
 248        /*
 249         * N.B. The POWER/Open ABI allows programs to access up to
 250         * 288 bytes below the stack pointer.
 251         * The kernel signal delivery code writes up to about 1.5kB
 252         * below the stack pointer (r1) before decrementing it.
 253         * The exec code can write slightly over 640kB to the stack
 254         * before setting the user r1.  Thus we allow the stack to
 255         * expand to 1MB without further checks.
 256         */
 257        if (address + 0x100000 < vma->vm_end) {
 258                unsigned int __user *nip = (unsigned int __user *)regs->nip;
 259                /* get user regs even if this fault is in kernel mode */
 260                struct pt_regs *uregs = current->thread.regs;
 261                if (uregs == NULL)
 262                        return true;
 263
 264                /*
 265                 * A user-mode access to an address a long way below
 266                 * the stack pointer is only valid if the instruction
 267                 * is one which would update the stack pointer to the
 268                 * address accessed if the instruction completed,
 269                 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
 270                 * (or the byte, halfword, float or double forms).
 271                 *
 272                 * If we don't check this then any write to the area
 273                 * between the last mapped region and the stack will
 274                 * expand the stack rather than segfaulting.
 275                 */
 276                if (address + 2048 >= uregs->gpr[1])
 277                        return false;
 278
 279                if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
 280                    access_ok(nip, sizeof(*nip))) {
 281                        unsigned int inst;
 282                        int res;
 283
 284                        pagefault_disable();
 285                        res = __get_user_inatomic(inst, nip);
 286                        pagefault_enable();
 287                        if (!res)
 288                                return !store_updates_sp(inst);
 289                        *must_retry = true;
 290                }
 291                return true;
 292        }
 293        return false;
 294}
 295
 296static bool access_error(bool is_write, bool is_exec,
 297                         struct vm_area_struct *vma)
 298{
 299        /*
 300         * Allow execution from readable areas if the MMU does not
 301         * provide separate controls over reading and executing.
 302         *
 303         * Note: That code used to not be enabled for 4xx/BookE.
 304         * It is now as I/D cache coherency for these is done at
 305         * set_pte_at() time and I see no reason why the test
 306         * below wouldn't be valid on those processors. This -may-
 307         * break programs compiled with a really old ABI though.
 308         */
 309        if (is_exec) {
 310                return !(vma->vm_flags & VM_EXEC) &&
 311                        (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
 312                         !(vma->vm_flags & (VM_READ | VM_WRITE)));
 313        }
 314
 315        if (is_write) {
 316                if (unlikely(!(vma->vm_flags & VM_WRITE)))
 317                        return true;
 318                return false;
 319        }
 320
 321        if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 322                return true;
 323        /*
 324         * We should ideally do the vma pkey access check here. But in the
 325         * fault path, handle_mm_fault() also does the same check. To avoid
 326         * these multiple checks, we skip it here and handle access error due
 327         * to pkeys later.
 328         */
 329        return false;
 330}
 331
 332#ifdef CONFIG_PPC_SMLPAR
 333static inline void cmo_account_page_fault(void)
 334{
 335        if (firmware_has_feature(FW_FEATURE_CMO)) {
 336                u32 page_ins;
 337
 338                preempt_disable();
 339                page_ins = be32_to_cpu(get_lppaca()->page_ins);
 340                page_ins += 1 << PAGE_FACTOR;
 341                get_lppaca()->page_ins = cpu_to_be32(page_ins);
 342                preempt_enable();
 343        }
 344}
 345#else
 346static inline void cmo_account_page_fault(void) { }
 347#endif /* CONFIG_PPC_SMLPAR */
 348
 349#ifdef CONFIG_PPC_BOOK3S
 350static void sanity_check_fault(bool is_write, bool is_user,
 351                               unsigned long error_code, unsigned long address)
 352{
 353        /*
 354         * Userspace trying to access kernel address, we get PROTFAULT for that.
 355         */
 356        if (is_user && address >= TASK_SIZE) {
 357                pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
 358                                   current->comm, current->pid, address,
 359                                   from_kuid(&init_user_ns, current_uid()));
 360                return;
 361        }
 362
 363        /*
 364         * For hash translation mode, we should never get a
 365         * PROTFAULT. Any update to pte to reduce access will result in us
 366         * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
 367         * fault instead of DSISR_PROTFAULT.
 368         *
 369         * A pte update to relax the access will not result in a hash page table
 370         * entry invalidate and hence can result in DSISR_PROTFAULT.
 371         * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
 372         * the special !is_write in the below conditional.
 373         *
 374         * For platforms that doesn't supports coherent icache and do support
 375         * per page noexec bit, we do setup things such that we do the
 376         * sync between D/I cache via fault. But that is handled via low level
 377         * hash fault code (hash_page_do_lazy_icache()) and we should not reach
 378         * here in such case.
 379         *
 380         * For wrong access that can result in PROTFAULT, the above vma->vm_flags
 381         * check should handle those and hence we should fall to the bad_area
 382         * handling correctly.
 383         *
 384         * For embedded with per page exec support that doesn't support coherent
 385         * icache we do get PROTFAULT and we handle that D/I cache sync in
 386         * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
 387         * is conditional for server MMU.
 388         *
 389         * For radix, we can get prot fault for autonuma case, because radix
 390         * page table will have them marked noaccess for user.
 391         */
 392        if (radix_enabled() || is_write)
 393                return;
 394
 395        WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
 396}
 397#else
 398static void sanity_check_fault(bool is_write, bool is_user,
 399                               unsigned long error_code, unsigned long address) { }
 400#endif /* CONFIG_PPC_BOOK3S */
 401
 402/*
 403 * Define the correct "is_write" bit in error_code based
 404 * on the processor family
 405 */
 406#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
 407#define page_fault_is_write(__err)      ((__err) & ESR_DST)
 408#define page_fault_is_bad(__err)        (0)
 409#else
 410#define page_fault_is_write(__err)      ((__err) & DSISR_ISSTORE)
 411#if defined(CONFIG_PPC_8xx)
 412#define page_fault_is_bad(__err)        ((__err) & DSISR_NOEXEC_OR_G)
 413#elif defined(CONFIG_PPC64)
 414#define page_fault_is_bad(__err)        ((__err) & DSISR_BAD_FAULT_64S)
 415#else
 416#define page_fault_is_bad(__err)        ((__err) & DSISR_BAD_FAULT_32S)
 417#endif
 418#endif
 419
 420/*
 421 * For 600- and 800-family processors, the error_code parameter is DSISR
 422 * for a data fault, SRR1 for an instruction fault. For 400-family processors
 423 * the error_code parameter is ESR for a data fault, 0 for an instruction
 424 * fault.
 425 * For 64-bit processors, the error_code parameter is
 426 *  - DSISR for a non-SLB data access fault,
 427 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
 428 *  - 0 any SLB fault.
 429 *
 430 * The return value is 0 if the fault was handled, or the signal
 431 * number if this is a kernel fault that can't be handled here.
 432 */
 433static int __do_page_fault(struct pt_regs *regs, unsigned long address,
 434                           unsigned long error_code)
 435{
 436        struct vm_area_struct * vma;
 437        struct mm_struct *mm = current->mm;
 438        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 439        int is_exec = TRAP(regs) == 0x400;
 440        int is_user = user_mode(regs);
 441        int is_write = page_fault_is_write(error_code);
 442        vm_fault_t fault, major = 0;
 443        bool must_retry = false;
 444        bool kprobe_fault = kprobe_page_fault(regs, 11);
 445
 446        if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
 447                return 0;
 448
 449        if (unlikely(page_fault_is_bad(error_code))) {
 450                if (is_user) {
 451                        _exception(SIGBUS, regs, BUS_OBJERR, address);
 452                        return 0;
 453                }
 454                return SIGBUS;
 455        }
 456
 457        /* Additional sanity check(s) */
 458        sanity_check_fault(is_write, is_user, error_code, address);
 459
 460        /*
 461         * The kernel should never take an execute fault nor should it
 462         * take a page fault to a kernel address or a page fault to a user
 463         * address outside of dedicated places
 464         */
 465        if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
 466                return SIGSEGV;
 467
 468        /*
 469         * If we're in an interrupt, have no user context or are running
 470         * in a region with pagefaults disabled then we must not take the fault
 471         */
 472        if (unlikely(faulthandler_disabled() || !mm)) {
 473                if (is_user)
 474                        printk_ratelimited(KERN_ERR "Page fault in user mode"
 475                                           " with faulthandler_disabled()=%d"
 476                                           " mm=%p\n",
 477                                           faulthandler_disabled(), mm);
 478                return bad_area_nosemaphore(regs, address);
 479        }
 480
 481        /* We restore the interrupt state now */
 482        if (!arch_irq_disabled_regs(regs))
 483                local_irq_enable();
 484
 485        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 486
 487        if (error_code & DSISR_KEYFAULT)
 488                return bad_key_fault_exception(regs, address,
 489                                               get_mm_addr_key(mm, address));
 490
 491        /*
 492         * We want to do this outside mmap_sem, because reading code around nip
 493         * can result in fault, which will cause a deadlock when called with
 494         * mmap_sem held
 495         */
 496        if (is_user)
 497                flags |= FAULT_FLAG_USER;
 498        if (is_write)
 499                flags |= FAULT_FLAG_WRITE;
 500        if (is_exec)
 501                flags |= FAULT_FLAG_INSTRUCTION;
 502
 503        /* When running in the kernel we expect faults to occur only to
 504         * addresses in user space.  All other faults represent errors in the
 505         * kernel and should generate an OOPS.  Unfortunately, in the case of an
 506         * erroneous fault occurring in a code path which already holds mmap_sem
 507         * we will deadlock attempting to validate the fault against the
 508         * address space.  Luckily the kernel only validly references user
 509         * space from well defined areas of code, which are listed in the
 510         * exceptions table.
 511         *
 512         * As the vast majority of faults will be valid we will only perform
 513         * the source reference check when there is a possibility of a deadlock.
 514         * Attempt to lock the address space, if we cannot we then validate the
 515         * source.  If this is invalid we can skip the address space check,
 516         * thus avoiding the deadlock.
 517         */
 518        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
 519                if (!is_user && !search_exception_tables(regs->nip))
 520                        return bad_area_nosemaphore(regs, address);
 521
 522retry:
 523                down_read(&mm->mmap_sem);
 524        } else {
 525                /*
 526                 * The above down_read_trylock() might have succeeded in
 527                 * which case we'll have missed the might_sleep() from
 528                 * down_read():
 529                 */
 530                might_sleep();
 531        }
 532
 533        vma = find_vma(mm, address);
 534        if (unlikely(!vma))
 535                return bad_area(regs, address);
 536        if (likely(vma->vm_start <= address))
 537                goto good_area;
 538        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
 539                return bad_area(regs, address);
 540
 541        /* The stack is being expanded, check if it's valid */
 542        if (unlikely(bad_stack_expansion(regs, address, vma, flags,
 543                                         &must_retry))) {
 544                if (!must_retry)
 545                        return bad_area(regs, address);
 546
 547                up_read(&mm->mmap_sem);
 548                if (fault_in_pages_readable((const char __user *)regs->nip,
 549                                            sizeof(unsigned int)))
 550                        return bad_area_nosemaphore(regs, address);
 551                goto retry;
 552        }
 553
 554        /* Try to expand it */
 555        if (unlikely(expand_stack(vma, address)))
 556                return bad_area(regs, address);
 557
 558good_area:
 559        if (unlikely(access_error(is_write, is_exec, vma)))
 560                return bad_access(regs, address);
 561
 562        /*
 563         * If for any reason at all we couldn't handle the fault,
 564         * make sure we exit gracefully rather than endlessly redo
 565         * the fault.
 566         */
 567        fault = handle_mm_fault(vma, address, flags);
 568
 569#ifdef CONFIG_PPC_MEM_KEYS
 570        /*
 571         * we skipped checking for access error due to key earlier.
 572         * Check that using handle_mm_fault error return.
 573         */
 574        if (unlikely(fault & VM_FAULT_SIGSEGV) &&
 575                !arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
 576
 577                int pkey = vma_pkey(vma);
 578
 579                up_read(&mm->mmap_sem);
 580                return bad_key_fault_exception(regs, address, pkey);
 581        }
 582#endif /* CONFIG_PPC_MEM_KEYS */
 583
 584        major |= fault & VM_FAULT_MAJOR;
 585
 586        /*
 587         * Handle the retry right now, the mmap_sem has been released in that
 588         * case.
 589         */
 590        if (unlikely(fault & VM_FAULT_RETRY)) {
 591                /* We retry only once */
 592                if (flags & FAULT_FLAG_ALLOW_RETRY) {
 593                        /*
 594                         * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
 595                         * of starvation.
 596                         */
 597                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 598                        flags |= FAULT_FLAG_TRIED;
 599                        if (!fatal_signal_pending(current))
 600                                goto retry;
 601                }
 602
 603                /*
 604                 * User mode? Just return to handle the fatal exception otherwise
 605                 * return to bad_page_fault
 606                 */
 607                return is_user ? 0 : SIGBUS;
 608        }
 609
 610        up_read(&current->mm->mmap_sem);
 611
 612        if (unlikely(fault & VM_FAULT_ERROR))
 613                return mm_fault_error(regs, address, fault);
 614
 615        /*
 616         * Major/minor page fault accounting.
 617         */
 618        if (major) {
 619                current->maj_flt++;
 620                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
 621                cmo_account_page_fault();
 622        } else {
 623                current->min_flt++;
 624                perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
 625        }
 626        return 0;
 627}
 628NOKPROBE_SYMBOL(__do_page_fault);
 629
 630int do_page_fault(struct pt_regs *regs, unsigned long address,
 631                  unsigned long error_code)
 632{
 633        enum ctx_state prev_state = exception_enter();
 634        int rc = __do_page_fault(regs, address, error_code);
 635        exception_exit(prev_state);
 636        return rc;
 637}
 638NOKPROBE_SYMBOL(do_page_fault);
 639
 640/*
 641 * bad_page_fault is called when we have a bad access from the kernel.
 642 * It is called from the DSI and ISI handlers in head.S and from some
 643 * of the procedures in traps.c.
 644 */
 645void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
 646{
 647        const struct exception_table_entry *entry;
 648
 649        /* Are we prepared to handle this fault?  */
 650        if ((entry = search_exception_tables(regs->nip)) != NULL) {
 651                regs->nip = extable_fixup(entry);
 652                return;
 653        }
 654
 655        /* kernel has accessed a bad area */
 656
 657        switch (TRAP(regs)) {
 658        case 0x300:
 659        case 0x380:
 660        case 0xe00:
 661                pr_alert("BUG: %s at 0x%08lx\n",
 662                         regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
 663                         "Unable to handle kernel data access", regs->dar);
 664                break;
 665        case 0x400:
 666        case 0x480:
 667                pr_alert("BUG: Unable to handle kernel instruction fetch%s",
 668                         regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
 669                break;
 670        case 0x600:
 671                pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
 672                         regs->dar);
 673                break;
 674        default:
 675                pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
 676                         regs->dar);
 677                break;
 678        }
 679        printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
 680                regs->nip);
 681
 682        if (task_stack_end_corrupted(current))
 683                printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 684
 685        die("Kernel access of bad area", regs, sig);
 686}
 687