linux/arch/powerpc/perf/core-book3s.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Performance event support - powerpc architecture code
   4 *
   5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   6 */
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/sched/clock.h>
  10#include <linux/perf_event.h>
  11#include <linux/percpu.h>
  12#include <linux/hardirq.h>
  13#include <linux/uaccess.h>
  14#include <asm/reg.h>
  15#include <asm/pmc.h>
  16#include <asm/machdep.h>
  17#include <asm/firmware.h>
  18#include <asm/ptrace.h>
  19#include <asm/code-patching.h>
  20
  21#ifdef CONFIG_PPC64
  22#include "internal.h"
  23#endif
  24
  25#define BHRB_MAX_ENTRIES        32
  26#define BHRB_TARGET             0x0000000000000002
  27#define BHRB_PREDICTION         0x0000000000000001
  28#define BHRB_EA                 0xFFFFFFFFFFFFFFFCUL
  29
  30struct cpu_hw_events {
  31        int n_events;
  32        int n_percpu;
  33        int disabled;
  34        int n_added;
  35        int n_limited;
  36        u8  pmcs_enabled;
  37        struct perf_event *event[MAX_HWEVENTS];
  38        u64 events[MAX_HWEVENTS];
  39        unsigned int flags[MAX_HWEVENTS];
  40        /*
  41         * The order of the MMCR array is:
  42         *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
  43         *  - 32-bit, MMCR0, MMCR1, MMCR2
  44         */
  45        unsigned long mmcr[4];
  46        struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  47        u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  48        u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  49        unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  50        unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  51
  52        unsigned int txn_flags;
  53        int n_txn_start;
  54
  55        /* BHRB bits */
  56        u64                             bhrb_filter;    /* BHRB HW branch filter */
  57        unsigned int                    bhrb_users;
  58        void                            *bhrb_context;
  59        struct  perf_branch_stack       bhrb_stack;
  60        struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
  61        u64                             ic_init;
  62};
  63
  64static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  65
  66static struct power_pmu *ppmu;
  67
  68/*
  69 * Normally, to ignore kernel events we set the FCS (freeze counters
  70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  71 * hypervisor bit set in the MSR, or if we are running on a processor
  72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  73 * then we need to use the FCHV bit to ignore kernel events.
  74 */
  75static unsigned int freeze_events_kernel = MMCR0_FCS;
  76
  77/*
  78 * 32-bit doesn't have MMCRA but does have an MMCR2,
  79 * and a few other names are different.
  80 */
  81#ifdef CONFIG_PPC32
  82
  83#define MMCR0_FCHV              0
  84#define MMCR0_PMCjCE            MMCR0_PMCnCE
  85#define MMCR0_FC56              0
  86#define MMCR0_PMAO              0
  87#define MMCR0_EBE               0
  88#define MMCR0_BHRBA             0
  89#define MMCR0_PMCC              0
  90#define MMCR0_PMCC_U6           0
  91
  92#define SPRN_MMCRA              SPRN_MMCR2
  93#define MMCRA_SAMPLE_ENABLE     0
  94
  95static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  96{
  97        return 0;
  98}
  99static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
 100static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 101{
 102        return 0;
 103}
 104static inline void perf_read_regs(struct pt_regs *regs)
 105{
 106        regs->result = 0;
 107}
 108static inline int perf_intr_is_nmi(struct pt_regs *regs)
 109{
 110        return 0;
 111}
 112
 113static inline int siar_valid(struct pt_regs *regs)
 114{
 115        return 1;
 116}
 117
 118static bool is_ebb_event(struct perf_event *event) { return false; }
 119static int ebb_event_check(struct perf_event *event) { return 0; }
 120static void ebb_event_add(struct perf_event *event) { }
 121static void ebb_switch_out(unsigned long mmcr0) { }
 122static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 123{
 124        return cpuhw->mmcr[0];
 125}
 126
 127static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 128static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 129static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
 130static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
 131static void pmao_restore_workaround(bool ebb) { }
 132#endif /* CONFIG_PPC32 */
 133
 134bool is_sier_available(void)
 135{
 136        if (ppmu->flags & PPMU_HAS_SIER)
 137                return true;
 138
 139        return false;
 140}
 141
 142static bool regs_use_siar(struct pt_regs *regs)
 143{
 144        /*
 145         * When we take a performance monitor exception the regs are setup
 146         * using perf_read_regs() which overloads some fields, in particular
 147         * regs->result to tell us whether to use SIAR.
 148         *
 149         * However if the regs are from another exception, eg. a syscall, then
 150         * they have not been setup using perf_read_regs() and so regs->result
 151         * is something random.
 152         */
 153        return ((TRAP(regs) == 0xf00) && regs->result);
 154}
 155
 156/*
 157 * Things that are specific to 64-bit implementations.
 158 */
 159#ifdef CONFIG_PPC64
 160
 161static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 162{
 163        unsigned long mmcra = regs->dsisr;
 164
 165        if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 166                unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 167                if (slot > 1)
 168                        return 4 * (slot - 1);
 169        }
 170
 171        return 0;
 172}
 173
 174/*
 175 * The user wants a data address recorded.
 176 * If we're not doing instruction sampling, give them the SDAR
 177 * (sampled data address).  If we are doing instruction sampling, then
 178 * only give them the SDAR if it corresponds to the instruction
 179 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 180 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 181 */
 182static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 183{
 184        unsigned long mmcra = regs->dsisr;
 185        bool sdar_valid;
 186
 187        if (ppmu->flags & PPMU_HAS_SIER)
 188                sdar_valid = regs->dar & SIER_SDAR_VALID;
 189        else {
 190                unsigned long sdsync;
 191
 192                if (ppmu->flags & PPMU_SIAR_VALID)
 193                        sdsync = POWER7P_MMCRA_SDAR_VALID;
 194                else if (ppmu->flags & PPMU_ALT_SIPR)
 195                        sdsync = POWER6_MMCRA_SDSYNC;
 196                else if (ppmu->flags & PPMU_NO_SIAR)
 197                        sdsync = MMCRA_SAMPLE_ENABLE;
 198                else
 199                        sdsync = MMCRA_SDSYNC;
 200
 201                sdar_valid = mmcra & sdsync;
 202        }
 203
 204        if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 205                *addrp = mfspr(SPRN_SDAR);
 206
 207        if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
 208                is_kernel_addr(mfspr(SPRN_SDAR)))
 209                *addrp = 0;
 210}
 211
 212static bool regs_sihv(struct pt_regs *regs)
 213{
 214        unsigned long sihv = MMCRA_SIHV;
 215
 216        if (ppmu->flags & PPMU_HAS_SIER)
 217                return !!(regs->dar & SIER_SIHV);
 218
 219        if (ppmu->flags & PPMU_ALT_SIPR)
 220                sihv = POWER6_MMCRA_SIHV;
 221
 222        return !!(regs->dsisr & sihv);
 223}
 224
 225static bool regs_sipr(struct pt_regs *regs)
 226{
 227        unsigned long sipr = MMCRA_SIPR;
 228
 229        if (ppmu->flags & PPMU_HAS_SIER)
 230                return !!(regs->dar & SIER_SIPR);
 231
 232        if (ppmu->flags & PPMU_ALT_SIPR)
 233                sipr = POWER6_MMCRA_SIPR;
 234
 235        return !!(regs->dsisr & sipr);
 236}
 237
 238static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 239{
 240        if (regs->msr & MSR_PR)
 241                return PERF_RECORD_MISC_USER;
 242        if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 243                return PERF_RECORD_MISC_HYPERVISOR;
 244        return PERF_RECORD_MISC_KERNEL;
 245}
 246
 247static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 248{
 249        bool use_siar = regs_use_siar(regs);
 250
 251        if (!use_siar)
 252                return perf_flags_from_msr(regs);
 253
 254        /*
 255         * If we don't have flags in MMCRA, rather than using
 256         * the MSR, we intuit the flags from the address in
 257         * SIAR which should give slightly more reliable
 258         * results
 259         */
 260        if (ppmu->flags & PPMU_NO_SIPR) {
 261                unsigned long siar = mfspr(SPRN_SIAR);
 262                if (is_kernel_addr(siar))
 263                        return PERF_RECORD_MISC_KERNEL;
 264                return PERF_RECORD_MISC_USER;
 265        }
 266
 267        /* PR has priority over HV, so order below is important */
 268        if (regs_sipr(regs))
 269                return PERF_RECORD_MISC_USER;
 270
 271        if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 272                return PERF_RECORD_MISC_HYPERVISOR;
 273
 274        return PERF_RECORD_MISC_KERNEL;
 275}
 276
 277/*
 278 * Overload regs->dsisr to store MMCRA so we only need to read it once
 279 * on each interrupt.
 280 * Overload regs->dar to store SIER if we have it.
 281 * Overload regs->result to specify whether we should use the MSR (result
 282 * is zero) or the SIAR (result is non zero).
 283 */
 284static inline void perf_read_regs(struct pt_regs *regs)
 285{
 286        unsigned long mmcra = mfspr(SPRN_MMCRA);
 287        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 288        int use_siar;
 289
 290        regs->dsisr = mmcra;
 291
 292        if (ppmu->flags & PPMU_HAS_SIER)
 293                regs->dar = mfspr(SPRN_SIER);
 294
 295        /*
 296         * If this isn't a PMU exception (eg a software event) the SIAR is
 297         * not valid. Use pt_regs.
 298         *
 299         * If it is a marked event use the SIAR.
 300         *
 301         * If the PMU doesn't update the SIAR for non marked events use
 302         * pt_regs.
 303         *
 304         * If the PMU has HV/PR flags then check to see if they
 305         * place the exception in userspace. If so, use pt_regs. In
 306         * continuous sampling mode the SIAR and the PMU exception are
 307         * not synchronised, so they may be many instructions apart.
 308         * This can result in confusing backtraces. We still want
 309         * hypervisor samples as well as samples in the kernel with
 310         * interrupts off hence the userspace check.
 311         */
 312        if (TRAP(regs) != 0xf00)
 313                use_siar = 0;
 314        else if ((ppmu->flags & PPMU_NO_SIAR))
 315                use_siar = 0;
 316        else if (marked)
 317                use_siar = 1;
 318        else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 319                use_siar = 0;
 320        else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 321                use_siar = 0;
 322        else
 323                use_siar = 1;
 324
 325        regs->result = use_siar;
 326}
 327
 328/*
 329 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 330 * it as an NMI.
 331 */
 332static inline int perf_intr_is_nmi(struct pt_regs *regs)
 333{
 334        return (regs->softe & IRQS_DISABLED);
 335}
 336
 337/*
 338 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 339 * must be sampled only if the SIAR-valid bit is set.
 340 *
 341 * For unmarked instructions and for processors that don't have the SIAR-Valid
 342 * bit, assume that SIAR is valid.
 343 */
 344static inline int siar_valid(struct pt_regs *regs)
 345{
 346        unsigned long mmcra = regs->dsisr;
 347        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 348
 349        if (marked) {
 350                if (ppmu->flags & PPMU_HAS_SIER)
 351                        return regs->dar & SIER_SIAR_VALID;
 352
 353                if (ppmu->flags & PPMU_SIAR_VALID)
 354                        return mmcra & POWER7P_MMCRA_SIAR_VALID;
 355        }
 356
 357        return 1;
 358}
 359
 360
 361/* Reset all possible BHRB entries */
 362static void power_pmu_bhrb_reset(void)
 363{
 364        asm volatile(PPC_CLRBHRB);
 365}
 366
 367static void power_pmu_bhrb_enable(struct perf_event *event)
 368{
 369        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 370
 371        if (!ppmu->bhrb_nr)
 372                return;
 373
 374        /* Clear BHRB if we changed task context to avoid data leaks */
 375        if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 376                power_pmu_bhrb_reset();
 377                cpuhw->bhrb_context = event->ctx;
 378        }
 379        cpuhw->bhrb_users++;
 380        perf_sched_cb_inc(event->ctx->pmu);
 381}
 382
 383static void power_pmu_bhrb_disable(struct perf_event *event)
 384{
 385        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 386
 387        if (!ppmu->bhrb_nr)
 388                return;
 389
 390        WARN_ON_ONCE(!cpuhw->bhrb_users);
 391        cpuhw->bhrb_users--;
 392        perf_sched_cb_dec(event->ctx->pmu);
 393
 394        if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 395                /* BHRB cannot be turned off when other
 396                 * events are active on the PMU.
 397                 */
 398
 399                /* avoid stale pointer */
 400                cpuhw->bhrb_context = NULL;
 401        }
 402}
 403
 404/* Called from ctxsw to prevent one process's branch entries to
 405 * mingle with the other process's entries during context switch.
 406 */
 407static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
 408{
 409        if (!ppmu->bhrb_nr)
 410                return;
 411
 412        if (sched_in)
 413                power_pmu_bhrb_reset();
 414}
 415/* Calculate the to address for a branch */
 416static __u64 power_pmu_bhrb_to(u64 addr)
 417{
 418        unsigned int instr;
 419        int ret;
 420        __u64 target;
 421
 422        if (is_kernel_addr(addr)) {
 423                if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
 424                        return 0;
 425
 426                return branch_target(&instr);
 427        }
 428
 429        /* Userspace: need copy instruction here then translate it */
 430        pagefault_disable();
 431        ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
 432        if (ret) {
 433                pagefault_enable();
 434                return 0;
 435        }
 436        pagefault_enable();
 437
 438        target = branch_target(&instr);
 439        if ((!target) || (instr & BRANCH_ABSOLUTE))
 440                return target;
 441
 442        /* Translate relative branch target from kernel to user address */
 443        return target - (unsigned long)&instr + addr;
 444}
 445
 446/* Processing BHRB entries */
 447static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
 448{
 449        u64 val;
 450        u64 addr;
 451        int r_index, u_index, pred;
 452
 453        r_index = 0;
 454        u_index = 0;
 455        while (r_index < ppmu->bhrb_nr) {
 456                /* Assembly read function */
 457                val = read_bhrb(r_index++);
 458                if (!val)
 459                        /* Terminal marker: End of valid BHRB entries */
 460                        break;
 461                else {
 462                        addr = val & BHRB_EA;
 463                        pred = val & BHRB_PREDICTION;
 464
 465                        if (!addr)
 466                                /* invalid entry */
 467                                continue;
 468
 469                        /*
 470                         * BHRB rolling buffer could very much contain the kernel
 471                         * addresses at this point. Check the privileges before
 472                         * exporting it to userspace (avoid exposure of regions
 473                         * where we could have speculative execution)
 474                         */
 475                        if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
 476                                is_kernel_addr(addr))
 477                                continue;
 478
 479                        /* Branches are read most recent first (ie. mfbhrb 0 is
 480                         * the most recent branch).
 481                         * There are two types of valid entries:
 482                         * 1) a target entry which is the to address of a
 483                         *    computed goto like a blr,bctr,btar.  The next
 484                         *    entry read from the bhrb will be branch
 485                         *    corresponding to this target (ie. the actual
 486                         *    blr/bctr/btar instruction).
 487                         * 2) a from address which is an actual branch.  If a
 488                         *    target entry proceeds this, then this is the
 489                         *    matching branch for that target.  If this is not
 490                         *    following a target entry, then this is a branch
 491                         *    where the target is given as an immediate field
 492                         *    in the instruction (ie. an i or b form branch).
 493                         *    In this case we need to read the instruction from
 494                         *    memory to determine the target/to address.
 495                         */
 496
 497                        if (val & BHRB_TARGET) {
 498                                /* Target branches use two entries
 499                                 * (ie. computed gotos/XL form)
 500                                 */
 501                                cpuhw->bhrb_entries[u_index].to = addr;
 502                                cpuhw->bhrb_entries[u_index].mispred = pred;
 503                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 504
 505                                /* Get from address in next entry */
 506                                val = read_bhrb(r_index++);
 507                                addr = val & BHRB_EA;
 508                                if (val & BHRB_TARGET) {
 509                                        /* Shouldn't have two targets in a
 510                                           row.. Reset index and try again */
 511                                        r_index--;
 512                                        addr = 0;
 513                                }
 514                                cpuhw->bhrb_entries[u_index].from = addr;
 515                        } else {
 516                                /* Branches to immediate field 
 517                                   (ie I or B form) */
 518                                cpuhw->bhrb_entries[u_index].from = addr;
 519                                cpuhw->bhrb_entries[u_index].to =
 520                                        power_pmu_bhrb_to(addr);
 521                                cpuhw->bhrb_entries[u_index].mispred = pred;
 522                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 523                        }
 524                        u_index++;
 525
 526                }
 527        }
 528        cpuhw->bhrb_stack.nr = u_index;
 529        return;
 530}
 531
 532static bool is_ebb_event(struct perf_event *event)
 533{
 534        /*
 535         * This could be a per-PMU callback, but we'd rather avoid the cost. We
 536         * check that the PMU supports EBB, meaning those that don't can still
 537         * use bit 63 of the event code for something else if they wish.
 538         */
 539        return (ppmu->flags & PPMU_ARCH_207S) &&
 540               ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 541}
 542
 543static int ebb_event_check(struct perf_event *event)
 544{
 545        struct perf_event *leader = event->group_leader;
 546
 547        /* Event and group leader must agree on EBB */
 548        if (is_ebb_event(leader) != is_ebb_event(event))
 549                return -EINVAL;
 550
 551        if (is_ebb_event(event)) {
 552                if (!(event->attach_state & PERF_ATTACH_TASK))
 553                        return -EINVAL;
 554
 555                if (!leader->attr.pinned || !leader->attr.exclusive)
 556                        return -EINVAL;
 557
 558                if (event->attr.freq ||
 559                    event->attr.inherit ||
 560                    event->attr.sample_type ||
 561                    event->attr.sample_period ||
 562                    event->attr.enable_on_exec)
 563                        return -EINVAL;
 564        }
 565
 566        return 0;
 567}
 568
 569static void ebb_event_add(struct perf_event *event)
 570{
 571        if (!is_ebb_event(event) || current->thread.used_ebb)
 572                return;
 573
 574        /*
 575         * IFF this is the first time we've added an EBB event, set
 576         * PMXE in the user MMCR0 so we can detect when it's cleared by
 577         * userspace. We need this so that we can context switch while
 578         * userspace is in the EBB handler (where PMXE is 0).
 579         */
 580        current->thread.used_ebb = 1;
 581        current->thread.mmcr0 |= MMCR0_PMXE;
 582}
 583
 584static void ebb_switch_out(unsigned long mmcr0)
 585{
 586        if (!(mmcr0 & MMCR0_EBE))
 587                return;
 588
 589        current->thread.siar  = mfspr(SPRN_SIAR);
 590        current->thread.sier  = mfspr(SPRN_SIER);
 591        current->thread.sdar  = mfspr(SPRN_SDAR);
 592        current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 593        current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 594}
 595
 596static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 597{
 598        unsigned long mmcr0 = cpuhw->mmcr[0];
 599
 600        if (!ebb)
 601                goto out;
 602
 603        /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 604        mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 605
 606        /*
 607         * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 608         * with pmao_restore_workaround() because we may add PMAO but we never
 609         * clear it here.
 610         */
 611        mmcr0 |= current->thread.mmcr0;
 612
 613        /*
 614         * Be careful not to set PMXE if userspace had it cleared. This is also
 615         * compatible with pmao_restore_workaround() because it has already
 616         * cleared PMXE and we leave PMAO alone.
 617         */
 618        if (!(current->thread.mmcr0 & MMCR0_PMXE))
 619                mmcr0 &= ~MMCR0_PMXE;
 620
 621        mtspr(SPRN_SIAR, current->thread.siar);
 622        mtspr(SPRN_SIER, current->thread.sier);
 623        mtspr(SPRN_SDAR, current->thread.sdar);
 624
 625        /*
 626         * Merge the kernel & user values of MMCR2. The semantics we implement
 627         * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 628         * but not clear bits. If a task wants to be able to clear bits, ie.
 629         * unfreeze counters, it should not set exclude_xxx in its events and
 630         * instead manage the MMCR2 entirely by itself.
 631         */
 632        mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
 633out:
 634        return mmcr0;
 635}
 636
 637static void pmao_restore_workaround(bool ebb)
 638{
 639        unsigned pmcs[6];
 640
 641        if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 642                return;
 643
 644        /*
 645         * On POWER8E there is a hardware defect which affects the PMU context
 646         * switch logic, ie. power_pmu_disable/enable().
 647         *
 648         * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 649         * by the hardware. Sometime later the actual PMU exception is
 650         * delivered.
 651         *
 652         * If we context switch, or simply disable/enable, the PMU prior to the
 653         * exception arriving, the exception will be lost when we clear PMAO.
 654         *
 655         * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 656         * set, and this _should_ generate an exception. However because of the
 657         * defect no exception is generated when we write PMAO, and we get
 658         * stuck with no counters counting but no exception delivered.
 659         *
 660         * The workaround is to detect this case and tweak the hardware to
 661         * create another pending PMU exception.
 662         *
 663         * We do that by setting up PMC6 (cycles) for an imminent overflow and
 664         * enabling the PMU. That causes a new exception to be generated in the
 665         * chip, but we don't take it yet because we have interrupts hard
 666         * disabled. We then write back the PMU state as we want it to be seen
 667         * by the exception handler. When we reenable interrupts the exception
 668         * handler will be called and see the correct state.
 669         *
 670         * The logic is the same for EBB, except that the exception is gated by
 671         * us having interrupts hard disabled as well as the fact that we are
 672         * not in userspace. The exception is finally delivered when we return
 673         * to userspace.
 674         */
 675
 676        /* Only if PMAO is set and PMAO_SYNC is clear */
 677        if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 678                return;
 679
 680        /* If we're doing EBB, only if BESCR[GE] is set */
 681        if (ebb && !(current->thread.bescr & BESCR_GE))
 682                return;
 683
 684        /*
 685         * We are already soft-disabled in power_pmu_enable(). We need to hard
 686         * disable to actually prevent the PMU exception from firing.
 687         */
 688        hard_irq_disable();
 689
 690        /*
 691         * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 692         * Using read/write_pmc() in a for loop adds 12 function calls and
 693         * almost doubles our code size.
 694         */
 695        pmcs[0] = mfspr(SPRN_PMC1);
 696        pmcs[1] = mfspr(SPRN_PMC2);
 697        pmcs[2] = mfspr(SPRN_PMC3);
 698        pmcs[3] = mfspr(SPRN_PMC4);
 699        pmcs[4] = mfspr(SPRN_PMC5);
 700        pmcs[5] = mfspr(SPRN_PMC6);
 701
 702        /* Ensure all freeze bits are unset */
 703        mtspr(SPRN_MMCR2, 0);
 704
 705        /* Set up PMC6 to overflow in one cycle */
 706        mtspr(SPRN_PMC6, 0x7FFFFFFE);
 707
 708        /* Enable exceptions and unfreeze PMC6 */
 709        mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 710
 711        /* Now we need to refreeze and restore the PMCs */
 712        mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 713
 714        mtspr(SPRN_PMC1, pmcs[0]);
 715        mtspr(SPRN_PMC2, pmcs[1]);
 716        mtspr(SPRN_PMC3, pmcs[2]);
 717        mtspr(SPRN_PMC4, pmcs[3]);
 718        mtspr(SPRN_PMC5, pmcs[4]);
 719        mtspr(SPRN_PMC6, pmcs[5]);
 720}
 721
 722#endif /* CONFIG_PPC64 */
 723
 724static void perf_event_interrupt(struct pt_regs *regs);
 725
 726/*
 727 * Read one performance monitor counter (PMC).
 728 */
 729static unsigned long read_pmc(int idx)
 730{
 731        unsigned long val;
 732
 733        switch (idx) {
 734        case 1:
 735                val = mfspr(SPRN_PMC1);
 736                break;
 737        case 2:
 738                val = mfspr(SPRN_PMC2);
 739                break;
 740        case 3:
 741                val = mfspr(SPRN_PMC3);
 742                break;
 743        case 4:
 744                val = mfspr(SPRN_PMC4);
 745                break;
 746        case 5:
 747                val = mfspr(SPRN_PMC5);
 748                break;
 749        case 6:
 750                val = mfspr(SPRN_PMC6);
 751                break;
 752#ifdef CONFIG_PPC64
 753        case 7:
 754                val = mfspr(SPRN_PMC7);
 755                break;
 756        case 8:
 757                val = mfspr(SPRN_PMC8);
 758                break;
 759#endif /* CONFIG_PPC64 */
 760        default:
 761                printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 762                val = 0;
 763        }
 764        return val;
 765}
 766
 767/*
 768 * Write one PMC.
 769 */
 770static void write_pmc(int idx, unsigned long val)
 771{
 772        switch (idx) {
 773        case 1:
 774                mtspr(SPRN_PMC1, val);
 775                break;
 776        case 2:
 777                mtspr(SPRN_PMC2, val);
 778                break;
 779        case 3:
 780                mtspr(SPRN_PMC3, val);
 781                break;
 782        case 4:
 783                mtspr(SPRN_PMC4, val);
 784                break;
 785        case 5:
 786                mtspr(SPRN_PMC5, val);
 787                break;
 788        case 6:
 789                mtspr(SPRN_PMC6, val);
 790                break;
 791#ifdef CONFIG_PPC64
 792        case 7:
 793                mtspr(SPRN_PMC7, val);
 794                break;
 795        case 8:
 796                mtspr(SPRN_PMC8, val);
 797                break;
 798#endif /* CONFIG_PPC64 */
 799        default:
 800                printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 801        }
 802}
 803
 804/* Called from sysrq_handle_showregs() */
 805void perf_event_print_debug(void)
 806{
 807        unsigned long sdar, sier, flags;
 808        u32 pmcs[MAX_HWEVENTS];
 809        int i;
 810
 811        if (!ppmu) {
 812                pr_info("Performance monitor hardware not registered.\n");
 813                return;
 814        }
 815
 816        if (!ppmu->n_counter)
 817                return;
 818
 819        local_irq_save(flags);
 820
 821        pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 822                 smp_processor_id(), ppmu->name, ppmu->n_counter);
 823
 824        for (i = 0; i < ppmu->n_counter; i++)
 825                pmcs[i] = read_pmc(i + 1);
 826
 827        for (; i < MAX_HWEVENTS; i++)
 828                pmcs[i] = 0xdeadbeef;
 829
 830        pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 831                 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 832
 833        if (ppmu->n_counter > 4)
 834                pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 835                         pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 836
 837        pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 838                mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 839
 840        sdar = sier = 0;
 841#ifdef CONFIG_PPC64
 842        sdar = mfspr(SPRN_SDAR);
 843
 844        if (ppmu->flags & PPMU_HAS_SIER)
 845                sier = mfspr(SPRN_SIER);
 846
 847        if (ppmu->flags & PPMU_ARCH_207S) {
 848                pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 849                        mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 850                pr_info("EBBRR: %016lx BESCR: %016lx\n",
 851                        mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 852        }
 853#endif
 854        pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 855                mfspr(SPRN_SIAR), sdar, sier);
 856
 857        local_irq_restore(flags);
 858}
 859
 860/*
 861 * Check if a set of events can all go on the PMU at once.
 862 * If they can't, this will look at alternative codes for the events
 863 * and see if any combination of alternative codes is feasible.
 864 * The feasible set is returned in event_id[].
 865 */
 866static int power_check_constraints(struct cpu_hw_events *cpuhw,
 867                                   u64 event_id[], unsigned int cflags[],
 868                                   int n_ev)
 869{
 870        unsigned long mask, value, nv;
 871        unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 872        int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 873        int i, j;
 874        unsigned long addf = ppmu->add_fields;
 875        unsigned long tadd = ppmu->test_adder;
 876        unsigned long grp_mask = ppmu->group_constraint_mask;
 877        unsigned long grp_val = ppmu->group_constraint_val;
 878
 879        if (n_ev > ppmu->n_counter)
 880                return -1;
 881
 882        /* First see if the events will go on as-is */
 883        for (i = 0; i < n_ev; ++i) {
 884                if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 885                    && !ppmu->limited_pmc_event(event_id[i])) {
 886                        ppmu->get_alternatives(event_id[i], cflags[i],
 887                                               cpuhw->alternatives[i]);
 888                        event_id[i] = cpuhw->alternatives[i][0];
 889                }
 890                if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 891                                         &cpuhw->avalues[i][0]))
 892                        return -1;
 893        }
 894        value = mask = 0;
 895        for (i = 0; i < n_ev; ++i) {
 896                nv = (value | cpuhw->avalues[i][0]) +
 897                        (value & cpuhw->avalues[i][0] & addf);
 898
 899                if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
 900                        break;
 901
 902                if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
 903                        & (~grp_mask)) != 0)
 904                        break;
 905
 906                value = nv;
 907                mask |= cpuhw->amasks[i][0];
 908        }
 909        if (i == n_ev) {
 910                if ((value & mask & grp_mask) != (mask & grp_val))
 911                        return -1;
 912                else
 913                        return 0;       /* all OK */
 914        }
 915
 916        /* doesn't work, gather alternatives... */
 917        if (!ppmu->get_alternatives)
 918                return -1;
 919        for (i = 0; i < n_ev; ++i) {
 920                choice[i] = 0;
 921                n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 922                                                  cpuhw->alternatives[i]);
 923                for (j = 1; j < n_alt[i]; ++j)
 924                        ppmu->get_constraint(cpuhw->alternatives[i][j],
 925                                             &cpuhw->amasks[i][j],
 926                                             &cpuhw->avalues[i][j]);
 927        }
 928
 929        /* enumerate all possibilities and see if any will work */
 930        i = 0;
 931        j = -1;
 932        value = mask = nv = 0;
 933        while (i < n_ev) {
 934                if (j >= 0) {
 935                        /* we're backtracking, restore context */
 936                        value = svalues[i];
 937                        mask = smasks[i];
 938                        j = choice[i];
 939                }
 940                /*
 941                 * See if any alternative k for event_id i,
 942                 * where k > j, will satisfy the constraints.
 943                 */
 944                while (++j < n_alt[i]) {
 945                        nv = (value | cpuhw->avalues[i][j]) +
 946                                (value & cpuhw->avalues[i][j] & addf);
 947                        if ((((nv + tadd) ^ value) & mask) == 0 &&
 948                            (((nv + tadd) ^ cpuhw->avalues[i][j])
 949                             & cpuhw->amasks[i][j]) == 0)
 950                                break;
 951                }
 952                if (j >= n_alt[i]) {
 953                        /*
 954                         * No feasible alternative, backtrack
 955                         * to event_id i-1 and continue enumerating its
 956                         * alternatives from where we got up to.
 957                         */
 958                        if (--i < 0)
 959                                return -1;
 960                } else {
 961                        /*
 962                         * Found a feasible alternative for event_id i,
 963                         * remember where we got up to with this event_id,
 964                         * go on to the next event_id, and start with
 965                         * the first alternative for it.
 966                         */
 967                        choice[i] = j;
 968                        svalues[i] = value;
 969                        smasks[i] = mask;
 970                        value = nv;
 971                        mask |= cpuhw->amasks[i][j];
 972                        ++i;
 973                        j = -1;
 974                }
 975        }
 976
 977        /* OK, we have a feasible combination, tell the caller the solution */
 978        for (i = 0; i < n_ev; ++i)
 979                event_id[i] = cpuhw->alternatives[i][choice[i]];
 980        return 0;
 981}
 982
 983/*
 984 * Check if newly-added events have consistent settings for
 985 * exclude_{user,kernel,hv} with each other and any previously
 986 * added events.
 987 */
 988static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 989                          int n_prev, int n_new)
 990{
 991        int eu = 0, ek = 0, eh = 0;
 992        int i, n, first;
 993        struct perf_event *event;
 994
 995        /*
 996         * If the PMU we're on supports per event exclude settings then we
 997         * don't need to do any of this logic. NB. This assumes no PMU has both
 998         * per event exclude and limited PMCs.
 999         */
1000        if (ppmu->flags & PPMU_ARCH_207S)
1001                return 0;
1002
1003        n = n_prev + n_new;
1004        if (n <= 1)
1005                return 0;
1006
1007        first = 1;
1008        for (i = 0; i < n; ++i) {
1009                if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1010                        cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1011                        continue;
1012                }
1013                event = ctrs[i];
1014                if (first) {
1015                        eu = event->attr.exclude_user;
1016                        ek = event->attr.exclude_kernel;
1017                        eh = event->attr.exclude_hv;
1018                        first = 0;
1019                } else if (event->attr.exclude_user != eu ||
1020                           event->attr.exclude_kernel != ek ||
1021                           event->attr.exclude_hv != eh) {
1022                        return -EAGAIN;
1023                }
1024        }
1025
1026        if (eu || ek || eh)
1027                for (i = 0; i < n; ++i)
1028                        if (cflags[i] & PPMU_LIMITED_PMC_OK)
1029                                cflags[i] |= PPMU_LIMITED_PMC_REQD;
1030
1031        return 0;
1032}
1033
1034static u64 check_and_compute_delta(u64 prev, u64 val)
1035{
1036        u64 delta = (val - prev) & 0xfffffffful;
1037
1038        /*
1039         * POWER7 can roll back counter values, if the new value is smaller
1040         * than the previous value it will cause the delta and the counter to
1041         * have bogus values unless we rolled a counter over.  If a coutner is
1042         * rolled back, it will be smaller, but within 256, which is the maximum
1043         * number of events to rollback at once.  If we detect a rollback
1044         * return 0.  This can lead to a small lack of precision in the
1045         * counters.
1046         */
1047        if (prev > val && (prev - val) < 256)
1048                delta = 0;
1049
1050        return delta;
1051}
1052
1053static void power_pmu_read(struct perf_event *event)
1054{
1055        s64 val, delta, prev;
1056
1057        if (event->hw.state & PERF_HES_STOPPED)
1058                return;
1059
1060        if (!event->hw.idx)
1061                return;
1062
1063        if (is_ebb_event(event)) {
1064                val = read_pmc(event->hw.idx);
1065                local64_set(&event->hw.prev_count, val);
1066                return;
1067        }
1068
1069        /*
1070         * Performance monitor interrupts come even when interrupts
1071         * are soft-disabled, as long as interrupts are hard-enabled.
1072         * Therefore we treat them like NMIs.
1073         */
1074        do {
1075                prev = local64_read(&event->hw.prev_count);
1076                barrier();
1077                val = read_pmc(event->hw.idx);
1078                delta = check_and_compute_delta(prev, val);
1079                if (!delta)
1080                        return;
1081        } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1082
1083        local64_add(delta, &event->count);
1084
1085        /*
1086         * A number of places program the PMC with (0x80000000 - period_left).
1087         * We never want period_left to be less than 1 because we will program
1088         * the PMC with a value >= 0x800000000 and an edge detected PMC will
1089         * roll around to 0 before taking an exception. We have seen this
1090         * on POWER8.
1091         *
1092         * To fix this, clamp the minimum value of period_left to 1.
1093         */
1094        do {
1095                prev = local64_read(&event->hw.period_left);
1096                val = prev - delta;
1097                if (val < 1)
1098                        val = 1;
1099        } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1100}
1101
1102/*
1103 * On some machines, PMC5 and PMC6 can't be written, don't respect
1104 * the freeze conditions, and don't generate interrupts.  This tells
1105 * us if `event' is using such a PMC.
1106 */
1107static int is_limited_pmc(int pmcnum)
1108{
1109        return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1110                && (pmcnum == 5 || pmcnum == 6);
1111}
1112
1113static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1114                                    unsigned long pmc5, unsigned long pmc6)
1115{
1116        struct perf_event *event;
1117        u64 val, prev, delta;
1118        int i;
1119
1120        for (i = 0; i < cpuhw->n_limited; ++i) {
1121                event = cpuhw->limited_counter[i];
1122                if (!event->hw.idx)
1123                        continue;
1124                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1125                prev = local64_read(&event->hw.prev_count);
1126                event->hw.idx = 0;
1127                delta = check_and_compute_delta(prev, val);
1128                if (delta)
1129                        local64_add(delta, &event->count);
1130        }
1131}
1132
1133static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1134                                  unsigned long pmc5, unsigned long pmc6)
1135{
1136        struct perf_event *event;
1137        u64 val, prev;
1138        int i;
1139
1140        for (i = 0; i < cpuhw->n_limited; ++i) {
1141                event = cpuhw->limited_counter[i];
1142                event->hw.idx = cpuhw->limited_hwidx[i];
1143                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1144                prev = local64_read(&event->hw.prev_count);
1145                if (check_and_compute_delta(prev, val))
1146                        local64_set(&event->hw.prev_count, val);
1147                perf_event_update_userpage(event);
1148        }
1149}
1150
1151/*
1152 * Since limited events don't respect the freeze conditions, we
1153 * have to read them immediately after freezing or unfreezing the
1154 * other events.  We try to keep the values from the limited
1155 * events as consistent as possible by keeping the delay (in
1156 * cycles and instructions) between freezing/unfreezing and reading
1157 * the limited events as small and consistent as possible.
1158 * Therefore, if any limited events are in use, we read them
1159 * both, and always in the same order, to minimize variability,
1160 * and do it inside the same asm that writes MMCR0.
1161 */
1162static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1163{
1164        unsigned long pmc5, pmc6;
1165
1166        if (!cpuhw->n_limited) {
1167                mtspr(SPRN_MMCR0, mmcr0);
1168                return;
1169        }
1170
1171        /*
1172         * Write MMCR0, then read PMC5 and PMC6 immediately.
1173         * To ensure we don't get a performance monitor interrupt
1174         * between writing MMCR0 and freezing/thawing the limited
1175         * events, we first write MMCR0 with the event overflow
1176         * interrupt enable bits turned off.
1177         */
1178        asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1179                     : "=&r" (pmc5), "=&r" (pmc6)
1180                     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1181                       "i" (SPRN_MMCR0),
1182                       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1183
1184        if (mmcr0 & MMCR0_FC)
1185                freeze_limited_counters(cpuhw, pmc5, pmc6);
1186        else
1187                thaw_limited_counters(cpuhw, pmc5, pmc6);
1188
1189        /*
1190         * Write the full MMCR0 including the event overflow interrupt
1191         * enable bits, if necessary.
1192         */
1193        if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1194                mtspr(SPRN_MMCR0, mmcr0);
1195}
1196
1197/*
1198 * Disable all events to prevent PMU interrupts and to allow
1199 * events to be added or removed.
1200 */
1201static void power_pmu_disable(struct pmu *pmu)
1202{
1203        struct cpu_hw_events *cpuhw;
1204        unsigned long flags, mmcr0, val;
1205
1206        if (!ppmu)
1207                return;
1208        local_irq_save(flags);
1209        cpuhw = this_cpu_ptr(&cpu_hw_events);
1210
1211        if (!cpuhw->disabled) {
1212                /*
1213                 * Check if we ever enabled the PMU on this cpu.
1214                 */
1215                if (!cpuhw->pmcs_enabled) {
1216                        ppc_enable_pmcs();
1217                        cpuhw->pmcs_enabled = 1;
1218                }
1219
1220                /*
1221                 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1222                 */
1223                val  = mmcr0 = mfspr(SPRN_MMCR0);
1224                val |= MMCR0_FC;
1225                val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1226                         MMCR0_FC56);
1227
1228                /*
1229                 * The barrier is to make sure the mtspr has been
1230                 * executed and the PMU has frozen the events etc.
1231                 * before we return.
1232                 */
1233                write_mmcr0(cpuhw, val);
1234                mb();
1235                isync();
1236
1237                /*
1238                 * Disable instruction sampling if it was enabled
1239                 */
1240                if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1241                        mtspr(SPRN_MMCRA,
1242                              cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1243                        mb();
1244                        isync();
1245                }
1246
1247                cpuhw->disabled = 1;
1248                cpuhw->n_added = 0;
1249
1250                ebb_switch_out(mmcr0);
1251
1252#ifdef CONFIG_PPC64
1253                /*
1254                 * These are readable by userspace, may contain kernel
1255                 * addresses and are not switched by context switch, so clear
1256                 * them now to avoid leaking anything to userspace in general
1257                 * including to another process.
1258                 */
1259                if (ppmu->flags & PPMU_ARCH_207S) {
1260                        mtspr(SPRN_SDAR, 0);
1261                        mtspr(SPRN_SIAR, 0);
1262                }
1263#endif
1264        }
1265
1266        local_irq_restore(flags);
1267}
1268
1269/*
1270 * Re-enable all events if disable == 0.
1271 * If we were previously disabled and events were added, then
1272 * put the new config on the PMU.
1273 */
1274static void power_pmu_enable(struct pmu *pmu)
1275{
1276        struct perf_event *event;
1277        struct cpu_hw_events *cpuhw;
1278        unsigned long flags;
1279        long i;
1280        unsigned long val, mmcr0;
1281        s64 left;
1282        unsigned int hwc_index[MAX_HWEVENTS];
1283        int n_lim;
1284        int idx;
1285        bool ebb;
1286
1287        if (!ppmu)
1288                return;
1289        local_irq_save(flags);
1290
1291        cpuhw = this_cpu_ptr(&cpu_hw_events);
1292        if (!cpuhw->disabled)
1293                goto out;
1294
1295        if (cpuhw->n_events == 0) {
1296                ppc_set_pmu_inuse(0);
1297                goto out;
1298        }
1299
1300        cpuhw->disabled = 0;
1301
1302        /*
1303         * EBB requires an exclusive group and all events must have the EBB
1304         * flag set, or not set, so we can just check a single event. Also we
1305         * know we have at least one event.
1306         */
1307        ebb = is_ebb_event(cpuhw->event[0]);
1308
1309        /*
1310         * If we didn't change anything, or only removed events,
1311         * no need to recalculate MMCR* settings and reset the PMCs.
1312         * Just reenable the PMU with the current MMCR* settings
1313         * (possibly updated for removal of events).
1314         */
1315        if (!cpuhw->n_added) {
1316                mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1317                mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1318                goto out_enable;
1319        }
1320
1321        /*
1322         * Clear all MMCR settings and recompute them for the new set of events.
1323         */
1324        memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1325
1326        if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1327                               cpuhw->mmcr, cpuhw->event)) {
1328                /* shouldn't ever get here */
1329                printk(KERN_ERR "oops compute_mmcr failed\n");
1330                goto out;
1331        }
1332
1333        if (!(ppmu->flags & PPMU_ARCH_207S)) {
1334                /*
1335                 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1336                 * bits for the first event. We have already checked that all
1337                 * events have the same value for these bits as the first event.
1338                 */
1339                event = cpuhw->event[0];
1340                if (event->attr.exclude_user)
1341                        cpuhw->mmcr[0] |= MMCR0_FCP;
1342                if (event->attr.exclude_kernel)
1343                        cpuhw->mmcr[0] |= freeze_events_kernel;
1344                if (event->attr.exclude_hv)
1345                        cpuhw->mmcr[0] |= MMCR0_FCHV;
1346        }
1347
1348        /*
1349         * Write the new configuration to MMCR* with the freeze
1350         * bit set and set the hardware events to their initial values.
1351         * Then unfreeze the events.
1352         */
1353        ppc_set_pmu_inuse(1);
1354        mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1355        mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1356        mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1357                                | MMCR0_FC);
1358        if (ppmu->flags & PPMU_ARCH_207S)
1359                mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1360
1361        /*
1362         * Read off any pre-existing events that need to move
1363         * to another PMC.
1364         */
1365        for (i = 0; i < cpuhw->n_events; ++i) {
1366                event = cpuhw->event[i];
1367                if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1368                        power_pmu_read(event);
1369                        write_pmc(event->hw.idx, 0);
1370                        event->hw.idx = 0;
1371                }
1372        }
1373
1374        /*
1375         * Initialize the PMCs for all the new and moved events.
1376         */
1377        cpuhw->n_limited = n_lim = 0;
1378        for (i = 0; i < cpuhw->n_events; ++i) {
1379                event = cpuhw->event[i];
1380                if (event->hw.idx)
1381                        continue;
1382                idx = hwc_index[i] + 1;
1383                if (is_limited_pmc(idx)) {
1384                        cpuhw->limited_counter[n_lim] = event;
1385                        cpuhw->limited_hwidx[n_lim] = idx;
1386                        ++n_lim;
1387                        continue;
1388                }
1389
1390                if (ebb)
1391                        val = local64_read(&event->hw.prev_count);
1392                else {
1393                        val = 0;
1394                        if (event->hw.sample_period) {
1395                                left = local64_read(&event->hw.period_left);
1396                                if (left < 0x80000000L)
1397                                        val = 0x80000000L - left;
1398                        }
1399                        local64_set(&event->hw.prev_count, val);
1400                }
1401
1402                event->hw.idx = idx;
1403                if (event->hw.state & PERF_HES_STOPPED)
1404                        val = 0;
1405                write_pmc(idx, val);
1406
1407                perf_event_update_userpage(event);
1408        }
1409        cpuhw->n_limited = n_lim;
1410        cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1411
1412 out_enable:
1413        pmao_restore_workaround(ebb);
1414
1415        mmcr0 = ebb_switch_in(ebb, cpuhw);
1416
1417        mb();
1418        if (cpuhw->bhrb_users)
1419                ppmu->config_bhrb(cpuhw->bhrb_filter);
1420
1421        write_mmcr0(cpuhw, mmcr0);
1422
1423        /*
1424         * Enable instruction sampling if necessary
1425         */
1426        if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1427                mb();
1428                mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1429        }
1430
1431 out:
1432
1433        local_irq_restore(flags);
1434}
1435
1436static int collect_events(struct perf_event *group, int max_count,
1437                          struct perf_event *ctrs[], u64 *events,
1438                          unsigned int *flags)
1439{
1440        int n = 0;
1441        struct perf_event *event;
1442
1443        if (group->pmu->task_ctx_nr == perf_hw_context) {
1444                if (n >= max_count)
1445                        return -1;
1446                ctrs[n] = group;
1447                flags[n] = group->hw.event_base;
1448                events[n++] = group->hw.config;
1449        }
1450        for_each_sibling_event(event, group) {
1451                if (event->pmu->task_ctx_nr == perf_hw_context &&
1452                    event->state != PERF_EVENT_STATE_OFF) {
1453                        if (n >= max_count)
1454                                return -1;
1455                        ctrs[n] = event;
1456                        flags[n] = event->hw.event_base;
1457                        events[n++] = event->hw.config;
1458                }
1459        }
1460        return n;
1461}
1462
1463/*
1464 * Add an event to the PMU.
1465 * If all events are not already frozen, then we disable and
1466 * re-enable the PMU in order to get hw_perf_enable to do the
1467 * actual work of reconfiguring the PMU.
1468 */
1469static int power_pmu_add(struct perf_event *event, int ef_flags)
1470{
1471        struct cpu_hw_events *cpuhw;
1472        unsigned long flags;
1473        int n0;
1474        int ret = -EAGAIN;
1475
1476        local_irq_save(flags);
1477        perf_pmu_disable(event->pmu);
1478
1479        /*
1480         * Add the event to the list (if there is room)
1481         * and check whether the total set is still feasible.
1482         */
1483        cpuhw = this_cpu_ptr(&cpu_hw_events);
1484        n0 = cpuhw->n_events;
1485        if (n0 >= ppmu->n_counter)
1486                goto out;
1487        cpuhw->event[n0] = event;
1488        cpuhw->events[n0] = event->hw.config;
1489        cpuhw->flags[n0] = event->hw.event_base;
1490
1491        /*
1492         * This event may have been disabled/stopped in record_and_restart()
1493         * because we exceeded the ->event_limit. If re-starting the event,
1494         * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1495         * notification is re-enabled.
1496         */
1497        if (!(ef_flags & PERF_EF_START))
1498                event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1499        else
1500                event->hw.state = 0;
1501
1502        /*
1503         * If group events scheduling transaction was started,
1504         * skip the schedulability test here, it will be performed
1505         * at commit time(->commit_txn) as a whole
1506         */
1507        if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1508                goto nocheck;
1509
1510        if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1511                goto out;
1512        if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1513                goto out;
1514        event->hw.config = cpuhw->events[n0];
1515
1516nocheck:
1517        ebb_event_add(event);
1518
1519        ++cpuhw->n_events;
1520        ++cpuhw->n_added;
1521
1522        ret = 0;
1523 out:
1524        if (has_branch_stack(event)) {
1525                power_pmu_bhrb_enable(event);
1526                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1527                                        event->attr.branch_sample_type);
1528        }
1529
1530        perf_pmu_enable(event->pmu);
1531        local_irq_restore(flags);
1532        return ret;
1533}
1534
1535/*
1536 * Remove an event from the PMU.
1537 */
1538static void power_pmu_del(struct perf_event *event, int ef_flags)
1539{
1540        struct cpu_hw_events *cpuhw;
1541        long i;
1542        unsigned long flags;
1543
1544        local_irq_save(flags);
1545        perf_pmu_disable(event->pmu);
1546
1547        power_pmu_read(event);
1548
1549        cpuhw = this_cpu_ptr(&cpu_hw_events);
1550        for (i = 0; i < cpuhw->n_events; ++i) {
1551                if (event == cpuhw->event[i]) {
1552                        while (++i < cpuhw->n_events) {
1553                                cpuhw->event[i-1] = cpuhw->event[i];
1554                                cpuhw->events[i-1] = cpuhw->events[i];
1555                                cpuhw->flags[i-1] = cpuhw->flags[i];
1556                        }
1557                        --cpuhw->n_events;
1558                        ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1559                        if (event->hw.idx) {
1560                                write_pmc(event->hw.idx, 0);
1561                                event->hw.idx = 0;
1562                        }
1563                        perf_event_update_userpage(event);
1564                        break;
1565                }
1566        }
1567        for (i = 0; i < cpuhw->n_limited; ++i)
1568                if (event == cpuhw->limited_counter[i])
1569                        break;
1570        if (i < cpuhw->n_limited) {
1571                while (++i < cpuhw->n_limited) {
1572                        cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1573                        cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1574                }
1575                --cpuhw->n_limited;
1576        }
1577        if (cpuhw->n_events == 0) {
1578                /* disable exceptions if no events are running */
1579                cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1580        }
1581
1582        if (has_branch_stack(event))
1583                power_pmu_bhrb_disable(event);
1584
1585        perf_pmu_enable(event->pmu);
1586        local_irq_restore(flags);
1587}
1588
1589/*
1590 * POWER-PMU does not support disabling individual counters, hence
1591 * program their cycle counter to their max value and ignore the interrupts.
1592 */
1593
1594static void power_pmu_start(struct perf_event *event, int ef_flags)
1595{
1596        unsigned long flags;
1597        s64 left;
1598        unsigned long val;
1599
1600        if (!event->hw.idx || !event->hw.sample_period)
1601                return;
1602
1603        if (!(event->hw.state & PERF_HES_STOPPED))
1604                return;
1605
1606        if (ef_flags & PERF_EF_RELOAD)
1607                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1608
1609        local_irq_save(flags);
1610        perf_pmu_disable(event->pmu);
1611
1612        event->hw.state = 0;
1613        left = local64_read(&event->hw.period_left);
1614
1615        val = 0;
1616        if (left < 0x80000000L)
1617                val = 0x80000000L - left;
1618
1619        write_pmc(event->hw.idx, val);
1620
1621        perf_event_update_userpage(event);
1622        perf_pmu_enable(event->pmu);
1623        local_irq_restore(flags);
1624}
1625
1626static void power_pmu_stop(struct perf_event *event, int ef_flags)
1627{
1628        unsigned long flags;
1629
1630        if (!event->hw.idx || !event->hw.sample_period)
1631                return;
1632
1633        if (event->hw.state & PERF_HES_STOPPED)
1634                return;
1635
1636        local_irq_save(flags);
1637        perf_pmu_disable(event->pmu);
1638
1639        power_pmu_read(event);
1640        event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1641        write_pmc(event->hw.idx, 0);
1642
1643        perf_event_update_userpage(event);
1644        perf_pmu_enable(event->pmu);
1645        local_irq_restore(flags);
1646}
1647
1648/*
1649 * Start group events scheduling transaction
1650 * Set the flag to make pmu::enable() not perform the
1651 * schedulability test, it will be performed at commit time
1652 *
1653 * We only support PERF_PMU_TXN_ADD transactions. Save the
1654 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1655 * transactions.
1656 */
1657static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1658{
1659        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1660
1661        WARN_ON_ONCE(cpuhw->txn_flags);         /* txn already in flight */
1662
1663        cpuhw->txn_flags = txn_flags;
1664        if (txn_flags & ~PERF_PMU_TXN_ADD)
1665                return;
1666
1667        perf_pmu_disable(pmu);
1668        cpuhw->n_txn_start = cpuhw->n_events;
1669}
1670
1671/*
1672 * Stop group events scheduling transaction
1673 * Clear the flag and pmu::enable() will perform the
1674 * schedulability test.
1675 */
1676static void power_pmu_cancel_txn(struct pmu *pmu)
1677{
1678        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1679        unsigned int txn_flags;
1680
1681        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1682
1683        txn_flags = cpuhw->txn_flags;
1684        cpuhw->txn_flags = 0;
1685        if (txn_flags & ~PERF_PMU_TXN_ADD)
1686                return;
1687
1688        perf_pmu_enable(pmu);
1689}
1690
1691/*
1692 * Commit group events scheduling transaction
1693 * Perform the group schedulability test as a whole
1694 * Return 0 if success
1695 */
1696static int power_pmu_commit_txn(struct pmu *pmu)
1697{
1698        struct cpu_hw_events *cpuhw;
1699        long i, n;
1700
1701        if (!ppmu)
1702                return -EAGAIN;
1703
1704        cpuhw = this_cpu_ptr(&cpu_hw_events);
1705        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1706
1707        if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1708                cpuhw->txn_flags = 0;
1709                return 0;
1710        }
1711
1712        n = cpuhw->n_events;
1713        if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1714                return -EAGAIN;
1715        i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1716        if (i < 0)
1717                return -EAGAIN;
1718
1719        for (i = cpuhw->n_txn_start; i < n; ++i)
1720                cpuhw->event[i]->hw.config = cpuhw->events[i];
1721
1722        cpuhw->txn_flags = 0;
1723        perf_pmu_enable(pmu);
1724        return 0;
1725}
1726
1727/*
1728 * Return 1 if we might be able to put event on a limited PMC,
1729 * or 0 if not.
1730 * An event can only go on a limited PMC if it counts something
1731 * that a limited PMC can count, doesn't require interrupts, and
1732 * doesn't exclude any processor mode.
1733 */
1734static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1735                                 unsigned int flags)
1736{
1737        int n;
1738        u64 alt[MAX_EVENT_ALTERNATIVES];
1739
1740        if (event->attr.exclude_user
1741            || event->attr.exclude_kernel
1742            || event->attr.exclude_hv
1743            || event->attr.sample_period)
1744                return 0;
1745
1746        if (ppmu->limited_pmc_event(ev))
1747                return 1;
1748
1749        /*
1750         * The requested event_id isn't on a limited PMC already;
1751         * see if any alternative code goes on a limited PMC.
1752         */
1753        if (!ppmu->get_alternatives)
1754                return 0;
1755
1756        flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1757        n = ppmu->get_alternatives(ev, flags, alt);
1758
1759        return n > 0;
1760}
1761
1762/*
1763 * Find an alternative event_id that goes on a normal PMC, if possible,
1764 * and return the event_id code, or 0 if there is no such alternative.
1765 * (Note: event_id code 0 is "don't count" on all machines.)
1766 */
1767static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1768{
1769        u64 alt[MAX_EVENT_ALTERNATIVES];
1770        int n;
1771
1772        flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1773        n = ppmu->get_alternatives(ev, flags, alt);
1774        if (!n)
1775                return 0;
1776        return alt[0];
1777}
1778
1779/* Number of perf_events counting hardware events */
1780static atomic_t num_events;
1781/* Used to avoid races in calling reserve/release_pmc_hardware */
1782static DEFINE_MUTEX(pmc_reserve_mutex);
1783
1784/*
1785 * Release the PMU if this is the last perf_event.
1786 */
1787static void hw_perf_event_destroy(struct perf_event *event)
1788{
1789        if (!atomic_add_unless(&num_events, -1, 1)) {
1790                mutex_lock(&pmc_reserve_mutex);
1791                if (atomic_dec_return(&num_events) == 0)
1792                        release_pmc_hardware();
1793                mutex_unlock(&pmc_reserve_mutex);
1794        }
1795}
1796
1797/*
1798 * Translate a generic cache event_id config to a raw event_id code.
1799 */
1800static int hw_perf_cache_event(u64 config, u64 *eventp)
1801{
1802        unsigned long type, op, result;
1803        int ev;
1804
1805        if (!ppmu->cache_events)
1806                return -EINVAL;
1807
1808        /* unpack config */
1809        type = config & 0xff;
1810        op = (config >> 8) & 0xff;
1811        result = (config >> 16) & 0xff;
1812
1813        if (type >= PERF_COUNT_HW_CACHE_MAX ||
1814            op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1815            result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1816                return -EINVAL;
1817
1818        ev = (*ppmu->cache_events)[type][op][result];
1819        if (ev == 0)
1820                return -EOPNOTSUPP;
1821        if (ev == -1)
1822                return -EINVAL;
1823        *eventp = ev;
1824        return 0;
1825}
1826
1827static bool is_event_blacklisted(u64 ev)
1828{
1829        int i;
1830
1831        for (i=0; i < ppmu->n_blacklist_ev; i++) {
1832                if (ppmu->blacklist_ev[i] == ev)
1833                        return true;
1834        }
1835
1836        return false;
1837}
1838
1839static int power_pmu_event_init(struct perf_event *event)
1840{
1841        u64 ev;
1842        unsigned long flags;
1843        struct perf_event *ctrs[MAX_HWEVENTS];
1844        u64 events[MAX_HWEVENTS];
1845        unsigned int cflags[MAX_HWEVENTS];
1846        int n;
1847        int err;
1848        struct cpu_hw_events *cpuhw;
1849        u64 bhrb_filter;
1850
1851        if (!ppmu)
1852                return -ENOENT;
1853
1854        if (has_branch_stack(event)) {
1855                /* PMU has BHRB enabled */
1856                if (!(ppmu->flags & PPMU_ARCH_207S))
1857                        return -EOPNOTSUPP;
1858        }
1859
1860        switch (event->attr.type) {
1861        case PERF_TYPE_HARDWARE:
1862                ev = event->attr.config;
1863                if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1864                        return -EOPNOTSUPP;
1865
1866                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1867                        return -EINVAL;
1868                ev = ppmu->generic_events[ev];
1869                break;
1870        case PERF_TYPE_HW_CACHE:
1871                err = hw_perf_cache_event(event->attr.config, &ev);
1872                if (err)
1873                        return err;
1874
1875                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1876                        return -EINVAL;
1877                break;
1878        case PERF_TYPE_RAW:
1879                ev = event->attr.config;
1880
1881                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1882                        return -EINVAL;
1883                break;
1884        default:
1885                return -ENOENT;
1886        }
1887
1888        event->hw.config_base = ev;
1889        event->hw.idx = 0;
1890
1891        /*
1892         * If we are not running on a hypervisor, force the
1893         * exclude_hv bit to 0 so that we don't care what
1894         * the user set it to.
1895         */
1896        if (!firmware_has_feature(FW_FEATURE_LPAR))
1897                event->attr.exclude_hv = 0;
1898
1899        /*
1900         * If this is a per-task event, then we can use
1901         * PM_RUN_* events interchangeably with their non RUN_*
1902         * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1903         * XXX we should check if the task is an idle task.
1904         */
1905        flags = 0;
1906        if (event->attach_state & PERF_ATTACH_TASK)
1907                flags |= PPMU_ONLY_COUNT_RUN;
1908
1909        /*
1910         * If this machine has limited events, check whether this
1911         * event_id could go on a limited event.
1912         */
1913        if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1914                if (can_go_on_limited_pmc(event, ev, flags)) {
1915                        flags |= PPMU_LIMITED_PMC_OK;
1916                } else if (ppmu->limited_pmc_event(ev)) {
1917                        /*
1918                         * The requested event_id is on a limited PMC,
1919                         * but we can't use a limited PMC; see if any
1920                         * alternative goes on a normal PMC.
1921                         */
1922                        ev = normal_pmc_alternative(ev, flags);
1923                        if (!ev)
1924                                return -EINVAL;
1925                }
1926        }
1927
1928        /* Extra checks for EBB */
1929        err = ebb_event_check(event);
1930        if (err)
1931                return err;
1932
1933        /*
1934         * If this is in a group, check if it can go on with all the
1935         * other hardware events in the group.  We assume the event
1936         * hasn't been linked into its leader's sibling list at this point.
1937         */
1938        n = 0;
1939        if (event->group_leader != event) {
1940                n = collect_events(event->group_leader, ppmu->n_counter - 1,
1941                                   ctrs, events, cflags);
1942                if (n < 0)
1943                        return -EINVAL;
1944        }
1945        events[n] = ev;
1946        ctrs[n] = event;
1947        cflags[n] = flags;
1948        if (check_excludes(ctrs, cflags, n, 1))
1949                return -EINVAL;
1950
1951        cpuhw = &get_cpu_var(cpu_hw_events);
1952        err = power_check_constraints(cpuhw, events, cflags, n + 1);
1953
1954        if (has_branch_stack(event)) {
1955                bhrb_filter = ppmu->bhrb_filter_map(
1956                                        event->attr.branch_sample_type);
1957
1958                if (bhrb_filter == -1) {
1959                        put_cpu_var(cpu_hw_events);
1960                        return -EOPNOTSUPP;
1961                }
1962                cpuhw->bhrb_filter = bhrb_filter;
1963        }
1964
1965        put_cpu_var(cpu_hw_events);
1966        if (err)
1967                return -EINVAL;
1968
1969        event->hw.config = events[n];
1970        event->hw.event_base = cflags[n];
1971        event->hw.last_period = event->hw.sample_period;
1972        local64_set(&event->hw.period_left, event->hw.last_period);
1973
1974        /*
1975         * For EBB events we just context switch the PMC value, we don't do any
1976         * of the sample_period logic. We use hw.prev_count for this.
1977         */
1978        if (is_ebb_event(event))
1979                local64_set(&event->hw.prev_count, 0);
1980
1981        /*
1982         * See if we need to reserve the PMU.
1983         * If no events are currently in use, then we have to take a
1984         * mutex to ensure that we don't race with another task doing
1985         * reserve_pmc_hardware or release_pmc_hardware.
1986         */
1987        err = 0;
1988        if (!atomic_inc_not_zero(&num_events)) {
1989                mutex_lock(&pmc_reserve_mutex);
1990                if (atomic_read(&num_events) == 0 &&
1991                    reserve_pmc_hardware(perf_event_interrupt))
1992                        err = -EBUSY;
1993                else
1994                        atomic_inc(&num_events);
1995                mutex_unlock(&pmc_reserve_mutex);
1996        }
1997        event->destroy = hw_perf_event_destroy;
1998
1999        return err;
2000}
2001
2002static int power_pmu_event_idx(struct perf_event *event)
2003{
2004        return event->hw.idx;
2005}
2006
2007ssize_t power_events_sysfs_show(struct device *dev,
2008                                struct device_attribute *attr, char *page)
2009{
2010        struct perf_pmu_events_attr *pmu_attr;
2011
2012        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2013
2014        return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2015}
2016
2017static struct pmu power_pmu = {
2018        .pmu_enable     = power_pmu_enable,
2019        .pmu_disable    = power_pmu_disable,
2020        .event_init     = power_pmu_event_init,
2021        .add            = power_pmu_add,
2022        .del            = power_pmu_del,
2023        .start          = power_pmu_start,
2024        .stop           = power_pmu_stop,
2025        .read           = power_pmu_read,
2026        .start_txn      = power_pmu_start_txn,
2027        .cancel_txn     = power_pmu_cancel_txn,
2028        .commit_txn     = power_pmu_commit_txn,
2029        .event_idx      = power_pmu_event_idx,
2030        .sched_task     = power_pmu_sched_task,
2031};
2032
2033/*
2034 * A counter has overflowed; update its count and record
2035 * things if requested.  Note that interrupts are hard-disabled
2036 * here so there is no possibility of being interrupted.
2037 */
2038static void record_and_restart(struct perf_event *event, unsigned long val,
2039                               struct pt_regs *regs)
2040{
2041        u64 period = event->hw.sample_period;
2042        s64 prev, delta, left;
2043        int record = 0;
2044
2045        if (event->hw.state & PERF_HES_STOPPED) {
2046                write_pmc(event->hw.idx, 0);
2047                return;
2048        }
2049
2050        /* we don't have to worry about interrupts here */
2051        prev = local64_read(&event->hw.prev_count);
2052        delta = check_and_compute_delta(prev, val);
2053        local64_add(delta, &event->count);
2054
2055        /*
2056         * See if the total period for this event has expired,
2057         * and update for the next period.
2058         */
2059        val = 0;
2060        left = local64_read(&event->hw.period_left) - delta;
2061        if (delta == 0)
2062                left++;
2063        if (period) {
2064                if (left <= 0) {
2065                        left += period;
2066                        if (left <= 0)
2067                                left = period;
2068                        record = siar_valid(regs);
2069                        event->hw.last_period = event->hw.sample_period;
2070                }
2071                if (left < 0x80000000LL)
2072                        val = 0x80000000LL - left;
2073        }
2074
2075        write_pmc(event->hw.idx, val);
2076        local64_set(&event->hw.prev_count, val);
2077        local64_set(&event->hw.period_left, left);
2078        perf_event_update_userpage(event);
2079
2080        /*
2081         * Finally record data if requested.
2082         */
2083        if (record) {
2084                struct perf_sample_data data;
2085
2086                perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2087
2088                if (event->attr.sample_type &
2089                    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2090                        perf_get_data_addr(regs, &data.addr);
2091
2092                if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2093                        struct cpu_hw_events *cpuhw;
2094                        cpuhw = this_cpu_ptr(&cpu_hw_events);
2095                        power_pmu_bhrb_read(cpuhw);
2096                        data.br_stack = &cpuhw->bhrb_stack;
2097                }
2098
2099                if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2100                                                ppmu->get_mem_data_src)
2101                        ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2102
2103                if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2104                                                ppmu->get_mem_weight)
2105                        ppmu->get_mem_weight(&data.weight);
2106
2107                if (perf_event_overflow(event, &data, regs))
2108                        power_pmu_stop(event, 0);
2109        }
2110}
2111
2112/*
2113 * Called from generic code to get the misc flags (i.e. processor mode)
2114 * for an event_id.
2115 */
2116unsigned long perf_misc_flags(struct pt_regs *regs)
2117{
2118        u32 flags = perf_get_misc_flags(regs);
2119
2120        if (flags)
2121                return flags;
2122        return user_mode(regs) ? PERF_RECORD_MISC_USER :
2123                PERF_RECORD_MISC_KERNEL;
2124}
2125
2126/*
2127 * Called from generic code to get the instruction pointer
2128 * for an event_id.
2129 */
2130unsigned long perf_instruction_pointer(struct pt_regs *regs)
2131{
2132        bool use_siar = regs_use_siar(regs);
2133
2134        if (use_siar && siar_valid(regs))
2135                return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2136        else if (use_siar)
2137                return 0;               // no valid instruction pointer
2138        else
2139                return regs->nip;
2140}
2141
2142static bool pmc_overflow_power7(unsigned long val)
2143{
2144        /*
2145         * Events on POWER7 can roll back if a speculative event doesn't
2146         * eventually complete. Unfortunately in some rare cases they will
2147         * raise a performance monitor exception. We need to catch this to
2148         * ensure we reset the PMC. In all cases the PMC will be 256 or less
2149         * cycles from overflow.
2150         *
2151         * We only do this if the first pass fails to find any overflowing
2152         * PMCs because a user might set a period of less than 256 and we
2153         * don't want to mistakenly reset them.
2154         */
2155        if ((0x80000000 - val) <= 256)
2156                return true;
2157
2158        return false;
2159}
2160
2161static bool pmc_overflow(unsigned long val)
2162{
2163        if ((int)val < 0)
2164                return true;
2165
2166        return false;
2167}
2168
2169/*
2170 * Performance monitor interrupt stuff
2171 */
2172static void __perf_event_interrupt(struct pt_regs *regs)
2173{
2174        int i, j;
2175        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2176        struct perf_event *event;
2177        unsigned long val[8];
2178        int found, active;
2179        int nmi;
2180
2181        if (cpuhw->n_limited)
2182                freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2183                                        mfspr(SPRN_PMC6));
2184
2185        perf_read_regs(regs);
2186
2187        nmi = perf_intr_is_nmi(regs);
2188        if (nmi)
2189                nmi_enter();
2190        else
2191                irq_enter();
2192
2193        /* Read all the PMCs since we'll need them a bunch of times */
2194        for (i = 0; i < ppmu->n_counter; ++i)
2195                val[i] = read_pmc(i + 1);
2196
2197        /* Try to find what caused the IRQ */
2198        found = 0;
2199        for (i = 0; i < ppmu->n_counter; ++i) {
2200                if (!pmc_overflow(val[i]))
2201                        continue;
2202                if (is_limited_pmc(i + 1))
2203                        continue; /* these won't generate IRQs */
2204                /*
2205                 * We've found one that's overflowed.  For active
2206                 * counters we need to log this.  For inactive
2207                 * counters, we need to reset it anyway
2208                 */
2209                found = 1;
2210                active = 0;
2211                for (j = 0; j < cpuhw->n_events; ++j) {
2212                        event = cpuhw->event[j];
2213                        if (event->hw.idx == (i + 1)) {
2214                                active = 1;
2215                                record_and_restart(event, val[i], regs);
2216                                break;
2217                        }
2218                }
2219                if (!active)
2220                        /* reset non active counters that have overflowed */
2221                        write_pmc(i + 1, 0);
2222        }
2223        if (!found && pvr_version_is(PVR_POWER7)) {
2224                /* check active counters for special buggy p7 overflow */
2225                for (i = 0; i < cpuhw->n_events; ++i) {
2226                        event = cpuhw->event[i];
2227                        if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2228                                continue;
2229                        if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2230                                /* event has overflowed in a buggy way*/
2231                                found = 1;
2232                                record_and_restart(event,
2233                                                   val[event->hw.idx - 1],
2234                                                   regs);
2235                        }
2236                }
2237        }
2238        if (!found && !nmi && printk_ratelimit())
2239                printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2240
2241        /*
2242         * Reset MMCR0 to its normal value.  This will set PMXE and
2243         * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2244         * and thus allow interrupts to occur again.
2245         * XXX might want to use MSR.PM to keep the events frozen until
2246         * we get back out of this interrupt.
2247         */
2248        write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2249
2250        if (nmi)
2251                nmi_exit();
2252        else
2253                irq_exit();
2254}
2255
2256static void perf_event_interrupt(struct pt_regs *regs)
2257{
2258        u64 start_clock = sched_clock();
2259
2260        __perf_event_interrupt(regs);
2261        perf_sample_event_took(sched_clock() - start_clock);
2262}
2263
2264static int power_pmu_prepare_cpu(unsigned int cpu)
2265{
2266        struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2267
2268        if (ppmu) {
2269                memset(cpuhw, 0, sizeof(*cpuhw));
2270                cpuhw->mmcr[0] = MMCR0_FC;
2271        }
2272        return 0;
2273}
2274
2275int register_power_pmu(struct power_pmu *pmu)
2276{
2277        if (ppmu)
2278                return -EBUSY;          /* something's already registered */
2279
2280        ppmu = pmu;
2281        pr_info("%s performance monitor hardware support registered\n",
2282                pmu->name);
2283
2284        power_pmu.attr_groups = ppmu->attr_groups;
2285
2286#ifdef MSR_HV
2287        /*
2288         * Use FCHV to ignore kernel events if MSR.HV is set.
2289         */
2290        if (mfmsr() & MSR_HV)
2291                freeze_events_kernel = MMCR0_FCHV;
2292#endif /* CONFIG_PPC64 */
2293
2294        perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2295        cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2296                          power_pmu_prepare_cpu, NULL);
2297        return 0;
2298}
2299
2300#ifdef CONFIG_PPC64
2301static int __init init_ppc64_pmu(void)
2302{
2303        /* run through all the pmu drivers one at a time */
2304        if (!init_power5_pmu())
2305                return 0;
2306        else if (!init_power5p_pmu())
2307                return 0;
2308        else if (!init_power6_pmu())
2309                return 0;
2310        else if (!init_power7_pmu())
2311                return 0;
2312        else if (!init_power8_pmu())
2313                return 0;
2314        else if (!init_power9_pmu())
2315                return 0;
2316        else if (!init_ppc970_pmu())
2317                return 0;
2318        else
2319                return init_generic_compat_pmu();
2320}
2321early_initcall(init_ppc64_pmu);
2322#endif
2323