linux/arch/powerpc/perf/imc-pmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * In-Memory Collection (IMC) Performance Monitor counter support.
   4 *
   5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
   6 *           (C) 2017 Anju T Sudhakar, IBM Corporation.
   7 *           (C) 2017 Hemant K Shaw, IBM Corporation.
   8 */
   9#include <linux/perf_event.h>
  10#include <linux/slab.h>
  11#include <asm/opal.h>
  12#include <asm/imc-pmu.h>
  13#include <asm/cputhreads.h>
  14#include <asm/smp.h>
  15#include <linux/string.h>
  16
  17/* Nest IMC data structures and variables */
  18
  19/*
  20 * Used to avoid races in counting the nest-pmu units during hotplug
  21 * register and unregister
  22 */
  23static DEFINE_MUTEX(nest_init_lock);
  24static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
  25static struct imc_pmu **per_nest_pmu_arr;
  26static cpumask_t nest_imc_cpumask;
  27static struct imc_pmu_ref *nest_imc_refc;
  28static int nest_pmus;
  29
  30/* Core IMC data structures and variables */
  31
  32static cpumask_t core_imc_cpumask;
  33static struct imc_pmu_ref *core_imc_refc;
  34static struct imc_pmu *core_imc_pmu;
  35
  36/* Thread IMC data structures and variables */
  37
  38static DEFINE_PER_CPU(u64 *, thread_imc_mem);
  39static struct imc_pmu *thread_imc_pmu;
  40static int thread_imc_mem_size;
  41
  42/* Trace IMC data structures */
  43static DEFINE_PER_CPU(u64 *, trace_imc_mem);
  44static struct imc_pmu_ref *trace_imc_refc;
  45static int trace_imc_mem_size;
  46
  47static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
  48{
  49        return container_of(event->pmu, struct imc_pmu, pmu);
  50}
  51
  52PMU_FORMAT_ATTR(event, "config:0-61");
  53PMU_FORMAT_ATTR(offset, "config:0-31");
  54PMU_FORMAT_ATTR(rvalue, "config:32");
  55PMU_FORMAT_ATTR(mode, "config:33-40");
  56static struct attribute *imc_format_attrs[] = {
  57        &format_attr_event.attr,
  58        &format_attr_offset.attr,
  59        &format_attr_rvalue.attr,
  60        &format_attr_mode.attr,
  61        NULL,
  62};
  63
  64static struct attribute_group imc_format_group = {
  65        .name = "format",
  66        .attrs = imc_format_attrs,
  67};
  68
  69/* Format attribute for imc trace-mode */
  70PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
  71PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
  72PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
  73PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
  74static struct attribute *trace_imc_format_attrs[] = {
  75        &format_attr_event.attr,
  76        &format_attr_cpmc_reserved.attr,
  77        &format_attr_cpmc_event.attr,
  78        &format_attr_cpmc_samplesel.attr,
  79        &format_attr_cpmc_load.attr,
  80        NULL,
  81};
  82
  83static struct attribute_group trace_imc_format_group = {
  84.name = "format",
  85.attrs = trace_imc_format_attrs,
  86};
  87
  88/* Get the cpumask printed to a buffer "buf" */
  89static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
  90                                        struct device_attribute *attr,
  91                                        char *buf)
  92{
  93        struct pmu *pmu = dev_get_drvdata(dev);
  94        struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
  95        cpumask_t *active_mask;
  96
  97        switch(imc_pmu->domain){
  98        case IMC_DOMAIN_NEST:
  99                active_mask = &nest_imc_cpumask;
 100                break;
 101        case IMC_DOMAIN_CORE:
 102                active_mask = &core_imc_cpumask;
 103                break;
 104        default:
 105                return 0;
 106        }
 107
 108        return cpumap_print_to_pagebuf(true, buf, active_mask);
 109}
 110
 111static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
 112
 113static struct attribute *imc_pmu_cpumask_attrs[] = {
 114        &dev_attr_cpumask.attr,
 115        NULL,
 116};
 117
 118static struct attribute_group imc_pmu_cpumask_attr_group = {
 119        .attrs = imc_pmu_cpumask_attrs,
 120};
 121
 122/* device_str_attr_create : Populate event "name" and string "str" in attribute */
 123static struct attribute *device_str_attr_create(const char *name, const char *str)
 124{
 125        struct perf_pmu_events_attr *attr;
 126
 127        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 128        if (!attr)
 129                return NULL;
 130        sysfs_attr_init(&attr->attr.attr);
 131
 132        attr->event_str = str;
 133        attr->attr.attr.name = name;
 134        attr->attr.attr.mode = 0444;
 135        attr->attr.show = perf_event_sysfs_show;
 136
 137        return &attr->attr.attr;
 138}
 139
 140static int imc_parse_event(struct device_node *np, const char *scale,
 141                                  const char *unit, const char *prefix,
 142                                  u32 base, struct imc_events *event)
 143{
 144        const char *s;
 145        u32 reg;
 146
 147        if (of_property_read_u32(np, "reg", &reg))
 148                goto error;
 149        /* Add the base_reg value to the "reg" */
 150        event->value = base + reg;
 151
 152        if (of_property_read_string(np, "event-name", &s))
 153                goto error;
 154
 155        event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
 156        if (!event->name)
 157                goto error;
 158
 159        if (of_property_read_string(np, "scale", &s))
 160                s = scale;
 161
 162        if (s) {
 163                event->scale = kstrdup(s, GFP_KERNEL);
 164                if (!event->scale)
 165                        goto error;
 166        }
 167
 168        if (of_property_read_string(np, "unit", &s))
 169                s = unit;
 170
 171        if (s) {
 172                event->unit = kstrdup(s, GFP_KERNEL);
 173                if (!event->unit)
 174                        goto error;
 175        }
 176
 177        return 0;
 178error:
 179        kfree(event->unit);
 180        kfree(event->scale);
 181        kfree(event->name);
 182        return -EINVAL;
 183}
 184
 185/*
 186 * imc_free_events: Function to cleanup the events list, having
 187 *                  "nr_entries".
 188 */
 189static void imc_free_events(struct imc_events *events, int nr_entries)
 190{
 191        int i;
 192
 193        /* Nothing to clean, return */
 194        if (!events)
 195                return;
 196        for (i = 0; i < nr_entries; i++) {
 197                kfree(events[i].unit);
 198                kfree(events[i].scale);
 199                kfree(events[i].name);
 200        }
 201
 202        kfree(events);
 203}
 204
 205/*
 206 * update_events_in_group: Update the "events" information in an attr_group
 207 *                         and assign the attr_group to the pmu "pmu".
 208 */
 209static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
 210{
 211        struct attribute_group *attr_group;
 212        struct attribute **attrs, *dev_str;
 213        struct device_node *np, *pmu_events;
 214        u32 handle, base_reg;
 215        int i = 0, j = 0, ct, ret;
 216        const char *prefix, *g_scale, *g_unit;
 217        const char *ev_val_str, *ev_scale_str, *ev_unit_str;
 218
 219        if (!of_property_read_u32(node, "events", &handle))
 220                pmu_events = of_find_node_by_phandle(handle);
 221        else
 222                return 0;
 223
 224        /* Did not find any node with a given phandle */
 225        if (!pmu_events)
 226                return 0;
 227
 228        /* Get a count of number of child nodes */
 229        ct = of_get_child_count(pmu_events);
 230
 231        /* Get the event prefix */
 232        if (of_property_read_string(node, "events-prefix", &prefix))
 233                return 0;
 234
 235        /* Get a global unit and scale data if available */
 236        if (of_property_read_string(node, "scale", &g_scale))
 237                g_scale = NULL;
 238
 239        if (of_property_read_string(node, "unit", &g_unit))
 240                g_unit = NULL;
 241
 242        /* "reg" property gives out the base offset of the counters data */
 243        of_property_read_u32(node, "reg", &base_reg);
 244
 245        /* Allocate memory for the events */
 246        pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
 247        if (!pmu->events)
 248                return -ENOMEM;
 249
 250        ct = 0;
 251        /* Parse the events and update the struct */
 252        for_each_child_of_node(pmu_events, np) {
 253                ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
 254                if (!ret)
 255                        ct++;
 256        }
 257
 258        /* Allocate memory for attribute group */
 259        attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
 260        if (!attr_group) {
 261                imc_free_events(pmu->events, ct);
 262                return -ENOMEM;
 263        }
 264
 265        /*
 266         * Allocate memory for attributes.
 267         * Since we have count of events for this pmu, we also allocate
 268         * memory for the scale and unit attribute for now.
 269         * "ct" has the total event structs added from the events-parent node.
 270         * So allocate three times the "ct" (this includes event, event_scale and
 271         * event_unit).
 272         */
 273        attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
 274        if (!attrs) {
 275                kfree(attr_group);
 276                imc_free_events(pmu->events, ct);
 277                return -ENOMEM;
 278        }
 279
 280        attr_group->name = "events";
 281        attr_group->attrs = attrs;
 282        do {
 283                ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
 284                dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
 285                if (!dev_str)
 286                        continue;
 287
 288                attrs[j++] = dev_str;
 289                if (pmu->events[i].scale) {
 290                        ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
 291                        dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
 292                        if (!dev_str)
 293                                continue;
 294
 295                        attrs[j++] = dev_str;
 296                }
 297
 298                if (pmu->events[i].unit) {
 299                        ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
 300                        dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
 301                        if (!dev_str)
 302                                continue;
 303
 304                        attrs[j++] = dev_str;
 305                }
 306        } while (++i < ct);
 307
 308        /* Save the event attribute */
 309        pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
 310
 311        return 0;
 312}
 313
 314/* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
 315static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
 316{
 317        return per_cpu(local_nest_imc_refc, cpu);
 318}
 319
 320static void nest_change_cpu_context(int old_cpu, int new_cpu)
 321{
 322        struct imc_pmu **pn = per_nest_pmu_arr;
 323
 324        if (old_cpu < 0 || new_cpu < 0)
 325                return;
 326
 327        while (*pn) {
 328                perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
 329                pn++;
 330        }
 331}
 332
 333static int ppc_nest_imc_cpu_offline(unsigned int cpu)
 334{
 335        int nid, target = -1;
 336        const struct cpumask *l_cpumask;
 337        struct imc_pmu_ref *ref;
 338
 339        /*
 340         * Check in the designated list for this cpu. Dont bother
 341         * if not one of them.
 342         */
 343        if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
 344                return 0;
 345
 346        /*
 347         * Check whether nest_imc is registered. We could end up here if the
 348         * cpuhotplug callback registration fails. i.e, callback invokes the
 349         * offline path for all successfully registered nodes. At this stage,
 350         * nest_imc pmu will not be registered and we should return here.
 351         *
 352         * We return with a zero since this is not an offline failure. And
 353         * cpuhp_setup_state() returns the actual failure reason to the caller,
 354         * which in turn will call the cleanup routine.
 355         */
 356        if (!nest_pmus)
 357                return 0;
 358
 359        /*
 360         * Now that this cpu is one of the designated,
 361         * find a next cpu a) which is online and b) in same chip.
 362         */
 363        nid = cpu_to_node(cpu);
 364        l_cpumask = cpumask_of_node(nid);
 365        target = cpumask_last(l_cpumask);
 366
 367        /*
 368         * If this(target) is the last cpu in the cpumask for this chip,
 369         * check for any possible online cpu in the chip.
 370         */
 371        if (unlikely(target == cpu))
 372                target = cpumask_any_but(l_cpumask, cpu);
 373
 374        /*
 375         * Update the cpumask with the target cpu and
 376         * migrate the context if needed
 377         */
 378        if (target >= 0 && target < nr_cpu_ids) {
 379                cpumask_set_cpu(target, &nest_imc_cpumask);
 380                nest_change_cpu_context(cpu, target);
 381        } else {
 382                opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 383                                       get_hard_smp_processor_id(cpu));
 384                /*
 385                 * If this is the last cpu in this chip then, skip the reference
 386                 * count mutex lock and make the reference count on this chip zero.
 387                 */
 388                ref = get_nest_pmu_ref(cpu);
 389                if (!ref)
 390                        return -EINVAL;
 391
 392                ref->refc = 0;
 393        }
 394        return 0;
 395}
 396
 397static int ppc_nest_imc_cpu_online(unsigned int cpu)
 398{
 399        const struct cpumask *l_cpumask;
 400        static struct cpumask tmp_mask;
 401        int res;
 402
 403        /* Get the cpumask of this node */
 404        l_cpumask = cpumask_of_node(cpu_to_node(cpu));
 405
 406        /*
 407         * If this is not the first online CPU on this node, then
 408         * just return.
 409         */
 410        if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
 411                return 0;
 412
 413        /*
 414         * If this is the first online cpu on this node
 415         * disable the nest counters by making an OPAL call.
 416         */
 417        res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 418                                     get_hard_smp_processor_id(cpu));
 419        if (res)
 420                return res;
 421
 422        /* Make this CPU the designated target for counter collection */
 423        cpumask_set_cpu(cpu, &nest_imc_cpumask);
 424        return 0;
 425}
 426
 427static int nest_pmu_cpumask_init(void)
 428{
 429        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
 430                                 "perf/powerpc/imc:online",
 431                                 ppc_nest_imc_cpu_online,
 432                                 ppc_nest_imc_cpu_offline);
 433}
 434
 435static void nest_imc_counters_release(struct perf_event *event)
 436{
 437        int rc, node_id;
 438        struct imc_pmu_ref *ref;
 439
 440        if (event->cpu < 0)
 441                return;
 442
 443        node_id = cpu_to_node(event->cpu);
 444
 445        /*
 446         * See if we need to disable the nest PMU.
 447         * If no events are currently in use, then we have to take a
 448         * mutex to ensure that we don't race with another task doing
 449         * enable or disable the nest counters.
 450         */
 451        ref = get_nest_pmu_ref(event->cpu);
 452        if (!ref)
 453                return;
 454
 455        /* Take the mutex lock for this node and then decrement the reference count */
 456        mutex_lock(&ref->lock);
 457        if (ref->refc == 0) {
 458                /*
 459                 * The scenario where this is true is, when perf session is
 460                 * started, followed by offlining of all cpus in a given node.
 461                 *
 462                 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
 463                 * function set the ref->count to zero, if the cpu which is
 464                 * about to offline is the last cpu in a given node and make
 465                 * an OPAL call to disable the engine in that node.
 466                 *
 467                 */
 468                mutex_unlock(&ref->lock);
 469                return;
 470        }
 471        ref->refc--;
 472        if (ref->refc == 0) {
 473                rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 474                                            get_hard_smp_processor_id(event->cpu));
 475                if (rc) {
 476                        mutex_unlock(&ref->lock);
 477                        pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
 478                        return;
 479                }
 480        } else if (ref->refc < 0) {
 481                WARN(1, "nest-imc: Invalid event reference count\n");
 482                ref->refc = 0;
 483        }
 484        mutex_unlock(&ref->lock);
 485}
 486
 487static int nest_imc_event_init(struct perf_event *event)
 488{
 489        int chip_id, rc, node_id;
 490        u32 l_config, config = event->attr.config;
 491        struct imc_mem_info *pcni;
 492        struct imc_pmu *pmu;
 493        struct imc_pmu_ref *ref;
 494        bool flag = false;
 495
 496        if (event->attr.type != event->pmu->type)
 497                return -ENOENT;
 498
 499        /* Sampling not supported */
 500        if (event->hw.sample_period)
 501                return -EINVAL;
 502
 503        if (event->cpu < 0)
 504                return -EINVAL;
 505
 506        pmu = imc_event_to_pmu(event);
 507
 508        /* Sanity check for config (event offset) */
 509        if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
 510                return -EINVAL;
 511
 512        /*
 513         * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
 514         * Get the base memory addresss for this cpu.
 515         */
 516        chip_id = cpu_to_chip_id(event->cpu);
 517
 518        /* Return, if chip_id is not valid */
 519        if (chip_id < 0)
 520                return -ENODEV;
 521
 522        pcni = pmu->mem_info;
 523        do {
 524                if (pcni->id == chip_id) {
 525                        flag = true;
 526                        break;
 527                }
 528                pcni++;
 529        } while (pcni->vbase != 0);
 530
 531        if (!flag)
 532                return -ENODEV;
 533
 534        /*
 535         * Add the event offset to the base address.
 536         */
 537        l_config = config & IMC_EVENT_OFFSET_MASK;
 538        event->hw.event_base = (u64)pcni->vbase + l_config;
 539        node_id = cpu_to_node(event->cpu);
 540
 541        /*
 542         * Get the imc_pmu_ref struct for this node.
 543         * Take the mutex lock and then increment the count of nest pmu events
 544         * inited.
 545         */
 546        ref = get_nest_pmu_ref(event->cpu);
 547        if (!ref)
 548                return -EINVAL;
 549
 550        mutex_lock(&ref->lock);
 551        if (ref->refc == 0) {
 552                rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
 553                                             get_hard_smp_processor_id(event->cpu));
 554                if (rc) {
 555                        mutex_unlock(&ref->lock);
 556                        pr_err("nest-imc: Unable to start the counters for node %d\n",
 557                                                                        node_id);
 558                        return rc;
 559                }
 560        }
 561        ++ref->refc;
 562        mutex_unlock(&ref->lock);
 563
 564        event->destroy = nest_imc_counters_release;
 565        return 0;
 566}
 567
 568/*
 569 * core_imc_mem_init : Initializes memory for the current core.
 570 *
 571 * Uses alloc_pages_node() and uses the returned address as an argument to
 572 * an opal call to configure the pdbar. The address sent as an argument is
 573 * converted to physical address before the opal call is made. This is the
 574 * base address at which the core imc counters are populated.
 575 */
 576static int core_imc_mem_init(int cpu, int size)
 577{
 578        int nid, rc = 0, core_id = (cpu / threads_per_core);
 579        struct imc_mem_info *mem_info;
 580
 581        /*
 582         * alloc_pages_node() will allocate memory for core in the
 583         * local node only.
 584         */
 585        nid = cpu_to_node(cpu);
 586        mem_info = &core_imc_pmu->mem_info[core_id];
 587        mem_info->id = core_id;
 588
 589        /* We need only vbase for core counters */
 590        mem_info->vbase = page_address(alloc_pages_node(nid,
 591                                          GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
 592                                          __GFP_NOWARN, get_order(size)));
 593        if (!mem_info->vbase)
 594                return -ENOMEM;
 595
 596        /* Init the mutex */
 597        core_imc_refc[core_id].id = core_id;
 598        mutex_init(&core_imc_refc[core_id].lock);
 599
 600        rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
 601                                __pa((void *)mem_info->vbase),
 602                                get_hard_smp_processor_id(cpu));
 603        if (rc) {
 604                free_pages((u64)mem_info->vbase, get_order(size));
 605                mem_info->vbase = NULL;
 606        }
 607
 608        return rc;
 609}
 610
 611static bool is_core_imc_mem_inited(int cpu)
 612{
 613        struct imc_mem_info *mem_info;
 614        int core_id = (cpu / threads_per_core);
 615
 616        mem_info = &core_imc_pmu->mem_info[core_id];
 617        if (!mem_info->vbase)
 618                return false;
 619
 620        return true;
 621}
 622
 623static int ppc_core_imc_cpu_online(unsigned int cpu)
 624{
 625        const struct cpumask *l_cpumask;
 626        static struct cpumask tmp_mask;
 627        int ret = 0;
 628
 629        /* Get the cpumask for this core */
 630        l_cpumask = cpu_sibling_mask(cpu);
 631
 632        /* If a cpu for this core is already set, then, don't do anything */
 633        if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
 634                return 0;
 635
 636        if (!is_core_imc_mem_inited(cpu)) {
 637                ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
 638                if (ret) {
 639                        pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
 640                        return ret;
 641                }
 642        }
 643
 644        /* set the cpu in the mask */
 645        cpumask_set_cpu(cpu, &core_imc_cpumask);
 646        return 0;
 647}
 648
 649static int ppc_core_imc_cpu_offline(unsigned int cpu)
 650{
 651        unsigned int core_id;
 652        int ncpu;
 653        struct imc_pmu_ref *ref;
 654
 655        /*
 656         * clear this cpu out of the mask, if not present in the mask,
 657         * don't bother doing anything.
 658         */
 659        if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
 660                return 0;
 661
 662        /*
 663         * Check whether core_imc is registered. We could end up here
 664         * if the cpuhotplug callback registration fails. i.e, callback
 665         * invokes the offline path for all sucessfully registered cpus.
 666         * At this stage, core_imc pmu will not be registered and we
 667         * should return here.
 668         *
 669         * We return with a zero since this is not an offline failure.
 670         * And cpuhp_setup_state() returns the actual failure reason
 671         * to the caller, which inturn will call the cleanup routine.
 672         */
 673        if (!core_imc_pmu->pmu.event_init)
 674                return 0;
 675
 676        /* Find any online cpu in that core except the current "cpu" */
 677        ncpu = cpumask_last(cpu_sibling_mask(cpu));
 678
 679        if (unlikely(ncpu == cpu))
 680                ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
 681
 682        if (ncpu >= 0 && ncpu < nr_cpu_ids) {
 683                cpumask_set_cpu(ncpu, &core_imc_cpumask);
 684                perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
 685        } else {
 686                /*
 687                 * If this is the last cpu in this core then, skip taking refernce
 688                 * count mutex lock for this core and directly zero "refc" for
 689                 * this core.
 690                 */
 691                opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
 692                                       get_hard_smp_processor_id(cpu));
 693                core_id = cpu / threads_per_core;
 694                ref = &core_imc_refc[core_id];
 695                if (!ref)
 696                        return -EINVAL;
 697
 698                ref->refc = 0;
 699        }
 700        return 0;
 701}
 702
 703static int core_imc_pmu_cpumask_init(void)
 704{
 705        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
 706                                 "perf/powerpc/imc_core:online",
 707                                 ppc_core_imc_cpu_online,
 708                                 ppc_core_imc_cpu_offline);
 709}
 710
 711static void core_imc_counters_release(struct perf_event *event)
 712{
 713        int rc, core_id;
 714        struct imc_pmu_ref *ref;
 715
 716        if (event->cpu < 0)
 717                return;
 718        /*
 719         * See if we need to disable the IMC PMU.
 720         * If no events are currently in use, then we have to take a
 721         * mutex to ensure that we don't race with another task doing
 722         * enable or disable the core counters.
 723         */
 724        core_id = event->cpu / threads_per_core;
 725
 726        /* Take the mutex lock and decrement the refernce count for this core */
 727        ref = &core_imc_refc[core_id];
 728        if (!ref)
 729                return;
 730
 731        mutex_lock(&ref->lock);
 732        if (ref->refc == 0) {
 733                /*
 734                 * The scenario where this is true is, when perf session is
 735                 * started, followed by offlining of all cpus in a given core.
 736                 *
 737                 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
 738                 * function set the ref->count to zero, if the cpu which is
 739                 * about to offline is the last cpu in a given core and make
 740                 * an OPAL call to disable the engine in that core.
 741                 *
 742                 */
 743                mutex_unlock(&ref->lock);
 744                return;
 745        }
 746        ref->refc--;
 747        if (ref->refc == 0) {
 748                rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
 749                                            get_hard_smp_processor_id(event->cpu));
 750                if (rc) {
 751                        mutex_unlock(&ref->lock);
 752                        pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
 753                        return;
 754                }
 755        } else if (ref->refc < 0) {
 756                WARN(1, "core-imc: Invalid event reference count\n");
 757                ref->refc = 0;
 758        }
 759        mutex_unlock(&ref->lock);
 760}
 761
 762static int core_imc_event_init(struct perf_event *event)
 763{
 764        int core_id, rc;
 765        u64 config = event->attr.config;
 766        struct imc_mem_info *pcmi;
 767        struct imc_pmu *pmu;
 768        struct imc_pmu_ref *ref;
 769
 770        if (event->attr.type != event->pmu->type)
 771                return -ENOENT;
 772
 773        /* Sampling not supported */
 774        if (event->hw.sample_period)
 775                return -EINVAL;
 776
 777        if (event->cpu < 0)
 778                return -EINVAL;
 779
 780        event->hw.idx = -1;
 781        pmu = imc_event_to_pmu(event);
 782
 783        /* Sanity check for config (event offset) */
 784        if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
 785                return -EINVAL;
 786
 787        if (!is_core_imc_mem_inited(event->cpu))
 788                return -ENODEV;
 789
 790        core_id = event->cpu / threads_per_core;
 791        pcmi = &core_imc_pmu->mem_info[core_id];
 792        if ((!pcmi->vbase))
 793                return -ENODEV;
 794
 795        /* Get the core_imc mutex for this core */
 796        ref = &core_imc_refc[core_id];
 797        if (!ref)
 798                return -EINVAL;
 799
 800        /*
 801         * Core pmu units are enabled only when it is used.
 802         * See if this is triggered for the first time.
 803         * If yes, take the mutex lock and enable the core counters.
 804         * If not, just increment the count in core_imc_refc struct.
 805         */
 806        mutex_lock(&ref->lock);
 807        if (ref->refc == 0) {
 808                rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
 809                                             get_hard_smp_processor_id(event->cpu));
 810                if (rc) {
 811                        mutex_unlock(&ref->lock);
 812                        pr_err("core-imc: Unable to start the counters for core %d\n",
 813                                                                        core_id);
 814                        return rc;
 815                }
 816        }
 817        ++ref->refc;
 818        mutex_unlock(&ref->lock);
 819
 820        event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
 821        event->destroy = core_imc_counters_release;
 822        return 0;
 823}
 824
 825/*
 826 * Allocates a page of memory for each of the online cpus, and load
 827 * LDBAR with 0.
 828 * The physical base address of the page allocated for a cpu will be
 829 * written to the LDBAR for that cpu, when the thread-imc event
 830 * is added.
 831 *
 832 * LDBAR Register Layout:
 833 *
 834 *  0          4         8         12        16        20        24        28
 835 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
 836 *   | |       [   ]    [                   Counter Address [8:50]
 837 *   | * Mode    |
 838 *   |           * PB Scope
 839 *   * Enable/Disable
 840 *
 841 *  32        36        40        44        48        52        56        60
 842 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
 843 *           Counter Address [8:50]              ]
 844 *
 845 */
 846static int thread_imc_mem_alloc(int cpu_id, int size)
 847{
 848        u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
 849        int nid = cpu_to_node(cpu_id);
 850
 851        if (!local_mem) {
 852                /*
 853                 * This case could happen only once at start, since we dont
 854                 * free the memory in cpu offline path.
 855                 */
 856                local_mem = page_address(alloc_pages_node(nid,
 857                                  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
 858                                  __GFP_NOWARN, get_order(size)));
 859                if (!local_mem)
 860                        return -ENOMEM;
 861
 862                per_cpu(thread_imc_mem, cpu_id) = local_mem;
 863        }
 864
 865        mtspr(SPRN_LDBAR, 0);
 866        return 0;
 867}
 868
 869static int ppc_thread_imc_cpu_online(unsigned int cpu)
 870{
 871        return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
 872}
 873
 874static int ppc_thread_imc_cpu_offline(unsigned int cpu)
 875{
 876        mtspr(SPRN_LDBAR, 0);
 877        return 0;
 878}
 879
 880static int thread_imc_cpu_init(void)
 881{
 882        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
 883                          "perf/powerpc/imc_thread:online",
 884                          ppc_thread_imc_cpu_online,
 885                          ppc_thread_imc_cpu_offline);
 886}
 887
 888static int thread_imc_event_init(struct perf_event *event)
 889{
 890        u32 config = event->attr.config;
 891        struct task_struct *target;
 892        struct imc_pmu *pmu;
 893
 894        if (event->attr.type != event->pmu->type)
 895                return -ENOENT;
 896
 897        if (!capable(CAP_SYS_ADMIN))
 898                return -EACCES;
 899
 900        /* Sampling not supported */
 901        if (event->hw.sample_period)
 902                return -EINVAL;
 903
 904        event->hw.idx = -1;
 905        pmu = imc_event_to_pmu(event);
 906
 907        /* Sanity check for config offset */
 908        if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
 909                return -EINVAL;
 910
 911        target = event->hw.target;
 912        if (!target)
 913                return -EINVAL;
 914
 915        event->pmu->task_ctx_nr = perf_sw_context;
 916        return 0;
 917}
 918
 919static bool is_thread_imc_pmu(struct perf_event *event)
 920{
 921        if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
 922                return true;
 923
 924        return false;
 925}
 926
 927static u64 * get_event_base_addr(struct perf_event *event)
 928{
 929        u64 addr;
 930
 931        if (is_thread_imc_pmu(event)) {
 932                addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
 933                return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
 934        }
 935
 936        return (u64 *)event->hw.event_base;
 937}
 938
 939static void thread_imc_pmu_start_txn(struct pmu *pmu,
 940                                     unsigned int txn_flags)
 941{
 942        if (txn_flags & ~PERF_PMU_TXN_ADD)
 943                return;
 944        perf_pmu_disable(pmu);
 945}
 946
 947static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
 948{
 949        perf_pmu_enable(pmu);
 950}
 951
 952static int thread_imc_pmu_commit_txn(struct pmu *pmu)
 953{
 954        perf_pmu_enable(pmu);
 955        return 0;
 956}
 957
 958static u64 imc_read_counter(struct perf_event *event)
 959{
 960        u64 *addr, data;
 961
 962        /*
 963         * In-Memory Collection (IMC) counters are free flowing counters.
 964         * So we take a snapshot of the counter value on enable and save it
 965         * to calculate the delta at later stage to present the event counter
 966         * value.
 967         */
 968        addr = get_event_base_addr(event);
 969        data = be64_to_cpu(READ_ONCE(*addr));
 970        local64_set(&event->hw.prev_count, data);
 971
 972        return data;
 973}
 974
 975static void imc_event_update(struct perf_event *event)
 976{
 977        u64 counter_prev, counter_new, final_count;
 978
 979        counter_prev = local64_read(&event->hw.prev_count);
 980        counter_new = imc_read_counter(event);
 981        final_count = counter_new - counter_prev;
 982
 983        /* Update the delta to the event count */
 984        local64_add(final_count, &event->count);
 985}
 986
 987static void imc_event_start(struct perf_event *event, int flags)
 988{
 989        /*
 990         * In Memory Counters are free flowing counters. HW or the microcode
 991         * keeps adding to the counter offset in memory. To get event
 992         * counter value, we snapshot the value here and we calculate
 993         * delta at later point.
 994         */
 995        imc_read_counter(event);
 996}
 997
 998static void imc_event_stop(struct perf_event *event, int flags)
 999{
1000        /*
1001         * Take a snapshot and calculate the delta and update
1002         * the event counter values.
1003         */
1004        imc_event_update(event);
1005}
1006
1007static int imc_event_add(struct perf_event *event, int flags)
1008{
1009        if (flags & PERF_EF_START)
1010                imc_event_start(event, flags);
1011
1012        return 0;
1013}
1014
1015static int thread_imc_event_add(struct perf_event *event, int flags)
1016{
1017        int core_id;
1018        struct imc_pmu_ref *ref;
1019        u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1020
1021        if (flags & PERF_EF_START)
1022                imc_event_start(event, flags);
1023
1024        if (!is_core_imc_mem_inited(smp_processor_id()))
1025                return -EINVAL;
1026
1027        core_id = smp_processor_id() / threads_per_core;
1028        ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1029        mtspr(SPRN_LDBAR, ldbar_value);
1030
1031        /*
1032         * imc pmus are enabled only when it is used.
1033         * See if this is triggered for the first time.
1034         * If yes, take the mutex lock and enable the counters.
1035         * If not, just increment the count in ref count struct.
1036         */
1037        ref = &core_imc_refc[core_id];
1038        if (!ref)
1039                return -EINVAL;
1040
1041        mutex_lock(&ref->lock);
1042        if (ref->refc == 0) {
1043                if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1044                    get_hard_smp_processor_id(smp_processor_id()))) {
1045                        mutex_unlock(&ref->lock);
1046                        pr_err("thread-imc: Unable to start the counter\
1047                                for core %d\n", core_id);
1048                        return -EINVAL;
1049                }
1050        }
1051        ++ref->refc;
1052        mutex_unlock(&ref->lock);
1053        return 0;
1054}
1055
1056static void thread_imc_event_del(struct perf_event *event, int flags)
1057{
1058
1059        int core_id;
1060        struct imc_pmu_ref *ref;
1061
1062        mtspr(SPRN_LDBAR, 0);
1063
1064        core_id = smp_processor_id() / threads_per_core;
1065        ref = &core_imc_refc[core_id];
1066
1067        mutex_lock(&ref->lock);
1068        ref->refc--;
1069        if (ref->refc == 0) {
1070                if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1071                    get_hard_smp_processor_id(smp_processor_id()))) {
1072                        mutex_unlock(&ref->lock);
1073                        pr_err("thread-imc: Unable to stop the counters\
1074                                for core %d\n", core_id);
1075                        return;
1076                }
1077        } else if (ref->refc < 0) {
1078                ref->refc = 0;
1079        }
1080        mutex_unlock(&ref->lock);
1081        /*
1082         * Take a snapshot and calculate the delta and update
1083         * the event counter values.
1084         */
1085        imc_event_update(event);
1086}
1087
1088/*
1089 * Allocate a page of memory for each cpu, and load LDBAR with 0.
1090 */
1091static int trace_imc_mem_alloc(int cpu_id, int size)
1092{
1093        u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1094        int phys_id = cpu_to_node(cpu_id), rc = 0;
1095        int core_id = (cpu_id / threads_per_core);
1096
1097        if (!local_mem) {
1098                local_mem = page_address(alloc_pages_node(phys_id,
1099                                        GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1100                                        __GFP_NOWARN, get_order(size)));
1101                if (!local_mem)
1102                        return -ENOMEM;
1103                per_cpu(trace_imc_mem, cpu_id) = local_mem;
1104
1105                /* Initialise the counters for trace mode */
1106                rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1107                                            get_hard_smp_processor_id(cpu_id));
1108                if (rc) {
1109                        pr_info("IMC:opal init failed for trace imc\n");
1110                        return rc;
1111                }
1112        }
1113
1114        /* Init the mutex, if not already */
1115        trace_imc_refc[core_id].id = core_id;
1116        mutex_init(&trace_imc_refc[core_id].lock);
1117
1118        mtspr(SPRN_LDBAR, 0);
1119        return 0;
1120}
1121
1122static int ppc_trace_imc_cpu_online(unsigned int cpu)
1123{
1124        return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1125}
1126
1127static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1128{
1129        mtspr(SPRN_LDBAR, 0);
1130        return 0;
1131}
1132
1133static int trace_imc_cpu_init(void)
1134{
1135        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1136                          "perf/powerpc/imc_trace:online",
1137                          ppc_trace_imc_cpu_online,
1138                          ppc_trace_imc_cpu_offline);
1139}
1140
1141static u64 get_trace_imc_event_base_addr(void)
1142{
1143        return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1144}
1145
1146/*
1147 * Function to parse trace-imc data obtained
1148 * and to prepare the perf sample.
1149 */
1150static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1151                                    struct perf_sample_data *data,
1152                                    u64 *prev_tb,
1153                                    struct perf_event_header *header,
1154                                    struct perf_event *event)
1155{
1156        /* Sanity checks for a valid record */
1157        if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1158                *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1159        else
1160                return -EINVAL;
1161
1162        if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1163                         be64_to_cpu(READ_ONCE(mem->tb2)))
1164                return -EINVAL;
1165
1166        /* Prepare perf sample */
1167        data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1168        data->period = event->hw.last_period;
1169
1170        header->type = PERF_RECORD_SAMPLE;
1171        header->size = sizeof(*header) + event->header_size;
1172        header->misc = 0;
1173
1174        if (is_kernel_addr(data->ip))
1175                header->misc |= PERF_RECORD_MISC_KERNEL;
1176        else
1177                header->misc |= PERF_RECORD_MISC_USER;
1178
1179        perf_event_header__init_id(header, data, event);
1180
1181        return 0;
1182}
1183
1184static void dump_trace_imc_data(struct perf_event *event)
1185{
1186        struct trace_imc_data *mem;
1187        int i, ret;
1188        u64 prev_tb = 0;
1189
1190        mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1191        for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1192                i++, mem++) {
1193                struct perf_sample_data data;
1194                struct perf_event_header header;
1195
1196                ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1197                if (ret) /* Exit, if not a valid record */
1198                        break;
1199                else {
1200                        /* If this is a valid record, create the sample */
1201                        struct perf_output_handle handle;
1202
1203                        if (perf_output_begin(&handle, event, header.size))
1204                                return;
1205
1206                        perf_output_sample(&handle, &header, &data, event);
1207                        perf_output_end(&handle);
1208                }
1209        }
1210}
1211
1212static int trace_imc_event_add(struct perf_event *event, int flags)
1213{
1214        int core_id = smp_processor_id() / threads_per_core;
1215        struct imc_pmu_ref *ref = NULL;
1216        u64 local_mem, ldbar_value;
1217
1218        /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1219        local_mem = get_trace_imc_event_base_addr();
1220        ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1221
1222        if (core_imc_refc)
1223                ref = &core_imc_refc[core_id];
1224        if (!ref) {
1225                /* If core-imc is not enabled, use trace-imc reference count */
1226                if (trace_imc_refc)
1227                        ref = &trace_imc_refc[core_id];
1228                if (!ref)
1229                        return -EINVAL;
1230        }
1231        mtspr(SPRN_LDBAR, ldbar_value);
1232        mutex_lock(&ref->lock);
1233        if (ref->refc == 0) {
1234                if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1235                                get_hard_smp_processor_id(smp_processor_id()))) {
1236                        mutex_unlock(&ref->lock);
1237                        pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1238                        mtspr(SPRN_LDBAR, 0);
1239                        return -EINVAL;
1240                }
1241        }
1242        ++ref->refc;
1243        mutex_unlock(&ref->lock);
1244
1245        return 0;
1246}
1247
1248static void trace_imc_event_read(struct perf_event *event)
1249{
1250        return;
1251}
1252
1253static void trace_imc_event_stop(struct perf_event *event, int flags)
1254{
1255        u64 local_mem = get_trace_imc_event_base_addr();
1256        dump_trace_imc_data(event);
1257        memset((void *)local_mem, 0, sizeof(u64));
1258}
1259
1260static void trace_imc_event_start(struct perf_event *event, int flags)
1261{
1262        return;
1263}
1264
1265static void trace_imc_event_del(struct perf_event *event, int flags)
1266{
1267        int core_id = smp_processor_id() / threads_per_core;
1268        struct imc_pmu_ref *ref = NULL;
1269
1270        if (core_imc_refc)
1271                ref = &core_imc_refc[core_id];
1272        if (!ref) {
1273                /* If core-imc is not enabled, use trace-imc reference count */
1274                if (trace_imc_refc)
1275                        ref = &trace_imc_refc[core_id];
1276                if (!ref)
1277                        return;
1278        }
1279        mtspr(SPRN_LDBAR, 0);
1280        mutex_lock(&ref->lock);
1281        ref->refc--;
1282        if (ref->refc == 0) {
1283                if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1284                                get_hard_smp_processor_id(smp_processor_id()))) {
1285                        mutex_unlock(&ref->lock);
1286                        pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1287                        return;
1288                }
1289        } else if (ref->refc < 0) {
1290                ref->refc = 0;
1291        }
1292        mutex_unlock(&ref->lock);
1293        trace_imc_event_stop(event, flags);
1294}
1295
1296static int trace_imc_event_init(struct perf_event *event)
1297{
1298        struct task_struct *target;
1299
1300        if (event->attr.type != event->pmu->type)
1301                return -ENOENT;
1302
1303        if (!capable(CAP_SYS_ADMIN))
1304                return -EACCES;
1305
1306        /* Return if this is a couting event */
1307        if (event->attr.sample_period == 0)
1308                return -ENOENT;
1309
1310        event->hw.idx = -1;
1311        target = event->hw.target;
1312
1313        event->pmu->task_ctx_nr = perf_hw_context;
1314        return 0;
1315}
1316
1317/* update_pmu_ops : Populate the appropriate operations for "pmu" */
1318static int update_pmu_ops(struct imc_pmu *pmu)
1319{
1320        pmu->pmu.task_ctx_nr = perf_invalid_context;
1321        pmu->pmu.add = imc_event_add;
1322        pmu->pmu.del = imc_event_stop;
1323        pmu->pmu.start = imc_event_start;
1324        pmu->pmu.stop = imc_event_stop;
1325        pmu->pmu.read = imc_event_update;
1326        pmu->pmu.attr_groups = pmu->attr_groups;
1327        pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1328        pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1329
1330        switch (pmu->domain) {
1331        case IMC_DOMAIN_NEST:
1332                pmu->pmu.event_init = nest_imc_event_init;
1333                pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1334                break;
1335        case IMC_DOMAIN_CORE:
1336                pmu->pmu.event_init = core_imc_event_init;
1337                pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1338                break;
1339        case IMC_DOMAIN_THREAD:
1340                pmu->pmu.event_init = thread_imc_event_init;
1341                pmu->pmu.add = thread_imc_event_add;
1342                pmu->pmu.del = thread_imc_event_del;
1343                pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1344                pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1345                pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1346                break;
1347        case IMC_DOMAIN_TRACE:
1348                pmu->pmu.event_init = trace_imc_event_init;
1349                pmu->pmu.add = trace_imc_event_add;
1350                pmu->pmu.del = trace_imc_event_del;
1351                pmu->pmu.start = trace_imc_event_start;
1352                pmu->pmu.stop = trace_imc_event_stop;
1353                pmu->pmu.read = trace_imc_event_read;
1354                pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1355        default:
1356                break;
1357        }
1358
1359        return 0;
1360}
1361
1362/* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1363static int init_nest_pmu_ref(void)
1364{
1365        int nid, i, cpu;
1366
1367        nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1368                                                                GFP_KERNEL);
1369
1370        if (!nest_imc_refc)
1371                return -ENOMEM;
1372
1373        i = 0;
1374        for_each_node(nid) {
1375                /*
1376                 * Mutex lock to avoid races while tracking the number of
1377                 * sessions using the chip's nest pmu units.
1378                 */
1379                mutex_init(&nest_imc_refc[i].lock);
1380
1381                /*
1382                 * Loop to init the "id" with the node_id. Variable "i" initialized to
1383                 * 0 and will be used as index to the array. "i" will not go off the
1384                 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1385                 * nodes only.
1386                 */
1387                nest_imc_refc[i++].id = nid;
1388        }
1389
1390        /*
1391         * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1392         * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1393         */
1394        for_each_possible_cpu(cpu) {
1395                nid = cpu_to_node(cpu);
1396                for (i = 0; i < num_possible_nodes(); i++) {
1397                        if (nest_imc_refc[i].id == nid) {
1398                                per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1399                                break;
1400                        }
1401                }
1402        }
1403        return 0;
1404}
1405
1406static void cleanup_all_core_imc_memory(void)
1407{
1408        int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1409        struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1410        int size = core_imc_pmu->counter_mem_size;
1411
1412        /* mem_info will never be NULL */
1413        for (i = 0; i < nr_cores; i++) {
1414                if (ptr[i].vbase)
1415                        free_pages((u64)ptr[i].vbase, get_order(size));
1416        }
1417
1418        kfree(ptr);
1419        kfree(core_imc_refc);
1420}
1421
1422static void thread_imc_ldbar_disable(void *dummy)
1423{
1424        /*
1425         * By Zeroing LDBAR, we disable thread-imc
1426         * updates.
1427         */
1428        mtspr(SPRN_LDBAR, 0);
1429}
1430
1431void thread_imc_disable(void)
1432{
1433        on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1434}
1435
1436static void cleanup_all_thread_imc_memory(void)
1437{
1438        int i, order = get_order(thread_imc_mem_size);
1439
1440        for_each_online_cpu(i) {
1441                if (per_cpu(thread_imc_mem, i))
1442                        free_pages((u64)per_cpu(thread_imc_mem, i), order);
1443
1444        }
1445}
1446
1447static void cleanup_all_trace_imc_memory(void)
1448{
1449        int i, order = get_order(trace_imc_mem_size);
1450
1451        for_each_online_cpu(i) {
1452                if (per_cpu(trace_imc_mem, i))
1453                        free_pages((u64)per_cpu(trace_imc_mem, i), order);
1454
1455        }
1456        kfree(trace_imc_refc);
1457}
1458
1459/* Function to free the attr_groups which are dynamically allocated */
1460static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1461{
1462        if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1463                kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1464        kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1465}
1466
1467/*
1468 * Common function to unregister cpu hotplug callback and
1469 * free the memory.
1470 * TODO: Need to handle pmu unregistering, which will be
1471 * done in followup series.
1472 */
1473static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1474{
1475        if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1476                mutex_lock(&nest_init_lock);
1477                if (nest_pmus == 1) {
1478                        cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1479                        kfree(nest_imc_refc);
1480                        kfree(per_nest_pmu_arr);
1481                        per_nest_pmu_arr = NULL;
1482                }
1483
1484                if (nest_pmus > 0)
1485                        nest_pmus--;
1486                mutex_unlock(&nest_init_lock);
1487        }
1488
1489        /* Free core_imc memory */
1490        if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1491                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1492                cleanup_all_core_imc_memory();
1493        }
1494
1495        /* Free thread_imc memory */
1496        if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1497                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1498                cleanup_all_thread_imc_memory();
1499        }
1500
1501        if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1502                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1503                cleanup_all_trace_imc_memory();
1504        }
1505}
1506
1507/*
1508 * Function to unregister thread-imc if core-imc
1509 * is not registered.
1510 */
1511void unregister_thread_imc(void)
1512{
1513        imc_common_cpuhp_mem_free(thread_imc_pmu);
1514        imc_common_mem_free(thread_imc_pmu);
1515        perf_pmu_unregister(&thread_imc_pmu->pmu);
1516}
1517
1518/*
1519 * imc_mem_init : Function to support memory allocation for core imc.
1520 */
1521static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1522                                                                int pmu_index)
1523{
1524        const char *s;
1525        int nr_cores, cpu, res = -ENOMEM;
1526
1527        if (of_property_read_string(parent, "name", &s))
1528                return -ENODEV;
1529
1530        switch (pmu_ptr->domain) {
1531        case IMC_DOMAIN_NEST:
1532                /* Update the pmu name */
1533                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1534                if (!pmu_ptr->pmu.name)
1535                        goto err;
1536
1537                /* Needed for hotplug/migration */
1538                if (!per_nest_pmu_arr) {
1539                        per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1540                                                sizeof(struct imc_pmu *),
1541                                                GFP_KERNEL);
1542                        if (!per_nest_pmu_arr)
1543                                goto err;
1544                }
1545                per_nest_pmu_arr[pmu_index] = pmu_ptr;
1546                break;
1547        case IMC_DOMAIN_CORE:
1548                /* Update the pmu name */
1549                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1550                if (!pmu_ptr->pmu.name)
1551                        goto err;
1552
1553                nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1554                pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1555                                                                GFP_KERNEL);
1556
1557                if (!pmu_ptr->mem_info)
1558                        goto err;
1559
1560                core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1561                                                                GFP_KERNEL);
1562
1563                if (!core_imc_refc) {
1564                        kfree(pmu_ptr->mem_info);
1565                        goto err;
1566                }
1567
1568                core_imc_pmu = pmu_ptr;
1569                break;
1570        case IMC_DOMAIN_THREAD:
1571                /* Update the pmu name */
1572                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1573                if (!pmu_ptr->pmu.name)
1574                        goto err;
1575
1576                thread_imc_mem_size = pmu_ptr->counter_mem_size;
1577                for_each_online_cpu(cpu) {
1578                        res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1579                        if (res) {
1580                                cleanup_all_thread_imc_memory();
1581                                goto err;
1582                        }
1583                }
1584
1585                thread_imc_pmu = pmu_ptr;
1586                break;
1587        case IMC_DOMAIN_TRACE:
1588                /* Update the pmu name */
1589                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1590                if (!pmu_ptr->pmu.name)
1591                        return -ENOMEM;
1592
1593                nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1594                trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1595                                                                GFP_KERNEL);
1596                if (!trace_imc_refc)
1597                        return -ENOMEM;
1598
1599                trace_imc_mem_size = pmu_ptr->counter_mem_size;
1600                for_each_online_cpu(cpu) {
1601                        res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1602                        if (res) {
1603                                cleanup_all_trace_imc_memory();
1604                                goto err;
1605                        }
1606                }
1607                break;
1608        default:
1609                return -EINVAL;
1610        }
1611
1612        return 0;
1613err:
1614        return res;
1615}
1616
1617/*
1618 * init_imc_pmu : Setup and register the IMC pmu device.
1619 *
1620 * @parent:     Device tree unit node
1621 * @pmu_ptr:    memory allocated for this pmu
1622 * @pmu_idx:    Count of nest pmc registered
1623 *
1624 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1625 * Handles failure cases and accordingly frees memory.
1626 */
1627int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1628{
1629        int ret;
1630
1631        ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1632        if (ret)
1633                goto err_free_mem;
1634
1635        switch (pmu_ptr->domain) {
1636        case IMC_DOMAIN_NEST:
1637                /*
1638                * Nest imc pmu need only one cpu per chip, we initialize the
1639                * cpumask for the first nest imc pmu and use the same for the
1640                * rest. To handle the cpuhotplug callback unregister, we track
1641                * the number of nest pmus in "nest_pmus".
1642                */
1643                mutex_lock(&nest_init_lock);
1644                if (nest_pmus == 0) {
1645                        ret = init_nest_pmu_ref();
1646                        if (ret) {
1647                                mutex_unlock(&nest_init_lock);
1648                                kfree(per_nest_pmu_arr);
1649                                per_nest_pmu_arr = NULL;
1650                                goto err_free_mem;
1651                        }
1652                        /* Register for cpu hotplug notification. */
1653                        ret = nest_pmu_cpumask_init();
1654                        if (ret) {
1655                                mutex_unlock(&nest_init_lock);
1656                                kfree(nest_imc_refc);
1657                                kfree(per_nest_pmu_arr);
1658                                per_nest_pmu_arr = NULL;
1659                                goto err_free_mem;
1660                        }
1661                }
1662                nest_pmus++;
1663                mutex_unlock(&nest_init_lock);
1664                break;
1665        case IMC_DOMAIN_CORE:
1666                ret = core_imc_pmu_cpumask_init();
1667                if (ret) {
1668                        cleanup_all_core_imc_memory();
1669                        goto err_free_mem;
1670                }
1671
1672                break;
1673        case IMC_DOMAIN_THREAD:
1674                ret = thread_imc_cpu_init();
1675                if (ret) {
1676                        cleanup_all_thread_imc_memory();
1677                        goto err_free_mem;
1678                }
1679
1680                break;
1681        case IMC_DOMAIN_TRACE:
1682                ret = trace_imc_cpu_init();
1683                if (ret) {
1684                        cleanup_all_trace_imc_memory();
1685                        goto err_free_mem;
1686                }
1687
1688                break;
1689        default:
1690                return  -EINVAL;        /* Unknown domain */
1691        }
1692
1693        ret = update_events_in_group(parent, pmu_ptr);
1694        if (ret)
1695                goto err_free_cpuhp_mem;
1696
1697        ret = update_pmu_ops(pmu_ptr);
1698        if (ret)
1699                goto err_free_cpuhp_mem;
1700
1701        ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1702        if (ret)
1703                goto err_free_cpuhp_mem;
1704
1705        pr_debug("%s performance monitor hardware support registered\n",
1706                                                        pmu_ptr->pmu.name);
1707
1708        return 0;
1709
1710err_free_cpuhp_mem:
1711        imc_common_cpuhp_mem_free(pmu_ptr);
1712err_free_mem:
1713        imc_common_mem_free(pmu_ptr);
1714        return ret;
1715}
1716