linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  S390 version
   4 *    Copyright IBM Corp. 1999, 2000
   5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   6 *               Ulrich Weigand (weigand@de.ibm.com)
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 *
   9 *  Derived from "include/asm-i386/pgtable.h"
  10 */
  11
  12#ifndef _ASM_S390_PGTABLE_H
  13#define _ASM_S390_PGTABLE_H
  14
  15#include <linux/sched.h>
  16#include <linux/mm_types.h>
  17#include <linux/page-flags.h>
  18#include <linux/radix-tree.h>
  19#include <linux/atomic.h>
  20#include <asm/bug.h>
  21#include <asm/page.h>
  22
  23extern pgd_t swapper_pg_dir[];
  24extern void paging_init(void);
  25
  26enum {
  27        PG_DIRECT_MAP_4K = 0,
  28        PG_DIRECT_MAP_1M,
  29        PG_DIRECT_MAP_2G,
  30        PG_DIRECT_MAP_MAX
  31};
  32
  33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  34
  35static inline void update_page_count(int level, long count)
  36{
  37        if (IS_ENABLED(CONFIG_PROC_FS))
  38                atomic_long_add(count, &direct_pages_count[level]);
  39}
  40
  41struct seq_file;
  42void arch_report_meminfo(struct seq_file *m);
  43
  44/*
  45 * The S390 doesn't have any external MMU info: the kernel page
  46 * tables contain all the necessary information.
  47 */
  48#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  50
  51/*
  52 * ZERO_PAGE is a global shared page that is always zero; used
  53 * for zero-mapped memory areas etc..
  54 */
  55
  56extern unsigned long empty_zero_page;
  57extern unsigned long zero_page_mask;
  58
  59#define ZERO_PAGE(vaddr) \
  60        (virt_to_page((void *)(empty_zero_page + \
  61         (((unsigned long)(vaddr)) &zero_page_mask))))
  62#define __HAVE_COLOR_ZERO_PAGE
  63
  64/* TODO: s390 cannot support io_remap_pfn_range... */
  65
  66#define FIRST_USER_ADDRESS  0UL
  67
  68#define pte_ERROR(e) \
  69        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  70#define pmd_ERROR(e) \
  71        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  72#define pud_ERROR(e) \
  73        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  74#define p4d_ERROR(e) \
  75        printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
  76#define pgd_ERROR(e) \
  77        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  78
  79/*
  80 * The vmalloc and module area will always be on the topmost area of the
  81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
  82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  83 * modules will reside. That makes sure that inter module branches always
  84 * happen without trampolines and in addition the placement within a 2GB frame
  85 * is branch prediction unit friendly.
  86 */
  87extern unsigned long VMALLOC_START;
  88extern unsigned long VMALLOC_END;
  89extern struct page *vmemmap;
  90
  91#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  92
  93extern unsigned long MODULES_VADDR;
  94extern unsigned long MODULES_END;
  95#define MODULES_VADDR   MODULES_VADDR
  96#define MODULES_END     MODULES_END
  97#define MODULES_LEN     (1UL << 31)
  98
  99static inline int is_module_addr(void *addr)
 100{
 101        BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 102        if (addr < (void *)MODULES_VADDR)
 103                return 0;
 104        if (addr > (void *)MODULES_END)
 105                return 0;
 106        return 1;
 107}
 108
 109/*
 110 * A 64 bit pagetable entry of S390 has following format:
 111 * |                     PFRA                         |0IPC|  OS  |
 112 * 0000000000111111111122222222223333333333444444444455555555556666
 113 * 0123456789012345678901234567890123456789012345678901234567890123
 114 *
 115 * I Page-Invalid Bit:    Page is not available for address-translation
 116 * P Page-Protection Bit: Store access not possible for page
 117 * C Change-bit override: HW is not required to set change bit
 118 *
 119 * A 64 bit segmenttable entry of S390 has following format:
 120 * |        P-table origin                              |      TT
 121 * 0000000000111111111122222222223333333333444444444455555555556666
 122 * 0123456789012345678901234567890123456789012345678901234567890123
 123 *
 124 * I Segment-Invalid Bit:    Segment is not available for address-translation
 125 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 126 * P Page-Protection Bit: Store access not possible for page
 127 * TT Type 00
 128 *
 129 * A 64 bit region table entry of S390 has following format:
 130 * |        S-table origin                             |   TF  TTTL
 131 * 0000000000111111111122222222223333333333444444444455555555556666
 132 * 0123456789012345678901234567890123456789012345678901234567890123
 133 *
 134 * I Segment-Invalid Bit:    Segment is not available for address-translation
 135 * TT Type 01
 136 * TF
 137 * TL Table length
 138 *
 139 * The 64 bit regiontable origin of S390 has following format:
 140 * |      region table origon                          |       DTTL
 141 * 0000000000111111111122222222223333333333444444444455555555556666
 142 * 0123456789012345678901234567890123456789012345678901234567890123
 143 *
 144 * X Space-Switch event:
 145 * G Segment-Invalid Bit:  
 146 * P Private-Space Bit:    
 147 * S Storage-Alteration:
 148 * R Real space
 149 * TL Table-Length:
 150 *
 151 * A storage key has the following format:
 152 * | ACC |F|R|C|0|
 153 *  0   3 4 5 6 7
 154 * ACC: access key
 155 * F  : fetch protection bit
 156 * R  : referenced bit
 157 * C  : changed bit
 158 */
 159
 160/* Hardware bits in the page table entry */
 161#define _PAGE_NOEXEC    0x100           /* HW no-execute bit  */
 162#define _PAGE_PROTECT   0x200           /* HW read-only bit  */
 163#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 164#define _PAGE_LARGE     0x800           /* Bit to mark a large pte */
 165
 166/* Software bits in the page table entry */
 167#define _PAGE_PRESENT   0x001           /* SW pte present bit */
 168#define _PAGE_YOUNG     0x004           /* SW pte young bit */
 169#define _PAGE_DIRTY     0x008           /* SW pte dirty bit */
 170#define _PAGE_READ      0x010           /* SW pte read bit */
 171#define _PAGE_WRITE     0x020           /* SW pte write bit */
 172#define _PAGE_SPECIAL   0x040           /* SW associated with special page */
 173#define _PAGE_UNUSED    0x080           /* SW bit for pgste usage state */
 174
 175#ifdef CONFIG_MEM_SOFT_DIRTY
 176#define _PAGE_SOFT_DIRTY 0x002          /* SW pte soft dirty bit */
 177#else
 178#define _PAGE_SOFT_DIRTY 0x000
 179#endif
 180
 181/* Set of bits not changed in pte_modify */
 182#define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 183                                 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 184
 185/*
 186 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 187 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 188 * distinguish present from not-present ptes. It is changed only with the page
 189 * table lock held.
 190 *
 191 * The following table gives the different possible bit combinations for
 192 * the pte hardware and software bits in the last 12 bits of a pte
 193 * (. unassigned bit, x don't care, t swap type):
 194 *
 195 *                              842100000000
 196 *                              000084210000
 197 *                              000000008421
 198 *                              .IR.uswrdy.p
 199 * empty                        .10.00000000
 200 * swap                         .11..ttttt.0
 201 * prot-none, clean, old        .11.xx0000.1
 202 * prot-none, clean, young      .11.xx0001.1
 203 * prot-none, dirty, old        .11.xx0010.1
 204 * prot-none, dirty, young      .11.xx0011.1
 205 * read-only, clean, old        .11.xx0100.1
 206 * read-only, clean, young      .01.xx0101.1
 207 * read-only, dirty, old        .11.xx0110.1
 208 * read-only, dirty, young      .01.xx0111.1
 209 * read-write, clean, old       .11.xx1100.1
 210 * read-write, clean, young     .01.xx1101.1
 211 * read-write, dirty, old       .10.xx1110.1
 212 * read-write, dirty, young     .00.xx1111.1
 213 * HW-bits: R read-only, I invalid
 214 * SW-bits: p present, y young, d dirty, r read, w write, s special,
 215 *          u unused, l large
 216 *
 217 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 218 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 219 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 220 */
 221
 222/* Bits in the segment/region table address-space-control-element */
 223#define _ASCE_ORIGIN            ~0xfffUL/* region/segment table origin      */
 224#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 225#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 226#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 227#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 228#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 229#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 230#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 231#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 232#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 233#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 234
 235/* Bits in the region table entry */
 236#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 237#define _REGION_ENTRY_PROTECT   0x200   /* region protection bit            */
 238#define _REGION_ENTRY_NOEXEC    0x100   /* region no-execute bit            */
 239#define _REGION_ENTRY_OFFSET    0xc0    /* region table offset              */
 240#define _REGION_ENTRY_INVALID   0x20    /* invalid region table entry       */
 241#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region table type mask           */
 242#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 243#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 244#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 245#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 246
 247#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 248#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 249#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 250#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 251#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 252#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 253
 254#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address      */
 255#define _REGION3_ENTRY_DIRTY    0x2000  /* SW region dirty bit */
 256#define _REGION3_ENTRY_YOUNG    0x1000  /* SW region young bit */
 257#define _REGION3_ENTRY_LARGE    0x0400  /* RTTE-format control, large page  */
 258#define _REGION3_ENTRY_READ     0x0002  /* SW region read bit */
 259#define _REGION3_ENTRY_WRITE    0x0001  /* SW region write bit */
 260
 261#ifdef CONFIG_MEM_SOFT_DIRTY
 262#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
 263#else
 264#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
 265#endif
 266
 267#define _REGION_ENTRY_BITS       0xfffffffffffff22fUL
 268#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
 269
 270/* Bits in the segment table entry */
 271#define _SEGMENT_ENTRY_BITS                     0xfffffffffffffe33UL
 272#define _SEGMENT_ENTRY_BITS_LARGE               0xfffffffffff0ff33UL
 273#define _SEGMENT_ENTRY_HARDWARE_BITS            0xfffffffffffffe30UL
 274#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE      0xfffffffffff00730UL
 275#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 276#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* page table origin                */
 277#define _SEGMENT_ENTRY_PROTECT  0x200   /* segment protection bit           */
 278#define _SEGMENT_ENTRY_NOEXEC   0x100   /* segment no-execute bit           */
 279#define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 280#define _SEGMENT_ENTRY_TYPE_MASK 0x0c   /* segment table type mask          */
 281
 282#define _SEGMENT_ENTRY          (0)
 283#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 284
 285#define _SEGMENT_ENTRY_DIRTY    0x2000  /* SW segment dirty bit */
 286#define _SEGMENT_ENTRY_YOUNG    0x1000  /* SW segment young bit */
 287#define _SEGMENT_ENTRY_LARGE    0x0400  /* STE-format control, large page */
 288#define _SEGMENT_ENTRY_WRITE    0x0002  /* SW segment write bit */
 289#define _SEGMENT_ENTRY_READ     0x0001  /* SW segment read bit */
 290
 291#ifdef CONFIG_MEM_SOFT_DIRTY
 292#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 293#else
 294#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 295#endif
 296
 297#define _CRST_ENTRIES   2048    /* number of region/segment table entries */
 298#define _PAGE_ENTRIES   256     /* number of page table entries */
 299
 300#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
 301#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
 302
 303#define _REGION1_SHIFT  53
 304#define _REGION2_SHIFT  42
 305#define _REGION3_SHIFT  31
 306#define _SEGMENT_SHIFT  20
 307
 308#define _REGION1_INDEX  (0x7ffUL << _REGION1_SHIFT)
 309#define _REGION2_INDEX  (0x7ffUL << _REGION2_SHIFT)
 310#define _REGION3_INDEX  (0x7ffUL << _REGION3_SHIFT)
 311#define _SEGMENT_INDEX  (0x7ffUL << _SEGMENT_SHIFT)
 312#define _PAGE_INDEX     (0xffUL  << _PAGE_SHIFT)
 313
 314#define _REGION1_SIZE   (1UL << _REGION1_SHIFT)
 315#define _REGION2_SIZE   (1UL << _REGION2_SHIFT)
 316#define _REGION3_SIZE   (1UL << _REGION3_SHIFT)
 317#define _SEGMENT_SIZE   (1UL << _SEGMENT_SHIFT)
 318
 319#define _REGION1_MASK   (~(_REGION1_SIZE - 1))
 320#define _REGION2_MASK   (~(_REGION2_SIZE - 1))
 321#define _REGION3_MASK   (~(_REGION3_SIZE - 1))
 322#define _SEGMENT_MASK   (~(_SEGMENT_SIZE - 1))
 323
 324#define PMD_SHIFT       _SEGMENT_SHIFT
 325#define PUD_SHIFT       _REGION3_SHIFT
 326#define P4D_SHIFT       _REGION2_SHIFT
 327#define PGDIR_SHIFT     _REGION1_SHIFT
 328
 329#define PMD_SIZE        _SEGMENT_SIZE
 330#define PUD_SIZE        _REGION3_SIZE
 331#define P4D_SIZE        _REGION2_SIZE
 332#define PGDIR_SIZE      _REGION1_SIZE
 333
 334#define PMD_MASK        _SEGMENT_MASK
 335#define PUD_MASK        _REGION3_MASK
 336#define P4D_MASK        _REGION2_MASK
 337#define PGDIR_MASK      _REGION1_MASK
 338
 339#define PTRS_PER_PTE    _PAGE_ENTRIES
 340#define PTRS_PER_PMD    _CRST_ENTRIES
 341#define PTRS_PER_PUD    _CRST_ENTRIES
 342#define PTRS_PER_P4D    _CRST_ENTRIES
 343#define PTRS_PER_PGD    _CRST_ENTRIES
 344
 345#define MAX_PTRS_PER_P4D        PTRS_PER_P4D
 346
 347/*
 348 * Segment table and region3 table entry encoding
 349 * (R = read-only, I = invalid, y = young bit):
 350 *                              dy..R...I...wr
 351 * prot-none, clean, old        00..1...1...00
 352 * prot-none, clean, young      01..1...1...00
 353 * prot-none, dirty, old        10..1...1...00
 354 * prot-none, dirty, young      11..1...1...00
 355 * read-only, clean, old        00..1...1...01
 356 * read-only, clean, young      01..1...0...01
 357 * read-only, dirty, old        10..1...1...01
 358 * read-only, dirty, young      11..1...0...01
 359 * read-write, clean, old       00..1...1...11
 360 * read-write, clean, young     01..1...0...11
 361 * read-write, dirty, old       10..0...1...11
 362 * read-write, dirty, young     11..0...0...11
 363 * The segment table origin is used to distinguish empty (origin==0) from
 364 * read-write, old segment table entries (origin!=0)
 365 * HW-bits: R read-only, I invalid
 366 * SW-bits: y young, d dirty, r read, w write
 367 */
 368
 369/* Page status table bits for virtualization */
 370#define PGSTE_ACC_BITS  0xf000000000000000UL
 371#define PGSTE_FP_BIT    0x0800000000000000UL
 372#define PGSTE_PCL_BIT   0x0080000000000000UL
 373#define PGSTE_HR_BIT    0x0040000000000000UL
 374#define PGSTE_HC_BIT    0x0020000000000000UL
 375#define PGSTE_GR_BIT    0x0004000000000000UL
 376#define PGSTE_GC_BIT    0x0002000000000000UL
 377#define PGSTE_UC_BIT    0x0000800000000000UL    /* user dirty (migration) */
 378#define PGSTE_IN_BIT    0x0000400000000000UL    /* IPTE notify bit */
 379#define PGSTE_VSIE_BIT  0x0000200000000000UL    /* ref'd in a shadow table */
 380
 381/* Guest Page State used for virtualization */
 382#define _PGSTE_GPS_ZERO                 0x0000000080000000UL
 383#define _PGSTE_GPS_NODAT                0x0000000040000000UL
 384#define _PGSTE_GPS_USAGE_MASK           0x0000000003000000UL
 385#define _PGSTE_GPS_USAGE_STABLE         0x0000000000000000UL
 386#define _PGSTE_GPS_USAGE_UNUSED         0x0000000001000000UL
 387#define _PGSTE_GPS_USAGE_POT_VOLATILE   0x0000000002000000UL
 388#define _PGSTE_GPS_USAGE_VOLATILE       _PGSTE_GPS_USAGE_MASK
 389
 390/*
 391 * A user page table pointer has the space-switch-event bit, the
 392 * private-space-control bit and the storage-alteration-event-control
 393 * bit set. A kernel page table pointer doesn't need them.
 394 */
 395#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 396                                 _ASCE_ALT_EVENT)
 397
 398/*
 399 * Page protection definitions.
 400 */
 401#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
 402#define PAGE_RO         __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 403                                 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 404#define PAGE_RX         __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 405                                 _PAGE_INVALID | _PAGE_PROTECT)
 406#define PAGE_RW         __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 407                                 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 408#define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 409                                 _PAGE_INVALID | _PAGE_PROTECT)
 410
 411#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 412                                 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 413#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 414                                 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 415#define PAGE_KERNEL_RO  __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 416                                 _PAGE_PROTECT | _PAGE_NOEXEC)
 417#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 418                                  _PAGE_YOUNG | _PAGE_DIRTY)
 419
 420/*
 421 * On s390 the page table entry has an invalid bit and a read-only bit.
 422 * Read permission implies execute permission and write permission
 423 * implies read permission.
 424 */
 425         /*xwr*/
 426#define __P000  PAGE_NONE
 427#define __P001  PAGE_RO
 428#define __P010  PAGE_RO
 429#define __P011  PAGE_RO
 430#define __P100  PAGE_RX
 431#define __P101  PAGE_RX
 432#define __P110  PAGE_RX
 433#define __P111  PAGE_RX
 434
 435#define __S000  PAGE_NONE
 436#define __S001  PAGE_RO
 437#define __S010  PAGE_RW
 438#define __S011  PAGE_RW
 439#define __S100  PAGE_RX
 440#define __S101  PAGE_RX
 441#define __S110  PAGE_RWX
 442#define __S111  PAGE_RWX
 443
 444/*
 445 * Segment entry (large page) protection definitions.
 446 */
 447#define SEGMENT_NONE    __pgprot(_SEGMENT_ENTRY_INVALID | \
 448                                 _SEGMENT_ENTRY_PROTECT)
 449#define SEGMENT_RO      __pgprot(_SEGMENT_ENTRY_PROTECT | \
 450                                 _SEGMENT_ENTRY_READ | \
 451                                 _SEGMENT_ENTRY_NOEXEC)
 452#define SEGMENT_RX      __pgprot(_SEGMENT_ENTRY_PROTECT | \
 453                                 _SEGMENT_ENTRY_READ)
 454#define SEGMENT_RW      __pgprot(_SEGMENT_ENTRY_READ | \
 455                                 _SEGMENT_ENTRY_WRITE | \
 456                                 _SEGMENT_ENTRY_NOEXEC)
 457#define SEGMENT_RWX     __pgprot(_SEGMENT_ENTRY_READ | \
 458                                 _SEGMENT_ENTRY_WRITE)
 459#define SEGMENT_KERNEL  __pgprot(_SEGMENT_ENTRY |       \
 460                                 _SEGMENT_ENTRY_LARGE | \
 461                                 _SEGMENT_ENTRY_READ |  \
 462                                 _SEGMENT_ENTRY_WRITE | \
 463                                 _SEGMENT_ENTRY_YOUNG | \
 464                                 _SEGMENT_ENTRY_DIRTY | \
 465                                 _SEGMENT_ENTRY_NOEXEC)
 466#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |     \
 467                                 _SEGMENT_ENTRY_LARGE | \
 468                                 _SEGMENT_ENTRY_READ |  \
 469                                 _SEGMENT_ENTRY_YOUNG | \
 470                                 _SEGMENT_ENTRY_PROTECT | \
 471                                 _SEGMENT_ENTRY_NOEXEC)
 472#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |   \
 473                                 _SEGMENT_ENTRY_LARGE | \
 474                                 _SEGMENT_ENTRY_READ |  \
 475                                 _SEGMENT_ENTRY_WRITE | \
 476                                 _SEGMENT_ENTRY_YOUNG | \
 477                                 _SEGMENT_ENTRY_DIRTY)
 478
 479/*
 480 * Region3 entry (large page) protection definitions.
 481 */
 482
 483#define REGION3_KERNEL  __pgprot(_REGION_ENTRY_TYPE_R3 | \
 484                                 _REGION3_ENTRY_LARGE |  \
 485                                 _REGION3_ENTRY_READ |   \
 486                                 _REGION3_ENTRY_WRITE |  \
 487                                 _REGION3_ENTRY_YOUNG |  \
 488                                 _REGION3_ENTRY_DIRTY | \
 489                                 _REGION_ENTRY_NOEXEC)
 490#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
 491                                   _REGION3_ENTRY_LARGE |  \
 492                                   _REGION3_ENTRY_READ |   \
 493                                   _REGION3_ENTRY_YOUNG |  \
 494                                   _REGION_ENTRY_PROTECT | \
 495                                   _REGION_ENTRY_NOEXEC)
 496
 497static inline bool mm_p4d_folded(struct mm_struct *mm)
 498{
 499        return mm->context.asce_limit <= _REGION1_SIZE;
 500}
 501#define mm_p4d_folded(mm) mm_p4d_folded(mm)
 502
 503static inline bool mm_pud_folded(struct mm_struct *mm)
 504{
 505        return mm->context.asce_limit <= _REGION2_SIZE;
 506}
 507#define mm_pud_folded(mm) mm_pud_folded(mm)
 508
 509static inline bool mm_pmd_folded(struct mm_struct *mm)
 510{
 511        return mm->context.asce_limit <= _REGION3_SIZE;
 512}
 513#define mm_pmd_folded(mm) mm_pmd_folded(mm)
 514
 515static inline int mm_has_pgste(struct mm_struct *mm)
 516{
 517#ifdef CONFIG_PGSTE
 518        if (unlikely(mm->context.has_pgste))
 519                return 1;
 520#endif
 521        return 0;
 522}
 523
 524static inline int mm_alloc_pgste(struct mm_struct *mm)
 525{
 526#ifdef CONFIG_PGSTE
 527        if (unlikely(mm->context.alloc_pgste))
 528                return 1;
 529#endif
 530        return 0;
 531}
 532
 533/*
 534 * In the case that a guest uses storage keys
 535 * faults should no longer be backed by zero pages
 536 */
 537#define mm_forbids_zeropage mm_has_pgste
 538static inline int mm_uses_skeys(struct mm_struct *mm)
 539{
 540#ifdef CONFIG_PGSTE
 541        if (mm->context.uses_skeys)
 542                return 1;
 543#endif
 544        return 0;
 545}
 546
 547static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
 548{
 549        register unsigned long reg2 asm("2") = old;
 550        register unsigned long reg3 asm("3") = new;
 551        unsigned long address = (unsigned long)ptr | 1;
 552
 553        asm volatile(
 554                "       csp     %0,%3"
 555                : "+d" (reg2), "+m" (*ptr)
 556                : "d" (reg3), "d" (address)
 557                : "cc");
 558}
 559
 560static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
 561{
 562        register unsigned long reg2 asm("2") = old;
 563        register unsigned long reg3 asm("3") = new;
 564        unsigned long address = (unsigned long)ptr | 1;
 565
 566        asm volatile(
 567                "       .insn   rre,0xb98a0000,%0,%3"
 568                : "+d" (reg2), "+m" (*ptr)
 569                : "d" (reg3), "d" (address)
 570                : "cc");
 571}
 572
 573#define CRDTE_DTT_PAGE          0x00UL
 574#define CRDTE_DTT_SEGMENT       0x10UL
 575#define CRDTE_DTT_REGION3       0x14UL
 576#define CRDTE_DTT_REGION2       0x18UL
 577#define CRDTE_DTT_REGION1       0x1cUL
 578
 579static inline void crdte(unsigned long old, unsigned long new,
 580                         unsigned long table, unsigned long dtt,
 581                         unsigned long address, unsigned long asce)
 582{
 583        register unsigned long reg2 asm("2") = old;
 584        register unsigned long reg3 asm("3") = new;
 585        register unsigned long reg4 asm("4") = table | dtt;
 586        register unsigned long reg5 asm("5") = address;
 587
 588        asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
 589                     : "+d" (reg2)
 590                     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
 591                     : "memory", "cc");
 592}
 593
 594/*
 595 * pgd/p4d/pud/pmd/pte query functions
 596 */
 597static inline int pgd_folded(pgd_t pgd)
 598{
 599        return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
 600}
 601
 602static inline int pgd_present(pgd_t pgd)
 603{
 604        if (pgd_folded(pgd))
 605                return 1;
 606        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 607}
 608
 609static inline int pgd_none(pgd_t pgd)
 610{
 611        if (pgd_folded(pgd))
 612                return 0;
 613        return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 614}
 615
 616static inline int pgd_bad(pgd_t pgd)
 617{
 618        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
 619                return 0;
 620        return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
 621}
 622
 623static inline unsigned long pgd_pfn(pgd_t pgd)
 624{
 625        unsigned long origin_mask;
 626
 627        origin_mask = _REGION_ENTRY_ORIGIN;
 628        return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
 629}
 630
 631static inline int p4d_folded(p4d_t p4d)
 632{
 633        return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
 634}
 635
 636static inline int p4d_present(p4d_t p4d)
 637{
 638        if (p4d_folded(p4d))
 639                return 1;
 640        return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
 641}
 642
 643static inline int p4d_none(p4d_t p4d)
 644{
 645        if (p4d_folded(p4d))
 646                return 0;
 647        return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
 648}
 649
 650static inline unsigned long p4d_pfn(p4d_t p4d)
 651{
 652        unsigned long origin_mask;
 653
 654        origin_mask = _REGION_ENTRY_ORIGIN;
 655        return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
 656}
 657
 658static inline int pud_folded(pud_t pud)
 659{
 660        return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
 661}
 662
 663static inline int pud_present(pud_t pud)
 664{
 665        if (pud_folded(pud))
 666                return 1;
 667        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 668}
 669
 670static inline int pud_none(pud_t pud)
 671{
 672        if (pud_folded(pud))
 673                return 0;
 674        return pud_val(pud) == _REGION3_ENTRY_EMPTY;
 675}
 676
 677static inline int pud_large(pud_t pud)
 678{
 679        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 680                return 0;
 681        return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 682}
 683
 684static inline unsigned long pud_pfn(pud_t pud)
 685{
 686        unsigned long origin_mask;
 687
 688        origin_mask = _REGION_ENTRY_ORIGIN;
 689        if (pud_large(pud))
 690                origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
 691        return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
 692}
 693
 694static inline int pmd_large(pmd_t pmd)
 695{
 696        return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 697}
 698
 699static inline int pmd_bad(pmd_t pmd)
 700{
 701        if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0)
 702                return 1;
 703        if (pmd_large(pmd))
 704                return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
 705        return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 706}
 707
 708static inline int pud_bad(pud_t pud)
 709{
 710        unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
 711
 712        if (type > _REGION_ENTRY_TYPE_R3)
 713                return 1;
 714        if (type < _REGION_ENTRY_TYPE_R3)
 715                return 0;
 716        if (pud_large(pud))
 717                return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
 718        return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
 719}
 720
 721static inline int p4d_bad(p4d_t p4d)
 722{
 723        unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
 724
 725        if (type > _REGION_ENTRY_TYPE_R2)
 726                return 1;
 727        if (type < _REGION_ENTRY_TYPE_R2)
 728                return 0;
 729        return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
 730}
 731
 732static inline int pmd_present(pmd_t pmd)
 733{
 734        return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
 735}
 736
 737static inline int pmd_none(pmd_t pmd)
 738{
 739        return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
 740}
 741
 742static inline unsigned long pmd_pfn(pmd_t pmd)
 743{
 744        unsigned long origin_mask;
 745
 746        origin_mask = _SEGMENT_ENTRY_ORIGIN;
 747        if (pmd_large(pmd))
 748                origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
 749        return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
 750}
 751
 752#define pmd_write pmd_write
 753static inline int pmd_write(pmd_t pmd)
 754{
 755        return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 756}
 757
 758static inline int pmd_dirty(pmd_t pmd)
 759{
 760        int dirty = 1;
 761        if (pmd_large(pmd))
 762                dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 763        return dirty;
 764}
 765
 766static inline int pmd_young(pmd_t pmd)
 767{
 768        int young = 1;
 769        if (pmd_large(pmd))
 770                young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 771        return young;
 772}
 773
 774static inline int pte_present(pte_t pte)
 775{
 776        /* Bit pattern: (pte & 0x001) == 0x001 */
 777        return (pte_val(pte) & _PAGE_PRESENT) != 0;
 778}
 779
 780static inline int pte_none(pte_t pte)
 781{
 782        /* Bit pattern: pte == 0x400 */
 783        return pte_val(pte) == _PAGE_INVALID;
 784}
 785
 786static inline int pte_swap(pte_t pte)
 787{
 788        /* Bit pattern: (pte & 0x201) == 0x200 */
 789        return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 790                == _PAGE_PROTECT;
 791}
 792
 793static inline int pte_special(pte_t pte)
 794{
 795        return (pte_val(pte) & _PAGE_SPECIAL);
 796}
 797
 798#define __HAVE_ARCH_PTE_SAME
 799static inline int pte_same(pte_t a, pte_t b)
 800{
 801        return pte_val(a) == pte_val(b);
 802}
 803
 804#ifdef CONFIG_NUMA_BALANCING
 805static inline int pte_protnone(pte_t pte)
 806{
 807        return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 808}
 809
 810static inline int pmd_protnone(pmd_t pmd)
 811{
 812        /* pmd_large(pmd) implies pmd_present(pmd) */
 813        return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 814}
 815#endif
 816
 817static inline int pte_soft_dirty(pte_t pte)
 818{
 819        return pte_val(pte) & _PAGE_SOFT_DIRTY;
 820}
 821#define pte_swp_soft_dirty pte_soft_dirty
 822
 823static inline pte_t pte_mksoft_dirty(pte_t pte)
 824{
 825        pte_val(pte) |= _PAGE_SOFT_DIRTY;
 826        return pte;
 827}
 828#define pte_swp_mksoft_dirty pte_mksoft_dirty
 829
 830static inline pte_t pte_clear_soft_dirty(pte_t pte)
 831{
 832        pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
 833        return pte;
 834}
 835#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 836
 837static inline int pmd_soft_dirty(pmd_t pmd)
 838{
 839        return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 840}
 841
 842static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 843{
 844        pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
 845        return pmd;
 846}
 847
 848static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 849{
 850        pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
 851        return pmd;
 852}
 853
 854/*
 855 * query functions pte_write/pte_dirty/pte_young only work if
 856 * pte_present() is true. Undefined behaviour if not..
 857 */
 858static inline int pte_write(pte_t pte)
 859{
 860        return (pte_val(pte) & _PAGE_WRITE) != 0;
 861}
 862
 863static inline int pte_dirty(pte_t pte)
 864{
 865        return (pte_val(pte) & _PAGE_DIRTY) != 0;
 866}
 867
 868static inline int pte_young(pte_t pte)
 869{
 870        return (pte_val(pte) & _PAGE_YOUNG) != 0;
 871}
 872
 873#define __HAVE_ARCH_PTE_UNUSED
 874static inline int pte_unused(pte_t pte)
 875{
 876        return pte_val(pte) & _PAGE_UNUSED;
 877}
 878
 879/*
 880 * pgd/pmd/pte modification functions
 881 */
 882
 883static inline void pgd_clear(pgd_t *pgd)
 884{
 885        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
 886                pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
 887}
 888
 889static inline void p4d_clear(p4d_t *p4d)
 890{
 891        if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 892                p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
 893}
 894
 895static inline void pud_clear(pud_t *pud)
 896{
 897        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 898                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 899}
 900
 901static inline void pmd_clear(pmd_t *pmdp)
 902{
 903        pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 904}
 905
 906static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 907{
 908        pte_val(*ptep) = _PAGE_INVALID;
 909}
 910
 911/*
 912 * The following pte modification functions only work if
 913 * pte_present() is true. Undefined behaviour if not..
 914 */
 915static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 916{
 917        pte_val(pte) &= _PAGE_CHG_MASK;
 918        pte_val(pte) |= pgprot_val(newprot);
 919        /*
 920         * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
 921         * has the invalid bit set, clear it again for readable, young pages
 922         */
 923        if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 924                pte_val(pte) &= ~_PAGE_INVALID;
 925        /*
 926         * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
 927         * protection bit set, clear it again for writable, dirty pages
 928         */
 929        if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 930                pte_val(pte) &= ~_PAGE_PROTECT;
 931        return pte;
 932}
 933
 934static inline pte_t pte_wrprotect(pte_t pte)
 935{
 936        pte_val(pte) &= ~_PAGE_WRITE;
 937        pte_val(pte) |= _PAGE_PROTECT;
 938        return pte;
 939}
 940
 941static inline pte_t pte_mkwrite(pte_t pte)
 942{
 943        pte_val(pte) |= _PAGE_WRITE;
 944        if (pte_val(pte) & _PAGE_DIRTY)
 945                pte_val(pte) &= ~_PAGE_PROTECT;
 946        return pte;
 947}
 948
 949static inline pte_t pte_mkclean(pte_t pte)
 950{
 951        pte_val(pte) &= ~_PAGE_DIRTY;
 952        pte_val(pte) |= _PAGE_PROTECT;
 953        return pte;
 954}
 955
 956static inline pte_t pte_mkdirty(pte_t pte)
 957{
 958        pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
 959        if (pte_val(pte) & _PAGE_WRITE)
 960                pte_val(pte) &= ~_PAGE_PROTECT;
 961        return pte;
 962}
 963
 964static inline pte_t pte_mkold(pte_t pte)
 965{
 966        pte_val(pte) &= ~_PAGE_YOUNG;
 967        pte_val(pte) |= _PAGE_INVALID;
 968        return pte;
 969}
 970
 971static inline pte_t pte_mkyoung(pte_t pte)
 972{
 973        pte_val(pte) |= _PAGE_YOUNG;
 974        if (pte_val(pte) & _PAGE_READ)
 975                pte_val(pte) &= ~_PAGE_INVALID;
 976        return pte;
 977}
 978
 979static inline pte_t pte_mkspecial(pte_t pte)
 980{
 981        pte_val(pte) |= _PAGE_SPECIAL;
 982        return pte;
 983}
 984
 985#ifdef CONFIG_HUGETLB_PAGE
 986static inline pte_t pte_mkhuge(pte_t pte)
 987{
 988        pte_val(pte) |= _PAGE_LARGE;
 989        return pte;
 990}
 991#endif
 992
 993#define IPTE_GLOBAL     0
 994#define IPTE_LOCAL      1
 995
 996#define IPTE_NODAT      0x400
 997#define IPTE_GUEST_ASCE 0x800
 998
 999static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1000                               unsigned long opt, unsigned long asce,
1001                               int local)
1002{
1003        unsigned long pto = (unsigned long) ptep;
1004
1005        if (__builtin_constant_p(opt) && opt == 0) {
1006                /* Invalidation + TLB flush for the pte */
1007                asm volatile(
1008                        "       .insn   rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1009                        : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1010                          [m4] "i" (local));
1011                return;
1012        }
1013
1014        /* Invalidate ptes with options + TLB flush of the ptes */
1015        opt = opt | (asce & _ASCE_ORIGIN);
1016        asm volatile(
1017                "       .insn   rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1018                : [r2] "+a" (address), [r3] "+a" (opt)
1019                : [r1] "a" (pto), [m4] "i" (local) : "memory");
1020}
1021
1022static inline void __ptep_ipte_range(unsigned long address, int nr,
1023                                     pte_t *ptep, int local)
1024{
1025        unsigned long pto = (unsigned long) ptep;
1026
1027        /* Invalidate a range of ptes + TLB flush of the ptes */
1028        do {
1029                asm volatile(
1030                        "       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1031                        : [r2] "+a" (address), [r3] "+a" (nr)
1032                        : [r1] "a" (pto), [m4] "i" (local) : "memory");
1033        } while (nr != 255);
1034}
1035
1036/*
1037 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1038 * both clear the TLB for the unmapped pte. The reason is that
1039 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1040 * to modify an active pte. The sequence is
1041 *   1) ptep_get_and_clear
1042 *   2) set_pte_at
1043 *   3) flush_tlb_range
1044 * On s390 the tlb needs to get flushed with the modification of the pte
1045 * if the pte is active. The only way how this can be implemented is to
1046 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1047 * is a nop.
1048 */
1049pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1050pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1051
1052#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1053static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1054                                            unsigned long addr, pte_t *ptep)
1055{
1056        pte_t pte = *ptep;
1057
1058        pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1059        return pte_young(pte);
1060}
1061
1062#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1063static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1064                                         unsigned long address, pte_t *ptep)
1065{
1066        return ptep_test_and_clear_young(vma, address, ptep);
1067}
1068
1069#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1070static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1071                                       unsigned long addr, pte_t *ptep)
1072{
1073        return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1074}
1075
1076#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1077pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1078void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1079                             pte_t *, pte_t, pte_t);
1080
1081#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1082static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1083                                     unsigned long addr, pte_t *ptep)
1084{
1085        return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1086}
1087
1088/*
1089 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1090 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1091 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1092 * cannot be accessed while the batched unmap is running. In this case
1093 * full==1 and a simple pte_clear is enough. See tlb.h.
1094 */
1095#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1096static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1097                                            unsigned long addr,
1098                                            pte_t *ptep, int full)
1099{
1100        if (full) {
1101                pte_t pte = *ptep;
1102                *ptep = __pte(_PAGE_INVALID);
1103                return pte;
1104        }
1105        return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1106}
1107
1108#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1109static inline void ptep_set_wrprotect(struct mm_struct *mm,
1110                                      unsigned long addr, pte_t *ptep)
1111{
1112        pte_t pte = *ptep;
1113
1114        if (pte_write(pte))
1115                ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1116}
1117
1118#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1119static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1120                                        unsigned long addr, pte_t *ptep,
1121                                        pte_t entry, int dirty)
1122{
1123        if (pte_same(*ptep, entry))
1124                return 0;
1125        ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1126        return 1;
1127}
1128
1129/*
1130 * Additional functions to handle KVM guest page tables
1131 */
1132void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1133                     pte_t *ptep, pte_t entry);
1134void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1135void ptep_notify(struct mm_struct *mm, unsigned long addr,
1136                 pte_t *ptep, unsigned long bits);
1137int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1138                    pte_t *ptep, int prot, unsigned long bit);
1139void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1140                     pte_t *ptep , int reset);
1141void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1142int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1143                    pte_t *sptep, pte_t *tptep, pte_t pte);
1144void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1145
1146bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1147                            pte_t *ptep);
1148int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1149                          unsigned char key, bool nq);
1150int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1151                               unsigned char key, unsigned char *oldkey,
1152                               bool nq, bool mr, bool mc);
1153int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1154int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1155                          unsigned char *key);
1156
1157int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1158                                unsigned long bits, unsigned long value);
1159int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1160int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1161                        unsigned long *oldpte, unsigned long *oldpgste);
1162void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1163void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1164void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1165void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1166
1167/*
1168 * Certain architectures need to do special things when PTEs
1169 * within a page table are directly modified.  Thus, the following
1170 * hook is made available.
1171 */
1172static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1173                              pte_t *ptep, pte_t entry)
1174{
1175        if (!MACHINE_HAS_NX)
1176                pte_val(entry) &= ~_PAGE_NOEXEC;
1177        if (pte_present(entry))
1178                pte_val(entry) &= ~_PAGE_UNUSED;
1179        if (mm_has_pgste(mm))
1180                ptep_set_pte_at(mm, addr, ptep, entry);
1181        else
1182                *ptep = entry;
1183}
1184
1185/*
1186 * Conversion functions: convert a page and protection to a page entry,
1187 * and a page entry and page directory to the page they refer to.
1188 */
1189static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1190{
1191        pte_t __pte;
1192        pte_val(__pte) = physpage + pgprot_val(pgprot);
1193        return pte_mkyoung(__pte);
1194}
1195
1196static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1197{
1198        unsigned long physpage = page_to_phys(page);
1199        pte_t __pte = mk_pte_phys(physpage, pgprot);
1200
1201        if (pte_write(__pte) && PageDirty(page))
1202                __pte = pte_mkdirty(__pte);
1203        return __pte;
1204}
1205
1206#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1207#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1208#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1209#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1210#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1211
1212#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1213#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1214#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1215#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1216
1217/*
1218 * The pgd_offset function *always* adds the index for the top-level
1219 * region/segment table. This is done to get a sequence like the
1220 * following to work:
1221 *      pgdp = pgd_offset(current->mm, addr);
1222 *      pgd = READ_ONCE(*pgdp);
1223 *      p4dp = p4d_offset(&pgd, addr);
1224 *      ...
1225 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1226 * only add an index if they dereferenced the pointer.
1227 */
1228static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1229{
1230        unsigned long rste;
1231        unsigned int shift;
1232
1233        /* Get the first entry of the top level table */
1234        rste = pgd_val(*pgd);
1235        /* Pick up the shift from the table type of the first entry */
1236        shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1237        return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1238}
1239
1240#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1241#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1242
1243static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1244{
1245        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1246                return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1247        return (p4d_t *) pgd;
1248}
1249
1250static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1251{
1252        if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1253                return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1254        return (pud_t *) p4d;
1255}
1256
1257static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1258{
1259        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1260                return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1261        return (pmd_t *) pud;
1262}
1263
1264static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1265{
1266        return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1267}
1268
1269#define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1270#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1271#define pte_unmap(pte) do { } while (0)
1272
1273static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1274{
1275        return end <= current->mm->context.asce_limit;
1276}
1277#define gup_fast_permitted gup_fast_permitted
1278
1279#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1280#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1281#define pte_page(x) pfn_to_page(pte_pfn(x))
1282
1283#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1284#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1285#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1286#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1287
1288static inline pmd_t pmd_wrprotect(pmd_t pmd)
1289{
1290        pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1291        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1292        return pmd;
1293}
1294
1295static inline pmd_t pmd_mkwrite(pmd_t pmd)
1296{
1297        pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1298        if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1299                return pmd;
1300        pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1301        return pmd;
1302}
1303
1304static inline pmd_t pmd_mkclean(pmd_t pmd)
1305{
1306        if (pmd_large(pmd)) {
1307                pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1308                pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1309        }
1310        return pmd;
1311}
1312
1313static inline pmd_t pmd_mkdirty(pmd_t pmd)
1314{
1315        if (pmd_large(pmd)) {
1316                pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1317                                _SEGMENT_ENTRY_SOFT_DIRTY;
1318                if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1319                        pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1320        }
1321        return pmd;
1322}
1323
1324static inline pud_t pud_wrprotect(pud_t pud)
1325{
1326        pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1327        pud_val(pud) |= _REGION_ENTRY_PROTECT;
1328        return pud;
1329}
1330
1331static inline pud_t pud_mkwrite(pud_t pud)
1332{
1333        pud_val(pud) |= _REGION3_ENTRY_WRITE;
1334        if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1335                return pud;
1336        pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1337        return pud;
1338}
1339
1340static inline pud_t pud_mkclean(pud_t pud)
1341{
1342        if (pud_large(pud)) {
1343                pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1344                pud_val(pud) |= _REGION_ENTRY_PROTECT;
1345        }
1346        return pud;
1347}
1348
1349static inline pud_t pud_mkdirty(pud_t pud)
1350{
1351        if (pud_large(pud)) {
1352                pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1353                                _REGION3_ENTRY_SOFT_DIRTY;
1354                if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1355                        pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1356        }
1357        return pud;
1358}
1359
1360#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1361static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1362{
1363        /*
1364         * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1365         * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1366         */
1367        if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1368                return pgprot_val(SEGMENT_NONE);
1369        if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1370                return pgprot_val(SEGMENT_RO);
1371        if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1372                return pgprot_val(SEGMENT_RX);
1373        if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1374                return pgprot_val(SEGMENT_RW);
1375        return pgprot_val(SEGMENT_RWX);
1376}
1377
1378static inline pmd_t pmd_mkyoung(pmd_t pmd)
1379{
1380        if (pmd_large(pmd)) {
1381                pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1382                if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1383                        pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1384        }
1385        return pmd;
1386}
1387
1388static inline pmd_t pmd_mkold(pmd_t pmd)
1389{
1390        if (pmd_large(pmd)) {
1391                pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1392                pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1393        }
1394        return pmd;
1395}
1396
1397static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1398{
1399        if (pmd_large(pmd)) {
1400                pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1401                        _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1402                        _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1403                pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1404                if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1405                        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1406                if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1407                        pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1408                return pmd;
1409        }
1410        pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1411        pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1412        return pmd;
1413}
1414
1415static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1416{
1417        pmd_t __pmd;
1418        pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1419        return __pmd;
1420}
1421
1422#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1423
1424static inline void __pmdp_csp(pmd_t *pmdp)
1425{
1426        csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1427            pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1428}
1429
1430#define IDTE_GLOBAL     0
1431#define IDTE_LOCAL      1
1432
1433#define IDTE_PTOA       0x0800
1434#define IDTE_NODAT      0x1000
1435#define IDTE_GUEST_ASCE 0x2000
1436
1437static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1438                               unsigned long opt, unsigned long asce,
1439                               int local)
1440{
1441        unsigned long sto;
1442
1443        sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1444        if (__builtin_constant_p(opt) && opt == 0) {
1445                /* flush without guest asce */
1446                asm volatile(
1447                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1448                        : "+m" (*pmdp)
1449                        : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1450                          [m4] "i" (local)
1451                        : "cc" );
1452        } else {
1453                /* flush with guest asce */
1454                asm volatile(
1455                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1456                        : "+m" (*pmdp)
1457                        : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1458                          [r3] "a" (asce), [m4] "i" (local)
1459                        : "cc" );
1460        }
1461}
1462
1463static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1464                               unsigned long opt, unsigned long asce,
1465                               int local)
1466{
1467        unsigned long r3o;
1468
1469        r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1470        r3o |= _ASCE_TYPE_REGION3;
1471        if (__builtin_constant_p(opt) && opt == 0) {
1472                /* flush without guest asce */
1473                asm volatile(
1474                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1475                        : "+m" (*pudp)
1476                        : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1477                          [m4] "i" (local)
1478                        : "cc");
1479        } else {
1480                /* flush with guest asce */
1481                asm volatile(
1482                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1483                        : "+m" (*pudp)
1484                        : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1485                          [r3] "a" (asce), [m4] "i" (local)
1486                        : "cc" );
1487        }
1488}
1489
1490pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1491pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1492pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1493
1494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1495
1496#define __HAVE_ARCH_PGTABLE_DEPOSIT
1497void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1498                                pgtable_t pgtable);
1499
1500#define __HAVE_ARCH_PGTABLE_WITHDRAW
1501pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1502
1503#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1504static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1505                                        unsigned long addr, pmd_t *pmdp,
1506                                        pmd_t entry, int dirty)
1507{
1508        VM_BUG_ON(addr & ~HPAGE_MASK);
1509
1510        entry = pmd_mkyoung(entry);
1511        if (dirty)
1512                entry = pmd_mkdirty(entry);
1513        if (pmd_val(*pmdp) == pmd_val(entry))
1514                return 0;
1515        pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1516        return 1;
1517}
1518
1519#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1520static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1521                                            unsigned long addr, pmd_t *pmdp)
1522{
1523        pmd_t pmd = *pmdp;
1524
1525        pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1526        return pmd_young(pmd);
1527}
1528
1529#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1530static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1531                                         unsigned long addr, pmd_t *pmdp)
1532{
1533        VM_BUG_ON(addr & ~HPAGE_MASK);
1534        return pmdp_test_and_clear_young(vma, addr, pmdp);
1535}
1536
1537static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1538                              pmd_t *pmdp, pmd_t entry)
1539{
1540        if (!MACHINE_HAS_NX)
1541                pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1542        *pmdp = entry;
1543}
1544
1545static inline pmd_t pmd_mkhuge(pmd_t pmd)
1546{
1547        pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1548        pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1549        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1550        return pmd;
1551}
1552
1553#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1554static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1555                                            unsigned long addr, pmd_t *pmdp)
1556{
1557        return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1558}
1559
1560#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1561static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1562                                                 unsigned long addr,
1563                                                 pmd_t *pmdp, int full)
1564{
1565        if (full) {
1566                pmd_t pmd = *pmdp;
1567                *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1568                return pmd;
1569        }
1570        return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1571}
1572
1573#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1574static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1575                                          unsigned long addr, pmd_t *pmdp)
1576{
1577        return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1578}
1579
1580#define __HAVE_ARCH_PMDP_INVALIDATE
1581static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1582                                   unsigned long addr, pmd_t *pmdp)
1583{
1584        pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1585
1586        return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1587}
1588
1589#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1590static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1591                                      unsigned long addr, pmd_t *pmdp)
1592{
1593        pmd_t pmd = *pmdp;
1594
1595        if (pmd_write(pmd))
1596                pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1597}
1598
1599static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1600                                        unsigned long address,
1601                                        pmd_t *pmdp)
1602{
1603        return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1604}
1605#define pmdp_collapse_flush pmdp_collapse_flush
1606
1607#define pfn_pmd(pfn, pgprot)    mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1608#define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1609
1610static inline int pmd_trans_huge(pmd_t pmd)
1611{
1612        return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1613}
1614
1615#define has_transparent_hugepage has_transparent_hugepage
1616static inline int has_transparent_hugepage(void)
1617{
1618        return MACHINE_HAS_EDAT1 ? 1 : 0;
1619}
1620#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1621
1622/*
1623 * 64 bit swap entry format:
1624 * A page-table entry has some bits we have to treat in a special way.
1625 * Bits 52 and bit 55 have to be zero, otherwise a specification
1626 * exception will occur instead of a page translation exception. The
1627 * specification exception has the bad habit not to store necessary
1628 * information in the lowcore.
1629 * Bits 54 and 63 are used to indicate the page type.
1630 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1631 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1632 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1633 * for the offset.
1634 * |                      offset                        |01100|type |00|
1635 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1636 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1637 */
1638
1639#define __SWP_OFFSET_MASK       ((1UL << 52) - 1)
1640#define __SWP_OFFSET_SHIFT      12
1641#define __SWP_TYPE_MASK         ((1UL << 5) - 1)
1642#define __SWP_TYPE_SHIFT        2
1643
1644static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1645{
1646        pte_t pte;
1647
1648        pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1649        pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1650        pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1651        return pte;
1652}
1653
1654static inline unsigned long __swp_type(swp_entry_t entry)
1655{
1656        return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1657}
1658
1659static inline unsigned long __swp_offset(swp_entry_t entry)
1660{
1661        return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1662}
1663
1664static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1665{
1666        return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1667}
1668
1669#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1670#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1671
1672#define kern_addr_valid(addr)   (1)
1673
1674extern int vmem_add_mapping(unsigned long start, unsigned long size);
1675extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1676extern int s390_enable_sie(void);
1677extern int s390_enable_skey(void);
1678extern void s390_reset_cmma(struct mm_struct *mm);
1679
1680/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1681#define HAVE_ARCH_UNMAPPED_AREA
1682#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1683
1684/*
1685 * No page table caches to initialise
1686 */
1687static inline void pgtable_cache_init(void) { }
1688static inline void check_pgt_cache(void) { }
1689
1690#include <asm-generic/pgtable.h>
1691
1692#endif /* _S390_PAGE_H */
1693