linux/arch/s390/numa/mode_emu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NUMA support for s390
   4 *
   5 * NUMA emulation (aka fake NUMA) distributes the available memory to nodes
   6 * without using real topology information about the physical memory of the
   7 * machine.
   8 *
   9 * It distributes the available CPUs to nodes while respecting the original
  10 * machine topology information. This is done by trying to avoid to separate
  11 * CPUs which reside on the same book or even on the same MC.
  12 *
  13 * Because the current Linux scheduler code requires a stable cpu to node
  14 * mapping, cores are pinned to nodes when the first CPU thread is set online.
  15 *
  16 * Copyright IBM Corp. 2015
  17 */
  18
  19#define KMSG_COMPONENT "numa_emu"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/cpumask.h>
  24#include <linux/memblock.h>
  25#include <linux/node.h>
  26#include <linux/memory.h>
  27#include <linux/slab.h>
  28#include <asm/smp.h>
  29#include <asm/topology.h>
  30#include "numa_mode.h"
  31#include "toptree.h"
  32
  33/* Distances between the different system components */
  34#define DIST_EMPTY      0
  35#define DIST_CORE       1
  36#define DIST_MC         2
  37#define DIST_BOOK       3
  38#define DIST_DRAWER     4
  39#define DIST_MAX        5
  40
  41/* Node distance reported to common code */
  42#define EMU_NODE_DIST   10
  43
  44/* Node ID for free (not yet pinned) cores */
  45#define NODE_ID_FREE    -1
  46
  47/* Different levels of toptree */
  48enum toptree_level {CORE, MC, BOOK, DRAWER, NODE, TOPOLOGY};
  49
  50/* The two toptree IDs */
  51enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA};
  52
  53/* Number of NUMA nodes */
  54static int emu_nodes = 1;
  55/* NUMA stripe size */
  56static unsigned long emu_size;
  57
  58/*
  59 * Node to core pinning information updates are protected by
  60 * "sched_domains_mutex".
  61 */
  62static struct {
  63        s32 to_node_id[CONFIG_NR_CPUS]; /* Pinned core to node mapping */
  64        int total;                      /* Total number of pinned cores */
  65        int per_node_target;            /* Cores per node without extra cores */
  66        int per_node[MAX_NUMNODES];     /* Number of cores pinned to node */
  67} *emu_cores;
  68
  69/*
  70 * Pin a core to a node
  71 */
  72static void pin_core_to_node(int core_id, int node_id)
  73{
  74        if (emu_cores->to_node_id[core_id] == NODE_ID_FREE) {
  75                emu_cores->per_node[node_id]++;
  76                emu_cores->to_node_id[core_id] = node_id;
  77                emu_cores->total++;
  78        } else {
  79                WARN_ON(emu_cores->to_node_id[core_id] != node_id);
  80        }
  81}
  82
  83/*
  84 * Number of pinned cores of a node
  85 */
  86static int cores_pinned(struct toptree *node)
  87{
  88        return emu_cores->per_node[node->id];
  89}
  90
  91/*
  92 * ID of the node where the core is pinned (or NODE_ID_FREE)
  93 */
  94static int core_pinned_to_node_id(struct toptree *core)
  95{
  96        return emu_cores->to_node_id[core->id];
  97}
  98
  99/*
 100 * Number of cores in the tree that are not yet pinned
 101 */
 102static int cores_free(struct toptree *tree)
 103{
 104        struct toptree *core;
 105        int count = 0;
 106
 107        toptree_for_each(core, tree, CORE) {
 108                if (core_pinned_to_node_id(core) == NODE_ID_FREE)
 109                        count++;
 110        }
 111        return count;
 112}
 113
 114/*
 115 * Return node of core
 116 */
 117static struct toptree *core_node(struct toptree *core)
 118{
 119        return core->parent->parent->parent->parent;
 120}
 121
 122/*
 123 * Return drawer of core
 124 */
 125static struct toptree *core_drawer(struct toptree *core)
 126{
 127        return core->parent->parent->parent;
 128}
 129
 130/*
 131 * Return book of core
 132 */
 133static struct toptree *core_book(struct toptree *core)
 134{
 135        return core->parent->parent;
 136}
 137
 138/*
 139 * Return mc of core
 140 */
 141static struct toptree *core_mc(struct toptree *core)
 142{
 143        return core->parent;
 144}
 145
 146/*
 147 * Distance between two cores
 148 */
 149static int dist_core_to_core(struct toptree *core1, struct toptree *core2)
 150{
 151        if (core_drawer(core1)->id != core_drawer(core2)->id)
 152                return DIST_DRAWER;
 153        if (core_book(core1)->id != core_book(core2)->id)
 154                return DIST_BOOK;
 155        if (core_mc(core1)->id != core_mc(core2)->id)
 156                return DIST_MC;
 157        /* Same core or sibling on same MC */
 158        return DIST_CORE;
 159}
 160
 161/*
 162 * Distance of a node to a core
 163 */
 164static int dist_node_to_core(struct toptree *node, struct toptree *core)
 165{
 166        struct toptree *core_node;
 167        int dist_min = DIST_MAX;
 168
 169        toptree_for_each(core_node, node, CORE)
 170                dist_min = min(dist_min, dist_core_to_core(core_node, core));
 171        return dist_min == DIST_MAX ? DIST_EMPTY : dist_min;
 172}
 173
 174/*
 175 * Unify will delete empty nodes, therefore recreate nodes.
 176 */
 177static void toptree_unify_tree(struct toptree *tree)
 178{
 179        int nid;
 180
 181        toptree_unify(tree);
 182        for (nid = 0; nid < emu_nodes; nid++)
 183                toptree_get_child(tree, nid);
 184}
 185
 186/*
 187 * Find the best/nearest node for a given core and ensure that no node
 188 * gets more than "emu_cores->per_node_target + extra" cores.
 189 */
 190static struct toptree *node_for_core(struct toptree *numa, struct toptree *core,
 191                                     int extra)
 192{
 193        struct toptree *node, *node_best = NULL;
 194        int dist_cur, dist_best, cores_target;
 195
 196        cores_target = emu_cores->per_node_target + extra;
 197        dist_best = DIST_MAX;
 198        node_best = NULL;
 199        toptree_for_each(node, numa, NODE) {
 200                /* Already pinned cores must use their nodes */
 201                if (core_pinned_to_node_id(core) == node->id) {
 202                        node_best = node;
 203                        break;
 204                }
 205                /* Skip nodes that already have enough cores */
 206                if (cores_pinned(node) >= cores_target)
 207                        continue;
 208                dist_cur = dist_node_to_core(node, core);
 209                if (dist_cur < dist_best) {
 210                        dist_best = dist_cur;
 211                        node_best = node;
 212                }
 213        }
 214        return node_best;
 215}
 216
 217/*
 218 * Find the best node for each core with respect to "extra" core count
 219 */
 220static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys,
 221                                   int extra)
 222{
 223        struct toptree *node, *core, *tmp;
 224
 225        toptree_for_each_safe(core, tmp, phys, CORE) {
 226                node = node_for_core(numa, core, extra);
 227                if (!node)
 228                        return;
 229                toptree_move(core, node);
 230                pin_core_to_node(core->id, node->id);
 231        }
 232}
 233
 234/*
 235 * Move structures of given level to specified NUMA node
 236 */
 237static void move_level_to_numa_node(struct toptree *node, struct toptree *phys,
 238                                    enum toptree_level level, bool perfect)
 239{
 240        int cores_free, cores_target = emu_cores->per_node_target;
 241        struct toptree *cur, *tmp;
 242
 243        toptree_for_each_safe(cur, tmp, phys, level) {
 244                cores_free = cores_target - toptree_count(node, CORE);
 245                if (perfect) {
 246                        if (cores_free == toptree_count(cur, CORE))
 247                                toptree_move(cur, node);
 248                } else {
 249                        if (cores_free >= toptree_count(cur, CORE))
 250                                toptree_move(cur, node);
 251                }
 252        }
 253}
 254
 255/*
 256 * Move structures of a given level to NUMA nodes. If "perfect" is specified
 257 * move only perfectly fitting structures. Otherwise move also smaller
 258 * than needed structures.
 259 */
 260static void move_level_to_numa(struct toptree *numa, struct toptree *phys,
 261                               enum toptree_level level, bool perfect)
 262{
 263        struct toptree *node;
 264
 265        toptree_for_each(node, numa, NODE)
 266                move_level_to_numa_node(node, phys, level, perfect);
 267}
 268
 269/*
 270 * For the first run try to move the big structures
 271 */
 272static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys)
 273{
 274        struct toptree *core;
 275
 276        /* Always try to move perfectly fitting structures first */
 277        move_level_to_numa(numa, phys, DRAWER, true);
 278        move_level_to_numa(numa, phys, DRAWER, false);
 279        move_level_to_numa(numa, phys, BOOK, true);
 280        move_level_to_numa(numa, phys, BOOK, false);
 281        move_level_to_numa(numa, phys, MC, true);
 282        move_level_to_numa(numa, phys, MC, false);
 283        /* Now pin all the moved cores */
 284        toptree_for_each(core, numa, CORE)
 285                pin_core_to_node(core->id, core_node(core)->id);
 286}
 287
 288/*
 289 * Allocate new topology and create required nodes
 290 */
 291static struct toptree *toptree_new(int id, int nodes)
 292{
 293        struct toptree *tree;
 294        int nid;
 295
 296        tree = toptree_alloc(TOPOLOGY, id);
 297        if (!tree)
 298                goto fail;
 299        for (nid = 0; nid < nodes; nid++) {
 300                if (!toptree_get_child(tree, nid))
 301                        goto fail;
 302        }
 303        return tree;
 304fail:
 305        panic("NUMA emulation could not allocate topology");
 306}
 307
 308/*
 309 * Allocate and initialize core to node mapping
 310 */
 311static void __ref create_core_to_node_map(void)
 312{
 313        int i;
 314
 315        emu_cores = memblock_alloc(sizeof(*emu_cores), 8);
 316        if (!emu_cores)
 317                panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 318                      __func__, sizeof(*emu_cores), 8);
 319        for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++)
 320                emu_cores->to_node_id[i] = NODE_ID_FREE;
 321}
 322
 323/*
 324 * Move cores from physical topology into NUMA target topology
 325 * and try to keep as much of the physical topology as possible.
 326 */
 327static struct toptree *toptree_to_numa(struct toptree *phys)
 328{
 329        static int first = 1;
 330        struct toptree *numa;
 331        int cores_total;
 332
 333        cores_total = emu_cores->total + cores_free(phys);
 334        emu_cores->per_node_target = cores_total / emu_nodes;
 335        numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes);
 336        if (first) {
 337                toptree_to_numa_first(numa, phys);
 338                first = 0;
 339        }
 340        toptree_to_numa_single(numa, phys, 0);
 341        toptree_to_numa_single(numa, phys, 1);
 342        toptree_unify_tree(numa);
 343
 344        WARN_ON(cpumask_weight(&phys->mask));
 345        return numa;
 346}
 347
 348/*
 349 * Create a toptree out of the physical topology that we got from the hypervisor
 350 */
 351static struct toptree *toptree_from_topology(void)
 352{
 353        struct toptree *phys, *node, *drawer, *book, *mc, *core;
 354        struct cpu_topology_s390 *top;
 355        int cpu;
 356
 357        phys = toptree_new(TOPTREE_ID_PHYS, 1);
 358
 359        for_each_cpu(cpu, &cpus_with_topology) {
 360                top = &cpu_topology[cpu];
 361                node = toptree_get_child(phys, 0);
 362                drawer = toptree_get_child(node, top->drawer_id);
 363                book = toptree_get_child(drawer, top->book_id);
 364                mc = toptree_get_child(book, top->socket_id);
 365                core = toptree_get_child(mc, smp_get_base_cpu(cpu));
 366                if (!drawer || !book || !mc || !core)
 367                        panic("NUMA emulation could not allocate memory");
 368                cpumask_set_cpu(cpu, &core->mask);
 369                toptree_update_mask(mc);
 370        }
 371        return phys;
 372}
 373
 374/*
 375 * Add toptree core to topology and create correct CPU masks
 376 */
 377static void topology_add_core(struct toptree *core)
 378{
 379        struct cpu_topology_s390 *top;
 380        int cpu;
 381
 382        for_each_cpu(cpu, &core->mask) {
 383                top = &cpu_topology[cpu];
 384                cpumask_copy(&top->thread_mask, &core->mask);
 385                cpumask_copy(&top->core_mask, &core_mc(core)->mask);
 386                cpumask_copy(&top->book_mask, &core_book(core)->mask);
 387                cpumask_copy(&top->drawer_mask, &core_drawer(core)->mask);
 388                cpumask_set_cpu(cpu, &node_to_cpumask_map[core_node(core)->id]);
 389                top->node_id = core_node(core)->id;
 390        }
 391}
 392
 393/*
 394 * Apply toptree to topology and create CPU masks
 395 */
 396static void toptree_to_topology(struct toptree *numa)
 397{
 398        struct toptree *core;
 399        int i;
 400
 401        /* Clear all node masks */
 402        for (i = 0; i < MAX_NUMNODES; i++)
 403                cpumask_clear(&node_to_cpumask_map[i]);
 404
 405        /* Rebuild all masks */
 406        toptree_for_each(core, numa, CORE)
 407                topology_add_core(core);
 408}
 409
 410/*
 411 * Show the node to core mapping
 412 */
 413static void print_node_to_core_map(void)
 414{
 415        int nid, cid;
 416
 417        if (!numa_debug_enabled)
 418                return;
 419        printk(KERN_DEBUG "NUMA node to core mapping\n");
 420        for (nid = 0; nid < emu_nodes; nid++) {
 421                printk(KERN_DEBUG "  node %3d: ", nid);
 422                for (cid = 0; cid < ARRAY_SIZE(emu_cores->to_node_id); cid++) {
 423                        if (emu_cores->to_node_id[cid] == nid)
 424                                printk(KERN_CONT "%d ", cid);
 425                }
 426                printk(KERN_CONT "\n");
 427        }
 428}
 429
 430static void pin_all_possible_cpus(void)
 431{
 432        int core_id, node_id, cpu;
 433        static int initialized;
 434
 435        if (initialized)
 436                return;
 437        print_node_to_core_map();
 438        node_id = 0;
 439        for_each_possible_cpu(cpu) {
 440                core_id = smp_get_base_cpu(cpu);
 441                if (emu_cores->to_node_id[core_id] != NODE_ID_FREE)
 442                        continue;
 443                pin_core_to_node(core_id, node_id);
 444                cpu_topology[cpu].node_id = node_id;
 445                node_id = (node_id + 1) % emu_nodes;
 446        }
 447        print_node_to_core_map();
 448        initialized = 1;
 449}
 450
 451/*
 452 * Transfer physical topology into a NUMA topology and modify CPU masks
 453 * according to the NUMA topology.
 454 *
 455 * Must be called with "sched_domains_mutex" lock held.
 456 */
 457static void emu_update_cpu_topology(void)
 458{
 459        struct toptree *phys, *numa;
 460
 461        if (emu_cores == NULL)
 462                create_core_to_node_map();
 463        phys = toptree_from_topology();
 464        numa = toptree_to_numa(phys);
 465        toptree_free(phys);
 466        toptree_to_topology(numa);
 467        toptree_free(numa);
 468        pin_all_possible_cpus();
 469}
 470
 471/*
 472 * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum
 473 * alignment (needed for memory hotplug).
 474 */
 475static unsigned long emu_setup_size_adjust(unsigned long size)
 476{
 477        unsigned long size_new;
 478
 479        size = size ? : CONFIG_EMU_SIZE;
 480        size_new = roundup(size, memory_block_size_bytes());
 481        if (size_new == size)
 482                return size;
 483        pr_warn("Increasing memory stripe size from %ld MB to %ld MB\n",
 484                size >> 20, size_new >> 20);
 485        return size_new;
 486}
 487
 488/*
 489 * If we have not enough memory for the specified nodes, reduce the node count.
 490 */
 491static int emu_setup_nodes_adjust(int nodes)
 492{
 493        int nodes_max;
 494
 495        nodes_max = memblock.memory.total_size / emu_size;
 496        nodes_max = max(nodes_max, 1);
 497        if (nodes_max >= nodes)
 498                return nodes;
 499        pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes);
 500        return nodes_max;
 501}
 502
 503/*
 504 * Early emu setup
 505 */
 506static void emu_setup(void)
 507{
 508        int nid;
 509
 510        emu_size = emu_setup_size_adjust(emu_size);
 511        emu_nodes = emu_setup_nodes_adjust(emu_nodes);
 512        for (nid = 0; nid < emu_nodes; nid++)
 513                node_set(nid, node_possible_map);
 514        pr_info("Creating %d nodes with memory stripe size %ld MB\n",
 515                emu_nodes, emu_size >> 20);
 516}
 517
 518/*
 519 * Return node id for given page number
 520 */
 521static int emu_pfn_to_nid(unsigned long pfn)
 522{
 523        return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes;
 524}
 525
 526/*
 527 * Return stripe size
 528 */
 529static unsigned long emu_align(void)
 530{
 531        return emu_size;
 532}
 533
 534/*
 535 * Return distance between two nodes
 536 */
 537static int emu_distance(int node1, int node2)
 538{
 539        return (node1 != node2) * EMU_NODE_DIST;
 540}
 541
 542/*
 543 * Define callbacks for generic s390 NUMA infrastructure
 544 */
 545const struct numa_mode numa_mode_emu = {
 546        .name = "emu",
 547        .setup = emu_setup,
 548        .update_cpu_topology = emu_update_cpu_topology,
 549        .__pfn_to_nid = emu_pfn_to_nid,
 550        .align = emu_align,
 551        .distance = emu_distance,
 552};
 553
 554/*
 555 * Kernel parameter: emu_nodes=<n>
 556 */
 557static int __init early_parse_emu_nodes(char *p)
 558{
 559        int count;
 560
 561        if (kstrtoint(p, 0, &count) != 0 || count <= 0)
 562                return 0;
 563        if (count <= 0)
 564                return 0;
 565        emu_nodes = min(count, MAX_NUMNODES);
 566        return 0;
 567}
 568early_param("emu_nodes", early_parse_emu_nodes);
 569
 570/*
 571 * Kernel parameter: emu_size=[<n>[k|M|G|T]]
 572 */
 573static int __init early_parse_emu_size(char *p)
 574{
 575        emu_size = memparse(p, NULL);
 576        return 0;
 577}
 578early_param("emu_size", early_parse_emu_size);
 579