linux/arch/s390/pci/pci_irq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#define KMSG_COMPONENT "zpci"
   3#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
   4
   5#include <linux/kernel.h>
   6#include <linux/irq.h>
   7#include <linux/kernel_stat.h>
   8#include <linux/pci.h>
   9#include <linux/msi.h>
  10#include <linux/smp.h>
  11
  12#include <asm/isc.h>
  13#include <asm/airq.h>
  14
  15static enum {FLOATING, DIRECTED} irq_delivery;
  16
  17#define SIC_IRQ_MODE_ALL                0
  18#define SIC_IRQ_MODE_SINGLE             1
  19#define SIC_IRQ_MODE_DIRECT             4
  20#define SIC_IRQ_MODE_D_ALL              16
  21#define SIC_IRQ_MODE_D_SINGLE           17
  22#define SIC_IRQ_MODE_SET_CPU            18
  23
  24/*
  25 * summary bit vector
  26 * FLOATING - summary bit per function
  27 * DIRECTED - summary bit per cpu (only used in fallback path)
  28 */
  29static struct airq_iv *zpci_sbv;
  30
  31/*
  32 * interrupt bit vectors
  33 * FLOATING - interrupt bit vector per function
  34 * DIRECTED - interrupt bit vector per cpu
  35 */
  36static struct airq_iv **zpci_ibv;
  37
  38/* Modify PCI: Register adapter interruptions */
  39static int zpci_set_airq(struct zpci_dev *zdev)
  40{
  41        u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
  42        struct zpci_fib fib = {0};
  43        u8 status;
  44
  45        fib.fmt0.isc = PCI_ISC;
  46        fib.fmt0.sum = 1;       /* enable summary notifications */
  47        fib.fmt0.noi = airq_iv_end(zdev->aibv);
  48        fib.fmt0.aibv = (unsigned long) zdev->aibv->vector;
  49        fib.fmt0.aibvo = 0;     /* each zdev has its own interrupt vector */
  50        fib.fmt0.aisb = (unsigned long) zpci_sbv->vector + (zdev->aisb/64)*8;
  51        fib.fmt0.aisbo = zdev->aisb & 63;
  52
  53        return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
  54}
  55
  56/* Modify PCI: Unregister adapter interruptions */
  57static int zpci_clear_airq(struct zpci_dev *zdev)
  58{
  59        u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
  60        struct zpci_fib fib = {0};
  61        u8 cc, status;
  62
  63        cc = zpci_mod_fc(req, &fib, &status);
  64        if (cc == 3 || (cc == 1 && status == 24))
  65                /* Function already gone or IRQs already deregistered. */
  66                cc = 0;
  67
  68        return cc ? -EIO : 0;
  69}
  70
  71/* Modify PCI: Register CPU directed interruptions */
  72static int zpci_set_directed_irq(struct zpci_dev *zdev)
  73{
  74        u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
  75        struct zpci_fib fib = {0};
  76        u8 status;
  77
  78        fib.fmt = 1;
  79        fib.fmt1.noi = zdev->msi_nr_irqs;
  80        fib.fmt1.dibvo = zdev->msi_first_bit;
  81
  82        return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
  83}
  84
  85/* Modify PCI: Unregister CPU directed interruptions */
  86static int zpci_clear_directed_irq(struct zpci_dev *zdev)
  87{
  88        u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
  89        struct zpci_fib fib = {0};
  90        u8 cc, status;
  91
  92        fib.fmt = 1;
  93        cc = zpci_mod_fc(req, &fib, &status);
  94        if (cc == 3 || (cc == 1 && status == 24))
  95                /* Function already gone or IRQs already deregistered. */
  96                cc = 0;
  97
  98        return cc ? -EIO : 0;
  99}
 100
 101static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
 102                                 bool force)
 103{
 104        struct msi_desc *entry = irq_get_msi_desc(data->irq);
 105        struct msi_msg msg = entry->msg;
 106
 107        msg.address_lo &= 0xff0000ff;
 108        msg.address_lo |= (cpumask_first(dest) << 8);
 109        pci_write_msi_msg(data->irq, &msg);
 110
 111        return IRQ_SET_MASK_OK;
 112}
 113
 114static struct irq_chip zpci_irq_chip = {
 115        .name = "PCI-MSI",
 116        .irq_unmask = pci_msi_unmask_irq,
 117        .irq_mask = pci_msi_mask_irq,
 118        .irq_set_affinity = zpci_set_irq_affinity,
 119};
 120
 121static void zpci_handle_cpu_local_irq(bool rescan)
 122{
 123        struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
 124        unsigned long bit;
 125        int irqs_on = 0;
 126
 127        for (bit = 0;;) {
 128                /* Scan the directed IRQ bit vector */
 129                bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
 130                if (bit == -1UL) {
 131                        if (!rescan || irqs_on++)
 132                                /* End of second scan with interrupts on. */
 133                                break;
 134                        /* First scan complete, reenable interrupts. */
 135                        if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC))
 136                                break;
 137                        bit = 0;
 138                        continue;
 139                }
 140                inc_irq_stat(IRQIO_MSI);
 141                generic_handle_irq(airq_iv_get_data(dibv, bit));
 142        }
 143}
 144
 145struct cpu_irq_data {
 146        call_single_data_t csd;
 147        atomic_t scheduled;
 148};
 149static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
 150
 151static void zpci_handle_remote_irq(void *data)
 152{
 153        atomic_t *scheduled = data;
 154
 155        do {
 156                zpci_handle_cpu_local_irq(false);
 157        } while (atomic_dec_return(scheduled));
 158}
 159
 160static void zpci_handle_fallback_irq(void)
 161{
 162        struct cpu_irq_data *cpu_data;
 163        unsigned long cpu;
 164        int irqs_on = 0;
 165
 166        for (cpu = 0;;) {
 167                cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
 168                if (cpu == -1UL) {
 169                        if (irqs_on++)
 170                                /* End of second scan with interrupts on. */
 171                                break;
 172                        /* First scan complete, reenable interrupts. */
 173                        if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
 174                                break;
 175                        cpu = 0;
 176                        continue;
 177                }
 178                cpu_data = &per_cpu(irq_data, cpu);
 179                if (atomic_inc_return(&cpu_data->scheduled) > 1)
 180                        continue;
 181
 182                cpu_data->csd.func = zpci_handle_remote_irq;
 183                cpu_data->csd.info = &cpu_data->scheduled;
 184                cpu_data->csd.flags = 0;
 185                smp_call_function_single_async(cpu, &cpu_data->csd);
 186        }
 187}
 188
 189static void zpci_directed_irq_handler(struct airq_struct *airq, bool floating)
 190{
 191        if (floating) {
 192                inc_irq_stat(IRQIO_PCF);
 193                zpci_handle_fallback_irq();
 194        } else {
 195                inc_irq_stat(IRQIO_PCD);
 196                zpci_handle_cpu_local_irq(true);
 197        }
 198}
 199
 200static void zpci_floating_irq_handler(struct airq_struct *airq, bool floating)
 201{
 202        unsigned long si, ai;
 203        struct airq_iv *aibv;
 204        int irqs_on = 0;
 205
 206        inc_irq_stat(IRQIO_PCF);
 207        for (si = 0;;) {
 208                /* Scan adapter summary indicator bit vector */
 209                si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
 210                if (si == -1UL) {
 211                        if (irqs_on++)
 212                                /* End of second scan with interrupts on. */
 213                                break;
 214                        /* First scan complete, reenable interrupts. */
 215                        if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
 216                                break;
 217                        si = 0;
 218                        continue;
 219                }
 220
 221                /* Scan the adapter interrupt vector for this device. */
 222                aibv = zpci_ibv[si];
 223                for (ai = 0;;) {
 224                        ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
 225                        if (ai == -1UL)
 226                                break;
 227                        inc_irq_stat(IRQIO_MSI);
 228                        airq_iv_lock(aibv, ai);
 229                        generic_handle_irq(airq_iv_get_data(aibv, ai));
 230                        airq_iv_unlock(aibv, ai);
 231                }
 232        }
 233}
 234
 235int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
 236{
 237        struct zpci_dev *zdev = to_zpci(pdev);
 238        unsigned int hwirq, msi_vecs, cpu;
 239        unsigned long bit;
 240        struct msi_desc *msi;
 241        struct msi_msg msg;
 242        int rc, irq;
 243
 244        zdev->aisb = -1UL;
 245        zdev->msi_first_bit = -1U;
 246        if (type == PCI_CAP_ID_MSI && nvec > 1)
 247                return 1;
 248        msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
 249
 250        if (irq_delivery == DIRECTED) {
 251                /* Allocate cpu vector bits */
 252                bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
 253                if (bit == -1UL)
 254                        return -EIO;
 255        } else {
 256                /* Allocate adapter summary indicator bit */
 257                bit = airq_iv_alloc_bit(zpci_sbv);
 258                if (bit == -1UL)
 259                        return -EIO;
 260                zdev->aisb = bit;
 261
 262                /* Create adapter interrupt vector */
 263                zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK);
 264                if (!zdev->aibv)
 265                        return -ENOMEM;
 266
 267                /* Wire up shortcut pointer */
 268                zpci_ibv[bit] = zdev->aibv;
 269                /* Each function has its own interrupt vector */
 270                bit = 0;
 271        }
 272
 273        /* Request MSI interrupts */
 274        hwirq = bit;
 275        for_each_pci_msi_entry(msi, pdev) {
 276                rc = -EIO;
 277                if (hwirq - bit >= msi_vecs)
 278                        break;
 279                irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE, msi->affinity);
 280                if (irq < 0)
 281                        return -ENOMEM;
 282                rc = irq_set_msi_desc(irq, msi);
 283                if (rc)
 284                        return rc;
 285                irq_set_chip_and_handler(irq, &zpci_irq_chip,
 286                                         handle_percpu_irq);
 287                msg.data = hwirq;
 288                if (irq_delivery == DIRECTED) {
 289                        msg.address_lo = zdev->msi_addr & 0xff0000ff;
 290                        msg.address_lo |= msi->affinity ?
 291                                (cpumask_first(&msi->affinity->mask) << 8) : 0;
 292                        for_each_possible_cpu(cpu) {
 293                                airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
 294                        }
 295                } else {
 296                        msg.address_lo = zdev->msi_addr & 0xffffffff;
 297                        airq_iv_set_data(zdev->aibv, hwirq, irq);
 298                }
 299                msg.address_hi = zdev->msi_addr >> 32;
 300                pci_write_msi_msg(irq, &msg);
 301                hwirq++;
 302        }
 303
 304        zdev->msi_first_bit = bit;
 305        zdev->msi_nr_irqs = msi_vecs;
 306
 307        if (irq_delivery == DIRECTED)
 308                rc = zpci_set_directed_irq(zdev);
 309        else
 310                rc = zpci_set_airq(zdev);
 311        if (rc)
 312                return rc;
 313
 314        return (msi_vecs == nvec) ? 0 : msi_vecs;
 315}
 316
 317void arch_teardown_msi_irqs(struct pci_dev *pdev)
 318{
 319        struct zpci_dev *zdev = to_zpci(pdev);
 320        struct msi_desc *msi;
 321        int rc;
 322
 323        /* Disable interrupts */
 324        if (irq_delivery == DIRECTED)
 325                rc = zpci_clear_directed_irq(zdev);
 326        else
 327                rc = zpci_clear_airq(zdev);
 328        if (rc)
 329                return;
 330
 331        /* Release MSI interrupts */
 332        for_each_pci_msi_entry(msi, pdev) {
 333                if (!msi->irq)
 334                        continue;
 335                if (msi->msi_attrib.is_msix)
 336                        __pci_msix_desc_mask_irq(msi, 1);
 337                else
 338                        __pci_msi_desc_mask_irq(msi, 1, 1);
 339                irq_set_msi_desc(msi->irq, NULL);
 340                irq_free_desc(msi->irq);
 341                msi->msg.address_lo = 0;
 342                msi->msg.address_hi = 0;
 343                msi->msg.data = 0;
 344                msi->irq = 0;
 345        }
 346
 347        if (zdev->aisb != -1UL) {
 348                zpci_ibv[zdev->aisb] = NULL;
 349                airq_iv_free_bit(zpci_sbv, zdev->aisb);
 350                zdev->aisb = -1UL;
 351        }
 352        if (zdev->aibv) {
 353                airq_iv_release(zdev->aibv);
 354                zdev->aibv = NULL;
 355        }
 356
 357        if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
 358                airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
 359}
 360
 361static struct airq_struct zpci_airq = {
 362        .handler = zpci_floating_irq_handler,
 363        .isc = PCI_ISC,
 364};
 365
 366static void __init cpu_enable_directed_irq(void *unused)
 367{
 368        union zpci_sic_iib iib = {{0}};
 369
 370        iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
 371
 372        __zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
 373        zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC);
 374}
 375
 376static int __init zpci_directed_irq_init(void)
 377{
 378        union zpci_sic_iib iib = {{0}};
 379        unsigned int cpu;
 380
 381        zpci_sbv = airq_iv_create(num_possible_cpus(), 0);
 382        if (!zpci_sbv)
 383                return -ENOMEM;
 384
 385        iib.diib.isc = PCI_ISC;
 386        iib.diib.nr_cpus = num_possible_cpus();
 387        iib.diib.disb_addr = (u64) zpci_sbv->vector;
 388        __zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
 389
 390        zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
 391                           GFP_KERNEL);
 392        if (!zpci_ibv)
 393                return -ENOMEM;
 394
 395        for_each_possible_cpu(cpu) {
 396                /*
 397                 * Per CPU IRQ vectors look the same but bit-allocation
 398                 * is only done on the first vector.
 399                 */
 400                zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
 401                                               AIRQ_IV_DATA |
 402                                               AIRQ_IV_CACHELINE |
 403                                               (!cpu ? AIRQ_IV_ALLOC : 0));
 404                if (!zpci_ibv[cpu])
 405                        return -ENOMEM;
 406        }
 407        on_each_cpu(cpu_enable_directed_irq, NULL, 1);
 408
 409        zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
 410
 411        return 0;
 412}
 413
 414static int __init zpci_floating_irq_init(void)
 415{
 416        zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
 417        if (!zpci_ibv)
 418                return -ENOMEM;
 419
 420        zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC);
 421        if (!zpci_sbv)
 422                goto out_free;
 423
 424        return 0;
 425
 426out_free:
 427        kfree(zpci_ibv);
 428        return -ENOMEM;
 429}
 430
 431int __init zpci_irq_init(void)
 432{
 433        int rc;
 434
 435        irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
 436        if (s390_pci_force_floating)
 437                irq_delivery = FLOATING;
 438
 439        if (irq_delivery == DIRECTED)
 440                zpci_airq.handler = zpci_directed_irq_handler;
 441
 442        rc = register_adapter_interrupt(&zpci_airq);
 443        if (rc)
 444                goto out;
 445        /* Set summary to 1 to be called every time for the ISC. */
 446        *zpci_airq.lsi_ptr = 1;
 447
 448        switch (irq_delivery) {
 449        case FLOATING:
 450                rc = zpci_floating_irq_init();
 451                break;
 452        case DIRECTED:
 453                rc = zpci_directed_irq_init();
 454                break;
 455        }
 456
 457        if (rc)
 458                goto out_airq;
 459
 460        /*
 461         * Enable floating IRQs (with suppression after one IRQ). When using
 462         * directed IRQs this enables the fallback path.
 463         */
 464        zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC);
 465
 466        return 0;
 467out_airq:
 468        unregister_adapter_interrupt(&zpci_airq);
 469out:
 470        return rc;
 471}
 472
 473void __init zpci_irq_exit(void)
 474{
 475        unsigned int cpu;
 476
 477        if (irq_delivery == DIRECTED) {
 478                for_each_possible_cpu(cpu) {
 479                        airq_iv_release(zpci_ibv[cpu]);
 480                }
 481        }
 482        kfree(zpci_ibv);
 483        if (zpci_sbv)
 484                airq_iv_release(zpci_sbv);
 485        unregister_adapter_interrupt(&zpci_airq);
 486}
 487