linux/arch/unicore32/mm/ioremap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/arch/unicore32/mm/ioremap.c
   4 *
   5 * Code specific to PKUnity SoC and UniCore ISA
   6 *
   7 * Copyright (C) 2001-2010 GUAN Xue-tao
   8 *
   9 * Re-map IO memory to kernel address space so that we can access it.
  10 *
  11 * This allows a driver to remap an arbitrary region of bus memory into
  12 * virtual space.  One should *only* use readl, writel, memcpy_toio and
  13 * so on with such remapped areas.
  14 *
  15 * Because UniCore only has a 32-bit address space we can't address the
  16 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
  17 * allows us to circumvent this restriction by splitting PCI space into
  18 * two 2GB chunks and mapping only one at a time into processor memory.
  19 * We use MMU protection domains to trap any attempt to access the bank
  20 * that is not currently mapped.  (This isn't fully implemented yet.)
  21 */
  22#include <linux/module.h>
  23#include <linux/errno.h>
  24#include <linux/mm.h>
  25#include <linux/vmalloc.h>
  26#include <linux/io.h>
  27
  28#include <asm/cputype.h>
  29#include <asm/cacheflush.h>
  30#include <asm/mmu_context.h>
  31#include <asm/pgalloc.h>
  32#include <asm/tlbflush.h>
  33#include <linux/sizes.h>
  34
  35#include <mach/map.h>
  36#include "mm.h"
  37
  38/*
  39 * Used by ioremap() and iounmap() code to mark (super)section-mapped
  40 * I/O regions in vm_struct->flags field.
  41 */
  42#define VM_UNICORE_SECTION_MAPPING      0x80000000
  43
  44int ioremap_page(unsigned long virt, unsigned long phys,
  45                 const struct mem_type *mtype)
  46{
  47        return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
  48                                  __pgprot(mtype->prot_pte));
  49}
  50EXPORT_SYMBOL(ioremap_page);
  51
  52/*
  53 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
  54 * the other CPUs will not see this change until their next context switch.
  55 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
  56 * which requires the new ioremap'd region to be referenced, the CPU will
  57 * reference the _old_ region.
  58 *
  59 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
  60 * mask the size back to 4MB aligned or we will overflow in the loop below.
  61 */
  62static void unmap_area_sections(unsigned long virt, unsigned long size)
  63{
  64        unsigned long addr = virt, end = virt + (size & ~(SZ_4M - 1));
  65        pgd_t *pgd;
  66
  67        flush_cache_vunmap(addr, end);
  68        pgd = pgd_offset_k(addr);
  69        do {
  70                pmd_t pmd, *pmdp = pmd_offset((pud_t *)pgd, addr);
  71
  72                pmd = *pmdp;
  73                if (!pmd_none(pmd)) {
  74                        /*
  75                         * Clear the PMD from the page table, and
  76                         * increment the kvm sequence so others
  77                         * notice this change.
  78                         *
  79                         * Note: this is still racy on SMP machines.
  80                         */
  81                        pmd_clear(pmdp);
  82
  83                        /*
  84                         * Free the page table, if there was one.
  85                         */
  86                        if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
  87                                pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
  88                }
  89
  90                addr += PGDIR_SIZE;
  91                pgd++;
  92        } while (addr < end);
  93
  94        flush_tlb_kernel_range(virt, end);
  95}
  96
  97static int
  98remap_area_sections(unsigned long virt, unsigned long pfn,
  99                    size_t size, const struct mem_type *type)
 100{
 101        unsigned long addr = virt, end = virt + size;
 102        pgd_t *pgd;
 103
 104        /*
 105         * Remove and free any PTE-based mapping, and
 106         * sync the current kernel mapping.
 107         */
 108        unmap_area_sections(virt, size);
 109
 110        pgd = pgd_offset_k(addr);
 111        do {
 112                pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
 113
 114                set_pmd(pmd, __pmd(__pfn_to_phys(pfn) | type->prot_sect));
 115                pfn += SZ_4M >> PAGE_SHIFT;
 116                flush_pmd_entry(pmd);
 117
 118                addr += PGDIR_SIZE;
 119                pgd++;
 120        } while (addr < end);
 121
 122        return 0;
 123}
 124
 125void __iomem *__uc32_ioremap_pfn_caller(unsigned long pfn,
 126        unsigned long offset, size_t size, unsigned int mtype, void *caller)
 127{
 128        const struct mem_type *type;
 129        int err;
 130        unsigned long addr;
 131        struct vm_struct *area;
 132
 133        /*
 134         * High mappings must be section aligned
 135         */
 136        if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SECTION_MASK))
 137                return NULL;
 138
 139        /*
 140         * Don't allow RAM to be mapped
 141         */
 142        if (pfn_valid(pfn)) {
 143                WARN(1, "BUG: Your driver calls ioremap() on\n"
 144                        "system memory.  This leads to architecturally\n"
 145                        "unpredictable behaviour, and ioremap() will fail in\n"
 146                        "the next kernel release. Please fix your driver.\n");
 147                return NULL;
 148        }
 149
 150        type = get_mem_type(mtype);
 151        if (!type)
 152                return NULL;
 153
 154        /*
 155         * Page align the mapping size, taking account of any offset.
 156         */
 157        size = PAGE_ALIGN(offset + size);
 158
 159        area = get_vm_area_caller(size, VM_IOREMAP, caller);
 160        if (!area)
 161                return NULL;
 162        addr = (unsigned long)area->addr;
 163
 164        if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
 165                area->flags |= VM_UNICORE_SECTION_MAPPING;
 166                err = remap_area_sections(addr, pfn, size, type);
 167        } else
 168                err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
 169                                         __pgprot(type->prot_pte));
 170
 171        if (err) {
 172                vunmap((void *)addr);
 173                return NULL;
 174        }
 175
 176        flush_cache_vmap(addr, addr + size);
 177        return (void __iomem *) (offset + addr);
 178}
 179
 180void __iomem *__uc32_ioremap_caller(unsigned long phys_addr, size_t size,
 181        unsigned int mtype, void *caller)
 182{
 183        unsigned long last_addr;
 184        unsigned long offset = phys_addr & ~PAGE_MASK;
 185        unsigned long pfn = __phys_to_pfn(phys_addr);
 186
 187        /*
 188         * Don't allow wraparound or zero size
 189         */
 190        last_addr = phys_addr + size - 1;
 191        if (!size || last_addr < phys_addr)
 192                return NULL;
 193
 194        return __uc32_ioremap_pfn_caller(pfn, offset, size, mtype, caller);
 195}
 196
 197/*
 198 * Remap an arbitrary physical address space into the kernel virtual
 199 * address space. Needed when the kernel wants to access high addresses
 200 * directly.
 201 *
 202 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
 203 * have to convert them into an offset in a page-aligned mapping, but the
 204 * caller shouldn't need to know that small detail.
 205 */
 206void __iomem *
 207__uc32_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
 208                  unsigned int mtype)
 209{
 210        return __uc32_ioremap_pfn_caller(pfn, offset, size, mtype,
 211                        __builtin_return_address(0));
 212}
 213EXPORT_SYMBOL(__uc32_ioremap_pfn);
 214
 215void __iomem *
 216__uc32_ioremap(unsigned long phys_addr, size_t size)
 217{
 218        return __uc32_ioremap_caller(phys_addr, size, MT_DEVICE,
 219                        __builtin_return_address(0));
 220}
 221EXPORT_SYMBOL(__uc32_ioremap);
 222
 223void __iomem *
 224__uc32_ioremap_cached(unsigned long phys_addr, size_t size)
 225{
 226        return __uc32_ioremap_caller(phys_addr, size, MT_DEVICE_CACHED,
 227                        __builtin_return_address(0));
 228}
 229EXPORT_SYMBOL(__uc32_ioremap_cached);
 230
 231void __uc32_iounmap(volatile void __iomem *io_addr)
 232{
 233        void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
 234        struct vm_struct *vm;
 235
 236        /*
 237         * If this is a section based mapping we need to handle it
 238         * specially as the VM subsystem does not know how to handle
 239         * such a beast. We need the lock here b/c we need to clear
 240         * all the mappings before the area can be reclaimed
 241         * by someone else.
 242         */
 243        vm = find_vm_area(addr);
 244        if (vm && (vm->flags & VM_IOREMAP) &&
 245                (vm->flags & VM_UNICORE_SECTION_MAPPING))
 246                unmap_area_sections((unsigned long)vm->addr, vm->size);
 247
 248        vunmap(addr);
 249}
 250EXPORT_SYMBOL(__uc32_iounmap);
 251