linux/arch/x86/boot/compressed/kaslr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * kaslr.c
   4 *
   5 * This contains the routines needed to generate a reasonable level of
   6 * entropy to choose a randomized kernel base address offset in support
   7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
   8 * handles walking the physical memory maps (and tracking memory regions
   9 * to avoid) in order to select a physical memory location that can
  10 * contain the entire properly aligned running kernel image.
  11 *
  12 */
  13
  14/*
  15 * isspace() in linux/ctype.h is expected by next_args() to filter
  16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
  17 * since isdigit() is implemented in both of them. Hence disable it
  18 * here.
  19 */
  20#define BOOT_CTYPE_H
  21
  22/*
  23 * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
  24 * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
  25 * which is meaningless and will cause compiling error in some cases.
  26 */
  27#define __DISABLE_EXPORTS
  28
  29#include "misc.h"
  30#include "error.h"
  31#include "../string.h"
  32
  33#include <generated/compile.h>
  34#include <linux/module.h>
  35#include <linux/uts.h>
  36#include <linux/utsname.h>
  37#include <linux/ctype.h>
  38#include <linux/efi.h>
  39#include <generated/utsrelease.h>
  40#include <asm/efi.h>
  41
  42/* Macros used by the included decompressor code below. */
  43#define STATIC
  44#include <linux/decompress/mm.h>
  45
  46#ifdef CONFIG_X86_5LEVEL
  47unsigned int __pgtable_l5_enabled;
  48unsigned int pgdir_shift __ro_after_init = 39;
  49unsigned int ptrs_per_p4d __ro_after_init = 1;
  50#endif
  51
  52extern unsigned long get_cmd_line_ptr(void);
  53
  54/* Used by PAGE_KERN* macros: */
  55pteval_t __default_kernel_pte_mask __read_mostly = ~0;
  56
  57/* Simplified build-specific string for starting entropy. */
  58static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
  59                LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
  60
  61static unsigned long rotate_xor(unsigned long hash, const void *area,
  62                                size_t size)
  63{
  64        size_t i;
  65        unsigned long *ptr = (unsigned long *)area;
  66
  67        for (i = 0; i < size / sizeof(hash); i++) {
  68                /* Rotate by odd number of bits and XOR. */
  69                hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
  70                hash ^= ptr[i];
  71        }
  72
  73        return hash;
  74}
  75
  76/* Attempt to create a simple but unpredictable starting entropy. */
  77static unsigned long get_boot_seed(void)
  78{
  79        unsigned long hash = 0;
  80
  81        hash = rotate_xor(hash, build_str, sizeof(build_str));
  82        hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
  83
  84        return hash;
  85}
  86
  87#define KASLR_COMPRESSED_BOOT
  88#include "../../lib/kaslr.c"
  89
  90
  91/* Only supporting at most 4 unusable memmap regions with kaslr */
  92#define MAX_MEMMAP_REGIONS      4
  93
  94static bool memmap_too_large;
  95
  96
  97/* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
  98static unsigned long long mem_limit = ULLONG_MAX;
  99
 100/* Number of immovable memory regions */
 101static int num_immovable_mem;
 102
 103enum mem_avoid_index {
 104        MEM_AVOID_ZO_RANGE = 0,
 105        MEM_AVOID_INITRD,
 106        MEM_AVOID_CMDLINE,
 107        MEM_AVOID_BOOTPARAMS,
 108        MEM_AVOID_MEMMAP_BEGIN,
 109        MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
 110        MEM_AVOID_MAX,
 111};
 112
 113static struct mem_vector mem_avoid[MEM_AVOID_MAX];
 114
 115static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
 116{
 117        /* Item one is entirely before item two. */
 118        if (one->start + one->size <= two->start)
 119                return false;
 120        /* Item one is entirely after item two. */
 121        if (one->start >= two->start + two->size)
 122                return false;
 123        return true;
 124}
 125
 126char *skip_spaces(const char *str)
 127{
 128        while (isspace(*str))
 129                ++str;
 130        return (char *)str;
 131}
 132#include "../../../../lib/ctype.c"
 133#include "../../../../lib/cmdline.c"
 134
 135static int
 136parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
 137{
 138        char *oldp;
 139
 140        if (!p)
 141                return -EINVAL;
 142
 143        /* We don't care about this option here */
 144        if (!strncmp(p, "exactmap", 8))
 145                return -EINVAL;
 146
 147        oldp = p;
 148        *size = memparse(p, &p);
 149        if (p == oldp)
 150                return -EINVAL;
 151
 152        switch (*p) {
 153        case '#':
 154        case '$':
 155        case '!':
 156                *start = memparse(p + 1, &p);
 157                return 0;
 158        case '@':
 159                /* memmap=nn@ss specifies usable region, should be skipped */
 160                *size = 0;
 161                /* Fall through */
 162        default:
 163                /*
 164                 * If w/o offset, only size specified, memmap=nn[KMG] has the
 165                 * same behaviour as mem=nn[KMG]. It limits the max address
 166                 * system can use. Region above the limit should be avoided.
 167                 */
 168                *start = 0;
 169                return 0;
 170        }
 171
 172        return -EINVAL;
 173}
 174
 175static void mem_avoid_memmap(char *str)
 176{
 177        static int i;
 178
 179        if (i >= MAX_MEMMAP_REGIONS)
 180                return;
 181
 182        while (str && (i < MAX_MEMMAP_REGIONS)) {
 183                int rc;
 184                unsigned long long start, size;
 185                char *k = strchr(str, ',');
 186
 187                if (k)
 188                        *k++ = 0;
 189
 190                rc = parse_memmap(str, &start, &size);
 191                if (rc < 0)
 192                        break;
 193                str = k;
 194
 195                if (start == 0) {
 196                        /* Store the specified memory limit if size > 0 */
 197                        if (size > 0)
 198                                mem_limit = size;
 199
 200                        continue;
 201                }
 202
 203                mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
 204                mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
 205                i++;
 206        }
 207
 208        /* More than 4 memmaps, fail kaslr */
 209        if ((i >= MAX_MEMMAP_REGIONS) && str)
 210                memmap_too_large = true;
 211}
 212
 213/* Store the number of 1GB huge pages which users specified: */
 214static unsigned long max_gb_huge_pages;
 215
 216static void parse_gb_huge_pages(char *param, char *val)
 217{
 218        static bool gbpage_sz;
 219        char *p;
 220
 221        if (!strcmp(param, "hugepagesz")) {
 222                p = val;
 223                if (memparse(p, &p) != PUD_SIZE) {
 224                        gbpage_sz = false;
 225                        return;
 226                }
 227
 228                if (gbpage_sz)
 229                        warn("Repeatedly set hugeTLB page size of 1G!\n");
 230                gbpage_sz = true;
 231                return;
 232        }
 233
 234        if (!strcmp(param, "hugepages") && gbpage_sz) {
 235                p = val;
 236                max_gb_huge_pages = simple_strtoull(p, &p, 0);
 237                return;
 238        }
 239}
 240
 241
 242static void handle_mem_options(void)
 243{
 244        char *args = (char *)get_cmd_line_ptr();
 245        size_t len = strlen((char *)args);
 246        char *tmp_cmdline;
 247        char *param, *val;
 248        u64 mem_size;
 249
 250        if (!strstr(args, "memmap=") && !strstr(args, "mem=") &&
 251                !strstr(args, "hugepages"))
 252                return;
 253
 254        tmp_cmdline = malloc(len + 1);
 255        if (!tmp_cmdline)
 256                error("Failed to allocate space for tmp_cmdline");
 257
 258        memcpy(tmp_cmdline, args, len);
 259        tmp_cmdline[len] = 0;
 260        args = tmp_cmdline;
 261
 262        /* Chew leading spaces */
 263        args = skip_spaces(args);
 264
 265        while (*args) {
 266                args = next_arg(args, &param, &val);
 267                /* Stop at -- */
 268                if (!val && strcmp(param, "--") == 0) {
 269                        warn("Only '--' specified in cmdline");
 270                        goto out;
 271                }
 272
 273                if (!strcmp(param, "memmap")) {
 274                        mem_avoid_memmap(val);
 275                } else if (strstr(param, "hugepages")) {
 276                        parse_gb_huge_pages(param, val);
 277                } else if (!strcmp(param, "mem")) {
 278                        char *p = val;
 279
 280                        if (!strcmp(p, "nopentium"))
 281                                continue;
 282                        mem_size = memparse(p, &p);
 283                        if (mem_size == 0)
 284                                goto out;
 285
 286                        mem_limit = mem_size;
 287                }
 288        }
 289
 290out:
 291        free(tmp_cmdline);
 292        return;
 293}
 294
 295/*
 296 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
 297 * The mem_avoid array is used to store the ranges that need to be avoided
 298 * when KASLR searches for an appropriate random address. We must avoid any
 299 * regions that are unsafe to overlap with during decompression, and other
 300 * things like the initrd, cmdline and boot_params. This comment seeks to
 301 * explain mem_avoid as clearly as possible since incorrect mem_avoid
 302 * memory ranges lead to really hard to debug boot failures.
 303 *
 304 * The initrd, cmdline, and boot_params are trivial to identify for
 305 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
 306 * MEM_AVOID_BOOTPARAMS respectively below.
 307 *
 308 * What is not obvious how to avoid is the range of memory that is used
 309 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 310 * the compressed kernel (ZO) and its run space, which is used to extract
 311 * the uncompressed kernel (VO) and relocs.
 312 *
 313 * ZO's full run size sits against the end of the decompression buffer, so
 314 * we can calculate where text, data, bss, etc of ZO are positioned more
 315 * easily.
 316 *
 317 * For additional background, the decompression calculations can be found
 318 * in header.S, and the memory diagram is based on the one found in misc.c.
 319 *
 320 * The following conditions are already enforced by the image layouts and
 321 * associated code:
 322 *  - input + input_size >= output + output_size
 323 *  - kernel_total_size <= init_size
 324 *  - kernel_total_size <= output_size (see Note below)
 325 *  - output + init_size >= output + output_size
 326 *
 327 * (Note that kernel_total_size and output_size have no fundamental
 328 * relationship, but output_size is passed to choose_random_location
 329 * as a maximum of the two. The diagram is showing a case where
 330 * kernel_total_size is larger than output_size, but this case is
 331 * handled by bumping output_size.)
 332 *
 333 * The above conditions can be illustrated by a diagram:
 334 *
 335 * 0   output            input            input+input_size    output+init_size
 336 * |     |                 |                             |             |
 337 * |     |                 |                             |             |
 338 * |-----|--------|--------|--------------|-----------|--|-------------|
 339 *                |                       |           |
 340 *                |                       |           |
 341 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
 342 *
 343 * [output, output+init_size) is the entire memory range used for
 344 * extracting the compressed image.
 345 *
 346 * [output, output+kernel_total_size) is the range needed for the
 347 * uncompressed kernel (VO) and its run size (bss, brk, etc).
 348 *
 349 * [output, output+output_size) is VO plus relocs (i.e. the entire
 350 * uncompressed payload contained by ZO). This is the area of the buffer
 351 * written to during decompression.
 352 *
 353 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
 354 * range of the copied ZO and decompression code. (i.e. the range
 355 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
 356 *
 357 * [input, input+input_size) is the original copied compressed image (ZO)
 358 * (i.e. it does not include its run size). This range must be avoided
 359 * because it contains the data used for decompression.
 360 *
 361 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
 362 * range includes ZO's heap and stack, and must be avoided since it
 363 * performs the decompression.
 364 *
 365 * Since the above two ranges need to be avoided and they are adjacent,
 366 * they can be merged, resulting in: [input, output+init_size) which
 367 * becomes the MEM_AVOID_ZO_RANGE below.
 368 */
 369static void mem_avoid_init(unsigned long input, unsigned long input_size,
 370                           unsigned long output)
 371{
 372        unsigned long init_size = boot_params->hdr.init_size;
 373        u64 initrd_start, initrd_size;
 374        u64 cmd_line, cmd_line_size;
 375        char *ptr;
 376
 377        /*
 378         * Avoid the region that is unsafe to overlap during
 379         * decompression.
 380         */
 381        mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
 382        mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
 383        add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
 384                         mem_avoid[MEM_AVOID_ZO_RANGE].size);
 385
 386        /* Avoid initrd. */
 387        initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
 388        initrd_start |= boot_params->hdr.ramdisk_image;
 389        initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
 390        initrd_size |= boot_params->hdr.ramdisk_size;
 391        mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
 392        mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
 393        /* No need to set mapping for initrd, it will be handled in VO. */
 394
 395        /* Avoid kernel command line. */
 396        cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
 397        cmd_line |= boot_params->hdr.cmd_line_ptr;
 398        /* Calculate size of cmd_line. */
 399        ptr = (char *)(unsigned long)cmd_line;
 400        for (cmd_line_size = 0; ptr[cmd_line_size++];)
 401                ;
 402        mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
 403        mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
 404        add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
 405                         mem_avoid[MEM_AVOID_CMDLINE].size);
 406
 407        /* Avoid boot parameters. */
 408        mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
 409        mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
 410        add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
 411                         mem_avoid[MEM_AVOID_BOOTPARAMS].size);
 412
 413        /* We don't need to set a mapping for setup_data. */
 414
 415        /* Mark the memmap regions we need to avoid */
 416        handle_mem_options();
 417
 418        /* Enumerate the immovable memory regions */
 419        num_immovable_mem = count_immovable_mem_regions();
 420
 421#ifdef CONFIG_X86_VERBOSE_BOOTUP
 422        /* Make sure video RAM can be used. */
 423        add_identity_map(0, PMD_SIZE);
 424#endif
 425}
 426
 427/*
 428 * Does this memory vector overlap a known avoided area? If so, record the
 429 * overlap region with the lowest address.
 430 */
 431static bool mem_avoid_overlap(struct mem_vector *img,
 432                              struct mem_vector *overlap)
 433{
 434        int i;
 435        struct setup_data *ptr;
 436        unsigned long earliest = img->start + img->size;
 437        bool is_overlapping = false;
 438
 439        for (i = 0; i < MEM_AVOID_MAX; i++) {
 440                if (mem_overlaps(img, &mem_avoid[i]) &&
 441                    mem_avoid[i].start < earliest) {
 442                        *overlap = mem_avoid[i];
 443                        earliest = overlap->start;
 444                        is_overlapping = true;
 445                }
 446        }
 447
 448        /* Avoid all entries in the setup_data linked list. */
 449        ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
 450        while (ptr) {
 451                struct mem_vector avoid;
 452
 453                avoid.start = (unsigned long)ptr;
 454                avoid.size = sizeof(*ptr) + ptr->len;
 455
 456                if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
 457                        *overlap = avoid;
 458                        earliest = overlap->start;
 459                        is_overlapping = true;
 460                }
 461
 462                ptr = (struct setup_data *)(unsigned long)ptr->next;
 463        }
 464
 465        return is_overlapping;
 466}
 467
 468struct slot_area {
 469        unsigned long addr;
 470        int num;
 471};
 472
 473#define MAX_SLOT_AREA 100
 474
 475static struct slot_area slot_areas[MAX_SLOT_AREA];
 476
 477static unsigned long slot_max;
 478
 479static unsigned long slot_area_index;
 480
 481static void store_slot_info(struct mem_vector *region, unsigned long image_size)
 482{
 483        struct slot_area slot_area;
 484
 485        if (slot_area_index == MAX_SLOT_AREA)
 486                return;
 487
 488        slot_area.addr = region->start;
 489        slot_area.num = (region->size - image_size) /
 490                        CONFIG_PHYSICAL_ALIGN + 1;
 491
 492        if (slot_area.num > 0) {
 493                slot_areas[slot_area_index++] = slot_area;
 494                slot_max += slot_area.num;
 495        }
 496}
 497
 498/*
 499 * Skip as many 1GB huge pages as possible in the passed region
 500 * according to the number which users specified:
 501 */
 502static void
 503process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
 504{
 505        unsigned long addr, size = 0;
 506        struct mem_vector tmp;
 507        int i = 0;
 508
 509        if (!max_gb_huge_pages) {
 510                store_slot_info(region, image_size);
 511                return;
 512        }
 513
 514        addr = ALIGN(region->start, PUD_SIZE);
 515        /* Did we raise the address above the passed in memory entry? */
 516        if (addr < region->start + region->size)
 517                size = region->size - (addr - region->start);
 518
 519        /* Check how many 1GB huge pages can be filtered out: */
 520        while (size > PUD_SIZE && max_gb_huge_pages) {
 521                size -= PUD_SIZE;
 522                max_gb_huge_pages--;
 523                i++;
 524        }
 525
 526        /* No good 1GB huge pages found: */
 527        if (!i) {
 528                store_slot_info(region, image_size);
 529                return;
 530        }
 531
 532        /*
 533         * Skip those 'i'*1GB good huge pages, and continue checking and
 534         * processing the remaining head or tail part of the passed region
 535         * if available.
 536         */
 537
 538        if (addr >= region->start + image_size) {
 539                tmp.start = region->start;
 540                tmp.size = addr - region->start;
 541                store_slot_info(&tmp, image_size);
 542        }
 543
 544        size  = region->size - (addr - region->start) - i * PUD_SIZE;
 545        if (size >= image_size) {
 546                tmp.start = addr + i * PUD_SIZE;
 547                tmp.size = size;
 548                store_slot_info(&tmp, image_size);
 549        }
 550}
 551
 552static unsigned long slots_fetch_random(void)
 553{
 554        unsigned long slot;
 555        int i;
 556
 557        /* Handle case of no slots stored. */
 558        if (slot_max == 0)
 559                return 0;
 560
 561        slot = kaslr_get_random_long("Physical") % slot_max;
 562
 563        for (i = 0; i < slot_area_index; i++) {
 564                if (slot >= slot_areas[i].num) {
 565                        slot -= slot_areas[i].num;
 566                        continue;
 567                }
 568                return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
 569        }
 570
 571        if (i == slot_area_index)
 572                debug_putstr("slots_fetch_random() failed!?\n");
 573        return 0;
 574}
 575
 576static void __process_mem_region(struct mem_vector *entry,
 577                                 unsigned long minimum,
 578                                 unsigned long image_size)
 579{
 580        struct mem_vector region, overlap;
 581        unsigned long start_orig, end;
 582        struct mem_vector cur_entry;
 583
 584        /* On 32-bit, ignore entries entirely above our maximum. */
 585        if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
 586                return;
 587
 588        /* Ignore entries entirely below our minimum. */
 589        if (entry->start + entry->size < minimum)
 590                return;
 591
 592        /* Ignore entries above memory limit */
 593        end = min(entry->size + entry->start, mem_limit);
 594        if (entry->start >= end)
 595                return;
 596        cur_entry.start = entry->start;
 597        cur_entry.size = end - entry->start;
 598
 599        region.start = cur_entry.start;
 600        region.size = cur_entry.size;
 601
 602        /* Give up if slot area array is full. */
 603        while (slot_area_index < MAX_SLOT_AREA) {
 604                start_orig = region.start;
 605
 606                /* Potentially raise address to minimum location. */
 607                if (region.start < minimum)
 608                        region.start = minimum;
 609
 610                /* Potentially raise address to meet alignment needs. */
 611                region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
 612
 613                /* Did we raise the address above the passed in memory entry? */
 614                if (region.start > cur_entry.start + cur_entry.size)
 615                        return;
 616
 617                /* Reduce size by any delta from the original address. */
 618                region.size -= region.start - start_orig;
 619
 620                /* On 32-bit, reduce region size to fit within max size. */
 621                if (IS_ENABLED(CONFIG_X86_32) &&
 622                    region.start + region.size > KERNEL_IMAGE_SIZE)
 623                        region.size = KERNEL_IMAGE_SIZE - region.start;
 624
 625                /* Return if region can't contain decompressed kernel */
 626                if (region.size < image_size)
 627                        return;
 628
 629                /* If nothing overlaps, store the region and return. */
 630                if (!mem_avoid_overlap(&region, &overlap)) {
 631                        process_gb_huge_pages(&region, image_size);
 632                        return;
 633                }
 634
 635                /* Store beginning of region if holds at least image_size. */
 636                if (overlap.start > region.start + image_size) {
 637                        struct mem_vector beginning;
 638
 639                        beginning.start = region.start;
 640                        beginning.size = overlap.start - region.start;
 641                        process_gb_huge_pages(&beginning, image_size);
 642                }
 643
 644                /* Return if overlap extends to or past end of region. */
 645                if (overlap.start + overlap.size >= region.start + region.size)
 646                        return;
 647
 648                /* Clip off the overlapping region and start over. */
 649                region.size -= overlap.start - region.start + overlap.size;
 650                region.start = overlap.start + overlap.size;
 651        }
 652}
 653
 654static bool process_mem_region(struct mem_vector *region,
 655                               unsigned long long minimum,
 656                               unsigned long long image_size)
 657{
 658        int i;
 659        /*
 660         * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
 661         * use @region directly.
 662         */
 663        if (!num_immovable_mem) {
 664                __process_mem_region(region, minimum, image_size);
 665
 666                if (slot_area_index == MAX_SLOT_AREA) {
 667                        debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
 668                        return 1;
 669                }
 670                return 0;
 671        }
 672
 673#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
 674        /*
 675         * If immovable memory found, filter the intersection between
 676         * immovable memory and @region.
 677         */
 678        for (i = 0; i < num_immovable_mem; i++) {
 679                unsigned long long start, end, entry_end, region_end;
 680                struct mem_vector entry;
 681
 682                if (!mem_overlaps(region, &immovable_mem[i]))
 683                        continue;
 684
 685                start = immovable_mem[i].start;
 686                end = start + immovable_mem[i].size;
 687                region_end = region->start + region->size;
 688
 689                entry.start = clamp(region->start, start, end);
 690                entry_end = clamp(region_end, start, end);
 691                entry.size = entry_end - entry.start;
 692
 693                __process_mem_region(&entry, minimum, image_size);
 694
 695                if (slot_area_index == MAX_SLOT_AREA) {
 696                        debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
 697                        return 1;
 698                }
 699        }
 700#endif
 701        return 0;
 702}
 703
 704#ifdef CONFIG_EFI
 705/*
 706 * Returns true if mirror region found (and must have been processed
 707 * for slots adding)
 708 */
 709static bool
 710process_efi_entries(unsigned long minimum, unsigned long image_size)
 711{
 712        struct efi_info *e = &boot_params->efi_info;
 713        bool efi_mirror_found = false;
 714        struct mem_vector region;
 715        efi_memory_desc_t *md;
 716        unsigned long pmap;
 717        char *signature;
 718        u32 nr_desc;
 719        int i;
 720
 721        signature = (char *)&e->efi_loader_signature;
 722        if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
 723            strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
 724                return false;
 725
 726#ifdef CONFIG_X86_32
 727        /* Can't handle data above 4GB at this time */
 728        if (e->efi_memmap_hi) {
 729                warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
 730                return false;
 731        }
 732        pmap =  e->efi_memmap;
 733#else
 734        pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
 735#endif
 736
 737        nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
 738        for (i = 0; i < nr_desc; i++) {
 739                md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 740                if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 741                        efi_mirror_found = true;
 742                        break;
 743                }
 744        }
 745
 746        for (i = 0; i < nr_desc; i++) {
 747                md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 748
 749                /*
 750                 * Here we are more conservative in picking free memory than
 751                 * the EFI spec allows:
 752                 *
 753                 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
 754                 * free memory and thus available to place the kernel image into,
 755                 * but in practice there's firmware where using that memory leads
 756                 * to crashes.
 757                 *
 758                 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
 759                 */
 760                if (md->type != EFI_CONVENTIONAL_MEMORY)
 761                        continue;
 762
 763                if (efi_mirror_found &&
 764                    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
 765                        continue;
 766
 767                region.start = md->phys_addr;
 768                region.size = md->num_pages << EFI_PAGE_SHIFT;
 769                if (process_mem_region(&region, minimum, image_size))
 770                        break;
 771        }
 772        return true;
 773}
 774#else
 775static inline bool
 776process_efi_entries(unsigned long minimum, unsigned long image_size)
 777{
 778        return false;
 779}
 780#endif
 781
 782static void process_e820_entries(unsigned long minimum,
 783                                 unsigned long image_size)
 784{
 785        int i;
 786        struct mem_vector region;
 787        struct boot_e820_entry *entry;
 788
 789        /* Verify potential e820 positions, appending to slots list. */
 790        for (i = 0; i < boot_params->e820_entries; i++) {
 791                entry = &boot_params->e820_table[i];
 792                /* Skip non-RAM entries. */
 793                if (entry->type != E820_TYPE_RAM)
 794                        continue;
 795                region.start = entry->addr;
 796                region.size = entry->size;
 797                if (process_mem_region(&region, minimum, image_size))
 798                        break;
 799        }
 800}
 801
 802static unsigned long find_random_phys_addr(unsigned long minimum,
 803                                           unsigned long image_size)
 804{
 805        /* Check if we had too many memmaps. */
 806        if (memmap_too_large) {
 807                debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
 808                return 0;
 809        }
 810
 811        /* Make sure minimum is aligned. */
 812        minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
 813
 814        if (process_efi_entries(minimum, image_size))
 815                return slots_fetch_random();
 816
 817        process_e820_entries(minimum, image_size);
 818        return slots_fetch_random();
 819}
 820
 821static unsigned long find_random_virt_addr(unsigned long minimum,
 822                                           unsigned long image_size)
 823{
 824        unsigned long slots, random_addr;
 825
 826        /* Make sure minimum is aligned. */
 827        minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
 828        /* Align image_size for easy slot calculations. */
 829        image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
 830
 831        /*
 832         * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
 833         * that can hold image_size within the range of minimum to
 834         * KERNEL_IMAGE_SIZE?
 835         */
 836        slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
 837                 CONFIG_PHYSICAL_ALIGN + 1;
 838
 839        random_addr = kaslr_get_random_long("Virtual") % slots;
 840
 841        return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
 842}
 843
 844/*
 845 * Since this function examines addresses much more numerically,
 846 * it takes the input and output pointers as 'unsigned long'.
 847 */
 848void choose_random_location(unsigned long input,
 849                            unsigned long input_size,
 850                            unsigned long *output,
 851                            unsigned long output_size,
 852                            unsigned long *virt_addr)
 853{
 854        unsigned long random_addr, min_addr;
 855
 856        if (cmdline_find_option_bool("nokaslr")) {
 857                warn("KASLR disabled: 'nokaslr' on cmdline.");
 858                return;
 859        }
 860
 861#ifdef CONFIG_X86_5LEVEL
 862        if (__read_cr4() & X86_CR4_LA57) {
 863                __pgtable_l5_enabled = 1;
 864                pgdir_shift = 48;
 865                ptrs_per_p4d = 512;
 866        }
 867#endif
 868
 869        boot_params->hdr.loadflags |= KASLR_FLAG;
 870
 871        /* Prepare to add new identity pagetables on demand. */
 872        initialize_identity_maps();
 873
 874        /* Record the various known unsafe memory ranges. */
 875        mem_avoid_init(input, input_size, *output);
 876
 877        /*
 878         * Low end of the randomization range should be the
 879         * smaller of 512M or the initial kernel image
 880         * location:
 881         */
 882        min_addr = min(*output, 512UL << 20);
 883
 884        /* Walk available memory entries to find a random address. */
 885        random_addr = find_random_phys_addr(min_addr, output_size);
 886        if (!random_addr) {
 887                warn("Physical KASLR disabled: no suitable memory region!");
 888        } else {
 889                /* Update the new physical address location. */
 890                if (*output != random_addr) {
 891                        add_identity_map(random_addr, output_size);
 892                        *output = random_addr;
 893                }
 894
 895                /*
 896                 * This loads the identity mapping page table.
 897                 * This should only be done if a new physical address
 898                 * is found for the kernel, otherwise we should keep
 899                 * the old page table to make it be like the "nokaslr"
 900                 * case.
 901                 */
 902                finalize_identity_maps();
 903        }
 904
 905
 906        /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
 907        if (IS_ENABLED(CONFIG_X86_64))
 908                random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
 909        *virt_addr = random_addr;
 910}
 911