linux/arch/x86/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events x86 architecture code
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2009 Jaswinder Singh Rajput
   7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
   8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
   9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
  11 *
  12 *  For licencing details see kernel-base/COPYING
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/capability.h>
  17#include <linux/notifier.h>
  18#include <linux/hardirq.h>
  19#include <linux/kprobes.h>
  20#include <linux/export.h>
  21#include <linux/init.h>
  22#include <linux/kdebug.h>
  23#include <linux/sched/mm.h>
  24#include <linux/sched/clock.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <linux/cpu.h>
  28#include <linux/bitops.h>
  29#include <linux/device.h>
  30#include <linux/nospec.h>
  31
  32#include <asm/apic.h>
  33#include <asm/stacktrace.h>
  34#include <asm/nmi.h>
  35#include <asm/smp.h>
  36#include <asm/alternative.h>
  37#include <asm/mmu_context.h>
  38#include <asm/tlbflush.h>
  39#include <asm/timer.h>
  40#include <asm/desc.h>
  41#include <asm/ldt.h>
  42#include <asm/unwind.h>
  43
  44#include "perf_event.h"
  45
  46struct x86_pmu x86_pmu __read_mostly;
  47
  48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  49        .enabled = 1,
  50};
  51
  52DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
  53
  54u64 __read_mostly hw_cache_event_ids
  55                                [PERF_COUNT_HW_CACHE_MAX]
  56                                [PERF_COUNT_HW_CACHE_OP_MAX]
  57                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  58u64 __read_mostly hw_cache_extra_regs
  59                                [PERF_COUNT_HW_CACHE_MAX]
  60                                [PERF_COUNT_HW_CACHE_OP_MAX]
  61                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  62
  63/*
  64 * Propagate event elapsed time into the generic event.
  65 * Can only be executed on the CPU where the event is active.
  66 * Returns the delta events processed.
  67 */
  68u64 x86_perf_event_update(struct perf_event *event)
  69{
  70        struct hw_perf_event *hwc = &event->hw;
  71        int shift = 64 - x86_pmu.cntval_bits;
  72        u64 prev_raw_count, new_raw_count;
  73        int idx = hwc->idx;
  74        u64 delta;
  75
  76        if (idx == INTEL_PMC_IDX_FIXED_BTS)
  77                return 0;
  78
  79        /*
  80         * Careful: an NMI might modify the previous event value.
  81         *
  82         * Our tactic to handle this is to first atomically read and
  83         * exchange a new raw count - then add that new-prev delta
  84         * count to the generic event atomically:
  85         */
  86again:
  87        prev_raw_count = local64_read(&hwc->prev_count);
  88        rdpmcl(hwc->event_base_rdpmc, new_raw_count);
  89
  90        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  91                                        new_raw_count) != prev_raw_count)
  92                goto again;
  93
  94        /*
  95         * Now we have the new raw value and have updated the prev
  96         * timestamp already. We can now calculate the elapsed delta
  97         * (event-)time and add that to the generic event.
  98         *
  99         * Careful, not all hw sign-extends above the physical width
 100         * of the count.
 101         */
 102        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 103        delta >>= shift;
 104
 105        local64_add(delta, &event->count);
 106        local64_sub(delta, &hwc->period_left);
 107
 108        return new_raw_count;
 109}
 110
 111/*
 112 * Find and validate any extra registers to set up.
 113 */
 114static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
 115{
 116        struct hw_perf_event_extra *reg;
 117        struct extra_reg *er;
 118
 119        reg = &event->hw.extra_reg;
 120
 121        if (!x86_pmu.extra_regs)
 122                return 0;
 123
 124        for (er = x86_pmu.extra_regs; er->msr; er++) {
 125                if (er->event != (config & er->config_mask))
 126                        continue;
 127                if (event->attr.config1 & ~er->valid_mask)
 128                        return -EINVAL;
 129                /* Check if the extra msrs can be safely accessed*/
 130                if (!er->extra_msr_access)
 131                        return -ENXIO;
 132
 133                reg->idx = er->idx;
 134                reg->config = event->attr.config1;
 135                reg->reg = er->msr;
 136                break;
 137        }
 138        return 0;
 139}
 140
 141static atomic_t active_events;
 142static atomic_t pmc_refcount;
 143static DEFINE_MUTEX(pmc_reserve_mutex);
 144
 145#ifdef CONFIG_X86_LOCAL_APIC
 146
 147static bool reserve_pmc_hardware(void)
 148{
 149        int i;
 150
 151        for (i = 0; i < x86_pmu.num_counters; i++) {
 152                if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
 153                        goto perfctr_fail;
 154        }
 155
 156        for (i = 0; i < x86_pmu.num_counters; i++) {
 157                if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
 158                        goto eventsel_fail;
 159        }
 160
 161        return true;
 162
 163eventsel_fail:
 164        for (i--; i >= 0; i--)
 165                release_evntsel_nmi(x86_pmu_config_addr(i));
 166
 167        i = x86_pmu.num_counters;
 168
 169perfctr_fail:
 170        for (i--; i >= 0; i--)
 171                release_perfctr_nmi(x86_pmu_event_addr(i));
 172
 173        return false;
 174}
 175
 176static void release_pmc_hardware(void)
 177{
 178        int i;
 179
 180        for (i = 0; i < x86_pmu.num_counters; i++) {
 181                release_perfctr_nmi(x86_pmu_event_addr(i));
 182                release_evntsel_nmi(x86_pmu_config_addr(i));
 183        }
 184}
 185
 186#else
 187
 188static bool reserve_pmc_hardware(void) { return true; }
 189static void release_pmc_hardware(void) {}
 190
 191#endif
 192
 193static bool check_hw_exists(void)
 194{
 195        u64 val, val_fail = -1, val_new= ~0;
 196        int i, reg, reg_fail = -1, ret = 0;
 197        int bios_fail = 0;
 198        int reg_safe = -1;
 199
 200        /*
 201         * Check to see if the BIOS enabled any of the counters, if so
 202         * complain and bail.
 203         */
 204        for (i = 0; i < x86_pmu.num_counters; i++) {
 205                reg = x86_pmu_config_addr(i);
 206                ret = rdmsrl_safe(reg, &val);
 207                if (ret)
 208                        goto msr_fail;
 209                if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
 210                        bios_fail = 1;
 211                        val_fail = val;
 212                        reg_fail = reg;
 213                } else {
 214                        reg_safe = i;
 215                }
 216        }
 217
 218        if (x86_pmu.num_counters_fixed) {
 219                reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 220                ret = rdmsrl_safe(reg, &val);
 221                if (ret)
 222                        goto msr_fail;
 223                for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
 224                        if (val & (0x03 << i*4)) {
 225                                bios_fail = 1;
 226                                val_fail = val;
 227                                reg_fail = reg;
 228                        }
 229                }
 230        }
 231
 232        /*
 233         * If all the counters are enabled, the below test will always
 234         * fail.  The tools will also become useless in this scenario.
 235         * Just fail and disable the hardware counters.
 236         */
 237
 238        if (reg_safe == -1) {
 239                reg = reg_safe;
 240                goto msr_fail;
 241        }
 242
 243        /*
 244         * Read the current value, change it and read it back to see if it
 245         * matches, this is needed to detect certain hardware emulators
 246         * (qemu/kvm) that don't trap on the MSR access and always return 0s.
 247         */
 248        reg = x86_pmu_event_addr(reg_safe);
 249        if (rdmsrl_safe(reg, &val))
 250                goto msr_fail;
 251        val ^= 0xffffUL;
 252        ret = wrmsrl_safe(reg, val);
 253        ret |= rdmsrl_safe(reg, &val_new);
 254        if (ret || val != val_new)
 255                goto msr_fail;
 256
 257        /*
 258         * We still allow the PMU driver to operate:
 259         */
 260        if (bios_fail) {
 261                pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
 262                pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
 263                              reg_fail, val_fail);
 264        }
 265
 266        return true;
 267
 268msr_fail:
 269        if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
 270                pr_cont("PMU not available due to virtualization, using software events only.\n");
 271        } else {
 272                pr_cont("Broken PMU hardware detected, using software events only.\n");
 273                pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
 274                       reg, val_new);
 275        }
 276
 277        return false;
 278}
 279
 280static void hw_perf_event_destroy(struct perf_event *event)
 281{
 282        x86_release_hardware();
 283        atomic_dec(&active_events);
 284}
 285
 286void hw_perf_lbr_event_destroy(struct perf_event *event)
 287{
 288        hw_perf_event_destroy(event);
 289
 290        /* undo the lbr/bts event accounting */
 291        x86_del_exclusive(x86_lbr_exclusive_lbr);
 292}
 293
 294static inline int x86_pmu_initialized(void)
 295{
 296        return x86_pmu.handle_irq != NULL;
 297}
 298
 299static inline int
 300set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
 301{
 302        struct perf_event_attr *attr = &event->attr;
 303        unsigned int cache_type, cache_op, cache_result;
 304        u64 config, val;
 305
 306        config = attr->config;
 307
 308        cache_type = (config >> 0) & 0xff;
 309        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 310                return -EINVAL;
 311        cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
 312
 313        cache_op = (config >>  8) & 0xff;
 314        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 315                return -EINVAL;
 316        cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
 317
 318        cache_result = (config >> 16) & 0xff;
 319        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 320                return -EINVAL;
 321        cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
 322
 323        val = hw_cache_event_ids[cache_type][cache_op][cache_result];
 324
 325        if (val == 0)
 326                return -ENOENT;
 327
 328        if (val == -1)
 329                return -EINVAL;
 330
 331        hwc->config |= val;
 332        attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
 333        return x86_pmu_extra_regs(val, event);
 334}
 335
 336int x86_reserve_hardware(void)
 337{
 338        int err = 0;
 339
 340        if (!atomic_inc_not_zero(&pmc_refcount)) {
 341                mutex_lock(&pmc_reserve_mutex);
 342                if (atomic_read(&pmc_refcount) == 0) {
 343                        if (!reserve_pmc_hardware())
 344                                err = -EBUSY;
 345                        else
 346                                reserve_ds_buffers();
 347                }
 348                if (!err)
 349                        atomic_inc(&pmc_refcount);
 350                mutex_unlock(&pmc_reserve_mutex);
 351        }
 352
 353        return err;
 354}
 355
 356void x86_release_hardware(void)
 357{
 358        if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
 359                release_pmc_hardware();
 360                release_ds_buffers();
 361                mutex_unlock(&pmc_reserve_mutex);
 362        }
 363}
 364
 365/*
 366 * Check if we can create event of a certain type (that no conflicting events
 367 * are present).
 368 */
 369int x86_add_exclusive(unsigned int what)
 370{
 371        int i;
 372
 373        /*
 374         * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
 375         * LBR and BTS are still mutually exclusive.
 376         */
 377        if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
 378                return 0;
 379
 380        if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
 381                mutex_lock(&pmc_reserve_mutex);
 382                for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
 383                        if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
 384                                goto fail_unlock;
 385                }
 386                atomic_inc(&x86_pmu.lbr_exclusive[what]);
 387                mutex_unlock(&pmc_reserve_mutex);
 388        }
 389
 390        atomic_inc(&active_events);
 391        return 0;
 392
 393fail_unlock:
 394        mutex_unlock(&pmc_reserve_mutex);
 395        return -EBUSY;
 396}
 397
 398void x86_del_exclusive(unsigned int what)
 399{
 400        if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
 401                return;
 402
 403        atomic_dec(&x86_pmu.lbr_exclusive[what]);
 404        atomic_dec(&active_events);
 405}
 406
 407int x86_setup_perfctr(struct perf_event *event)
 408{
 409        struct perf_event_attr *attr = &event->attr;
 410        struct hw_perf_event *hwc = &event->hw;
 411        u64 config;
 412
 413        if (!is_sampling_event(event)) {
 414                hwc->sample_period = x86_pmu.max_period;
 415                hwc->last_period = hwc->sample_period;
 416                local64_set(&hwc->period_left, hwc->sample_period);
 417        }
 418
 419        if (attr->type == PERF_TYPE_RAW)
 420                return x86_pmu_extra_regs(event->attr.config, event);
 421
 422        if (attr->type == PERF_TYPE_HW_CACHE)
 423                return set_ext_hw_attr(hwc, event);
 424
 425        if (attr->config >= x86_pmu.max_events)
 426                return -EINVAL;
 427
 428        attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
 429
 430        /*
 431         * The generic map:
 432         */
 433        config = x86_pmu.event_map(attr->config);
 434
 435        if (config == 0)
 436                return -ENOENT;
 437
 438        if (config == -1LL)
 439                return -EINVAL;
 440
 441        hwc->config |= config;
 442
 443        return 0;
 444}
 445
 446/*
 447 * check that branch_sample_type is compatible with
 448 * settings needed for precise_ip > 1 which implies
 449 * using the LBR to capture ALL taken branches at the
 450 * priv levels of the measurement
 451 */
 452static inline int precise_br_compat(struct perf_event *event)
 453{
 454        u64 m = event->attr.branch_sample_type;
 455        u64 b = 0;
 456
 457        /* must capture all branches */
 458        if (!(m & PERF_SAMPLE_BRANCH_ANY))
 459                return 0;
 460
 461        m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
 462
 463        if (!event->attr.exclude_user)
 464                b |= PERF_SAMPLE_BRANCH_USER;
 465
 466        if (!event->attr.exclude_kernel)
 467                b |= PERF_SAMPLE_BRANCH_KERNEL;
 468
 469        /*
 470         * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
 471         */
 472
 473        return m == b;
 474}
 475
 476int x86_pmu_max_precise(void)
 477{
 478        int precise = 0;
 479
 480        /* Support for constant skid */
 481        if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
 482                precise++;
 483
 484                /* Support for IP fixup */
 485                if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
 486                        precise++;
 487
 488                if (x86_pmu.pebs_prec_dist)
 489                        precise++;
 490        }
 491        return precise;
 492}
 493
 494int x86_pmu_hw_config(struct perf_event *event)
 495{
 496        if (event->attr.precise_ip) {
 497                int precise = x86_pmu_max_precise();
 498
 499                if (event->attr.precise_ip > precise)
 500                        return -EOPNOTSUPP;
 501
 502                /* There's no sense in having PEBS for non sampling events: */
 503                if (!is_sampling_event(event))
 504                        return -EINVAL;
 505        }
 506        /*
 507         * check that PEBS LBR correction does not conflict with
 508         * whatever the user is asking with attr->branch_sample_type
 509         */
 510        if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
 511                u64 *br_type = &event->attr.branch_sample_type;
 512
 513                if (has_branch_stack(event)) {
 514                        if (!precise_br_compat(event))
 515                                return -EOPNOTSUPP;
 516
 517                        /* branch_sample_type is compatible */
 518
 519                } else {
 520                        /*
 521                         * user did not specify  branch_sample_type
 522                         *
 523                         * For PEBS fixups, we capture all
 524                         * the branches at the priv level of the
 525                         * event.
 526                         */
 527                        *br_type = PERF_SAMPLE_BRANCH_ANY;
 528
 529                        if (!event->attr.exclude_user)
 530                                *br_type |= PERF_SAMPLE_BRANCH_USER;
 531
 532                        if (!event->attr.exclude_kernel)
 533                                *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
 534                }
 535        }
 536
 537        if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
 538                event->attach_state |= PERF_ATTACH_TASK_DATA;
 539
 540        /*
 541         * Generate PMC IRQs:
 542         * (keep 'enabled' bit clear for now)
 543         */
 544        event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
 545
 546        /*
 547         * Count user and OS events unless requested not to
 548         */
 549        if (!event->attr.exclude_user)
 550                event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
 551        if (!event->attr.exclude_kernel)
 552                event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
 553
 554        if (event->attr.type == PERF_TYPE_RAW)
 555                event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
 556
 557        if (event->attr.sample_period && x86_pmu.limit_period) {
 558                if (x86_pmu.limit_period(event, event->attr.sample_period) >
 559                                event->attr.sample_period)
 560                        return -EINVAL;
 561        }
 562
 563        /* sample_regs_user never support XMM registers */
 564        if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
 565                return -EINVAL;
 566        /*
 567         * Besides the general purpose registers, XMM registers may
 568         * be collected in PEBS on some platforms, e.g. Icelake
 569         */
 570        if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
 571                if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
 572                        return -EINVAL;
 573
 574                if (!event->attr.precise_ip)
 575                        return -EINVAL;
 576        }
 577
 578        return x86_setup_perfctr(event);
 579}
 580
 581/*
 582 * Setup the hardware configuration for a given attr_type
 583 */
 584static int __x86_pmu_event_init(struct perf_event *event)
 585{
 586        int err;
 587
 588        if (!x86_pmu_initialized())
 589                return -ENODEV;
 590
 591        err = x86_reserve_hardware();
 592        if (err)
 593                return err;
 594
 595        atomic_inc(&active_events);
 596        event->destroy = hw_perf_event_destroy;
 597
 598        event->hw.idx = -1;
 599        event->hw.last_cpu = -1;
 600        event->hw.last_tag = ~0ULL;
 601
 602        /* mark unused */
 603        event->hw.extra_reg.idx = EXTRA_REG_NONE;
 604        event->hw.branch_reg.idx = EXTRA_REG_NONE;
 605
 606        return x86_pmu.hw_config(event);
 607}
 608
 609void x86_pmu_disable_all(void)
 610{
 611        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 612        int idx;
 613
 614        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 615                u64 val;
 616
 617                if (!test_bit(idx, cpuc->active_mask))
 618                        continue;
 619                rdmsrl(x86_pmu_config_addr(idx), val);
 620                if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
 621                        continue;
 622                val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 623                wrmsrl(x86_pmu_config_addr(idx), val);
 624        }
 625}
 626
 627/*
 628 * There may be PMI landing after enabled=0. The PMI hitting could be before or
 629 * after disable_all.
 630 *
 631 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
 632 * It will not be re-enabled in the NMI handler again, because enabled=0. After
 633 * handling the NMI, disable_all will be called, which will not change the
 634 * state either. If PMI hits after disable_all, the PMU is already disabled
 635 * before entering NMI handler. The NMI handler will not change the state
 636 * either.
 637 *
 638 * So either situation is harmless.
 639 */
 640static void x86_pmu_disable(struct pmu *pmu)
 641{
 642        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 643
 644        if (!x86_pmu_initialized())
 645                return;
 646
 647        if (!cpuc->enabled)
 648                return;
 649
 650        cpuc->n_added = 0;
 651        cpuc->enabled = 0;
 652        barrier();
 653
 654        x86_pmu.disable_all();
 655}
 656
 657void x86_pmu_enable_all(int added)
 658{
 659        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 660        int idx;
 661
 662        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 663                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 664
 665                if (!test_bit(idx, cpuc->active_mask))
 666                        continue;
 667
 668                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 669        }
 670}
 671
 672static struct pmu pmu;
 673
 674static inline int is_x86_event(struct perf_event *event)
 675{
 676        return event->pmu == &pmu;
 677}
 678
 679struct pmu *x86_get_pmu(void)
 680{
 681        return &pmu;
 682}
 683/*
 684 * Event scheduler state:
 685 *
 686 * Assign events iterating over all events and counters, beginning
 687 * with events with least weights first. Keep the current iterator
 688 * state in struct sched_state.
 689 */
 690struct sched_state {
 691        int     weight;
 692        int     event;          /* event index */
 693        int     counter;        /* counter index */
 694        int     unassigned;     /* number of events to be assigned left */
 695        int     nr_gp;          /* number of GP counters used */
 696        unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
 697};
 698
 699/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
 700#define SCHED_STATES_MAX        2
 701
 702struct perf_sched {
 703        int                     max_weight;
 704        int                     max_events;
 705        int                     max_gp;
 706        int                     saved_states;
 707        struct event_constraint **constraints;
 708        struct sched_state      state;
 709        struct sched_state      saved[SCHED_STATES_MAX];
 710};
 711
 712/*
 713 * Initialize interator that runs through all events and counters.
 714 */
 715static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
 716                            int num, int wmin, int wmax, int gpmax)
 717{
 718        int idx;
 719
 720        memset(sched, 0, sizeof(*sched));
 721        sched->max_events       = num;
 722        sched->max_weight       = wmax;
 723        sched->max_gp           = gpmax;
 724        sched->constraints      = constraints;
 725
 726        for (idx = 0; idx < num; idx++) {
 727                if (constraints[idx]->weight == wmin)
 728                        break;
 729        }
 730
 731        sched->state.event      = idx;          /* start with min weight */
 732        sched->state.weight     = wmin;
 733        sched->state.unassigned = num;
 734}
 735
 736static void perf_sched_save_state(struct perf_sched *sched)
 737{
 738        if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
 739                return;
 740
 741        sched->saved[sched->saved_states] = sched->state;
 742        sched->saved_states++;
 743}
 744
 745static bool perf_sched_restore_state(struct perf_sched *sched)
 746{
 747        if (!sched->saved_states)
 748                return false;
 749
 750        sched->saved_states--;
 751        sched->state = sched->saved[sched->saved_states];
 752
 753        /* continue with next counter: */
 754        clear_bit(sched->state.counter++, sched->state.used);
 755
 756        return true;
 757}
 758
 759/*
 760 * Select a counter for the current event to schedule. Return true on
 761 * success.
 762 */
 763static bool __perf_sched_find_counter(struct perf_sched *sched)
 764{
 765        struct event_constraint *c;
 766        int idx;
 767
 768        if (!sched->state.unassigned)
 769                return false;
 770
 771        if (sched->state.event >= sched->max_events)
 772                return false;
 773
 774        c = sched->constraints[sched->state.event];
 775        /* Prefer fixed purpose counters */
 776        if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
 777                idx = INTEL_PMC_IDX_FIXED;
 778                for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
 779                        if (!__test_and_set_bit(idx, sched->state.used))
 780                                goto done;
 781                }
 782        }
 783
 784        /* Grab the first unused counter starting with idx */
 785        idx = sched->state.counter;
 786        for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
 787                if (!__test_and_set_bit(idx, sched->state.used)) {
 788                        if (sched->state.nr_gp++ >= sched->max_gp)
 789                                return false;
 790
 791                        goto done;
 792                }
 793        }
 794
 795        return false;
 796
 797done:
 798        sched->state.counter = idx;
 799
 800        if (c->overlap)
 801                perf_sched_save_state(sched);
 802
 803        return true;
 804}
 805
 806static bool perf_sched_find_counter(struct perf_sched *sched)
 807{
 808        while (!__perf_sched_find_counter(sched)) {
 809                if (!perf_sched_restore_state(sched))
 810                        return false;
 811        }
 812
 813        return true;
 814}
 815
 816/*
 817 * Go through all unassigned events and find the next one to schedule.
 818 * Take events with the least weight first. Return true on success.
 819 */
 820static bool perf_sched_next_event(struct perf_sched *sched)
 821{
 822        struct event_constraint *c;
 823
 824        if (!sched->state.unassigned || !--sched->state.unassigned)
 825                return false;
 826
 827        do {
 828                /* next event */
 829                sched->state.event++;
 830                if (sched->state.event >= sched->max_events) {
 831                        /* next weight */
 832                        sched->state.event = 0;
 833                        sched->state.weight++;
 834                        if (sched->state.weight > sched->max_weight)
 835                                return false;
 836                }
 837                c = sched->constraints[sched->state.event];
 838        } while (c->weight != sched->state.weight);
 839
 840        sched->state.counter = 0;       /* start with first counter */
 841
 842        return true;
 843}
 844
 845/*
 846 * Assign a counter for each event.
 847 */
 848int perf_assign_events(struct event_constraint **constraints, int n,
 849                        int wmin, int wmax, int gpmax, int *assign)
 850{
 851        struct perf_sched sched;
 852
 853        perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
 854
 855        do {
 856                if (!perf_sched_find_counter(&sched))
 857                        break;  /* failed */
 858                if (assign)
 859                        assign[sched.state.event] = sched.state.counter;
 860        } while (perf_sched_next_event(&sched));
 861
 862        return sched.state.unassigned;
 863}
 864EXPORT_SYMBOL_GPL(perf_assign_events);
 865
 866int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
 867{
 868        struct event_constraint *c;
 869        unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
 870        struct perf_event *e;
 871        int n0, i, wmin, wmax, unsched = 0;
 872        struct hw_perf_event *hwc;
 873
 874        bitmap_zero(used_mask, X86_PMC_IDX_MAX);
 875
 876        /*
 877         * Compute the number of events already present; see x86_pmu_add(),
 878         * validate_group() and x86_pmu_commit_txn(). For the former two
 879         * cpuc->n_events hasn't been updated yet, while for the latter
 880         * cpuc->n_txn contains the number of events added in the current
 881         * transaction.
 882         */
 883        n0 = cpuc->n_events;
 884        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
 885                n0 -= cpuc->n_txn;
 886
 887        if (x86_pmu.start_scheduling)
 888                x86_pmu.start_scheduling(cpuc);
 889
 890        for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
 891                c = cpuc->event_constraint[i];
 892
 893                /*
 894                 * Previously scheduled events should have a cached constraint,
 895                 * while new events should not have one.
 896                 */
 897                WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
 898
 899                /*
 900                 * Request constraints for new events; or for those events that
 901                 * have a dynamic constraint -- for those the constraint can
 902                 * change due to external factors (sibling state, allow_tfa).
 903                 */
 904                if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
 905                        c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
 906                        cpuc->event_constraint[i] = c;
 907                }
 908
 909                wmin = min(wmin, c->weight);
 910                wmax = max(wmax, c->weight);
 911        }
 912
 913        /*
 914         * fastpath, try to reuse previous register
 915         */
 916        for (i = 0; i < n; i++) {
 917                hwc = &cpuc->event_list[i]->hw;
 918                c = cpuc->event_constraint[i];
 919
 920                /* never assigned */
 921                if (hwc->idx == -1)
 922                        break;
 923
 924                /* constraint still honored */
 925                if (!test_bit(hwc->idx, c->idxmsk))
 926                        break;
 927
 928                /* not already used */
 929                if (test_bit(hwc->idx, used_mask))
 930                        break;
 931
 932                __set_bit(hwc->idx, used_mask);
 933                if (assign)
 934                        assign[i] = hwc->idx;
 935        }
 936
 937        /* slow path */
 938        if (i != n) {
 939                int gpmax = x86_pmu.num_counters;
 940
 941                /*
 942                 * Do not allow scheduling of more than half the available
 943                 * generic counters.
 944                 *
 945                 * This helps avoid counter starvation of sibling thread by
 946                 * ensuring at most half the counters cannot be in exclusive
 947                 * mode. There is no designated counters for the limits. Any
 948                 * N/2 counters can be used. This helps with events with
 949                 * specific counter constraints.
 950                 */
 951                if (is_ht_workaround_enabled() && !cpuc->is_fake &&
 952                    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
 953                        gpmax /= 2;
 954
 955                unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
 956                                             wmax, gpmax, assign);
 957        }
 958
 959        /*
 960         * In case of success (unsched = 0), mark events as committed,
 961         * so we do not put_constraint() in case new events are added
 962         * and fail to be scheduled
 963         *
 964         * We invoke the lower level commit callback to lock the resource
 965         *
 966         * We do not need to do all of this in case we are called to
 967         * validate an event group (assign == NULL)
 968         */
 969        if (!unsched && assign) {
 970                for (i = 0; i < n; i++) {
 971                        e = cpuc->event_list[i];
 972                        if (x86_pmu.commit_scheduling)
 973                                x86_pmu.commit_scheduling(cpuc, i, assign[i]);
 974                }
 975        } else {
 976                for (i = n0; i < n; i++) {
 977                        e = cpuc->event_list[i];
 978
 979                        /*
 980                         * release events that failed scheduling
 981                         */
 982                        if (x86_pmu.put_event_constraints)
 983                                x86_pmu.put_event_constraints(cpuc, e);
 984
 985                        cpuc->event_constraint[i] = NULL;
 986                }
 987        }
 988
 989        if (x86_pmu.stop_scheduling)
 990                x86_pmu.stop_scheduling(cpuc);
 991
 992        return unsched ? -EINVAL : 0;
 993}
 994
 995/*
 996 * dogrp: true if must collect siblings events (group)
 997 * returns total number of events and error code
 998 */
 999static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1000{
1001        struct perf_event *event;
1002        int n, max_count;
1003
1004        max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1005
1006        /* current number of events already accepted */
1007        n = cpuc->n_events;
1008
1009        if (is_x86_event(leader)) {
1010                if (n >= max_count)
1011                        return -EINVAL;
1012                cpuc->event_list[n] = leader;
1013                n++;
1014        }
1015        if (!dogrp)
1016                return n;
1017
1018        for_each_sibling_event(event, leader) {
1019                if (!is_x86_event(event) ||
1020                    event->state <= PERF_EVENT_STATE_OFF)
1021                        continue;
1022
1023                if (n >= max_count)
1024                        return -EINVAL;
1025
1026                cpuc->event_list[n] = event;
1027                n++;
1028        }
1029        return n;
1030}
1031
1032static inline void x86_assign_hw_event(struct perf_event *event,
1033                                struct cpu_hw_events *cpuc, int i)
1034{
1035        struct hw_perf_event *hwc = &event->hw;
1036
1037        hwc->idx = cpuc->assign[i];
1038        hwc->last_cpu = smp_processor_id();
1039        hwc->last_tag = ++cpuc->tags[i];
1040
1041        if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1042                hwc->config_base = 0;
1043                hwc->event_base = 0;
1044        } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1045                hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1046                hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1047                hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1048        } else {
1049                hwc->config_base = x86_pmu_config_addr(hwc->idx);
1050                hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1051                hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1052        }
1053}
1054
1055/**
1056 * x86_perf_rdpmc_index - Return PMC counter used for event
1057 * @event: the perf_event to which the PMC counter was assigned
1058 *
1059 * The counter assigned to this performance event may change if interrupts
1060 * are enabled. This counter should thus never be used while interrupts are
1061 * enabled. Before this function is used to obtain the assigned counter the
1062 * event should be checked for validity using, for example,
1063 * perf_event_read_local(), within the same interrupt disabled section in
1064 * which this counter is planned to be used.
1065 *
1066 * Return: The index of the performance monitoring counter assigned to
1067 * @perf_event.
1068 */
1069int x86_perf_rdpmc_index(struct perf_event *event)
1070{
1071        lockdep_assert_irqs_disabled();
1072
1073        return event->hw.event_base_rdpmc;
1074}
1075
1076static inline int match_prev_assignment(struct hw_perf_event *hwc,
1077                                        struct cpu_hw_events *cpuc,
1078                                        int i)
1079{
1080        return hwc->idx == cpuc->assign[i] &&
1081                hwc->last_cpu == smp_processor_id() &&
1082                hwc->last_tag == cpuc->tags[i];
1083}
1084
1085static void x86_pmu_start(struct perf_event *event, int flags);
1086
1087static void x86_pmu_enable(struct pmu *pmu)
1088{
1089        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1090        struct perf_event *event;
1091        struct hw_perf_event *hwc;
1092        int i, added = cpuc->n_added;
1093
1094        if (!x86_pmu_initialized())
1095                return;
1096
1097        if (cpuc->enabled)
1098                return;
1099
1100        if (cpuc->n_added) {
1101                int n_running = cpuc->n_events - cpuc->n_added;
1102                /*
1103                 * apply assignment obtained either from
1104                 * hw_perf_group_sched_in() or x86_pmu_enable()
1105                 *
1106                 * step1: save events moving to new counters
1107                 */
1108                for (i = 0; i < n_running; i++) {
1109                        event = cpuc->event_list[i];
1110                        hwc = &event->hw;
1111
1112                        /*
1113                         * we can avoid reprogramming counter if:
1114                         * - assigned same counter as last time
1115                         * - running on same CPU as last time
1116                         * - no other event has used the counter since
1117                         */
1118                        if (hwc->idx == -1 ||
1119                            match_prev_assignment(hwc, cpuc, i))
1120                                continue;
1121
1122                        /*
1123                         * Ensure we don't accidentally enable a stopped
1124                         * counter simply because we rescheduled.
1125                         */
1126                        if (hwc->state & PERF_HES_STOPPED)
1127                                hwc->state |= PERF_HES_ARCH;
1128
1129                        x86_pmu_stop(event, PERF_EF_UPDATE);
1130                }
1131
1132                /*
1133                 * step2: reprogram moved events into new counters
1134                 */
1135                for (i = 0; i < cpuc->n_events; i++) {
1136                        event = cpuc->event_list[i];
1137                        hwc = &event->hw;
1138
1139                        if (!match_prev_assignment(hwc, cpuc, i))
1140                                x86_assign_hw_event(event, cpuc, i);
1141                        else if (i < n_running)
1142                                continue;
1143
1144                        if (hwc->state & PERF_HES_ARCH)
1145                                continue;
1146
1147                        x86_pmu_start(event, PERF_EF_RELOAD);
1148                }
1149                cpuc->n_added = 0;
1150                perf_events_lapic_init();
1151        }
1152
1153        cpuc->enabled = 1;
1154        barrier();
1155
1156        x86_pmu.enable_all(added);
1157}
1158
1159static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1160
1161/*
1162 * Set the next IRQ period, based on the hwc->period_left value.
1163 * To be called with the event disabled in hw:
1164 */
1165int x86_perf_event_set_period(struct perf_event *event)
1166{
1167        struct hw_perf_event *hwc = &event->hw;
1168        s64 left = local64_read(&hwc->period_left);
1169        s64 period = hwc->sample_period;
1170        int ret = 0, idx = hwc->idx;
1171
1172        if (idx == INTEL_PMC_IDX_FIXED_BTS)
1173                return 0;
1174
1175        /*
1176         * If we are way outside a reasonable range then just skip forward:
1177         */
1178        if (unlikely(left <= -period)) {
1179                left = period;
1180                local64_set(&hwc->period_left, left);
1181                hwc->last_period = period;
1182                ret = 1;
1183        }
1184
1185        if (unlikely(left <= 0)) {
1186                left += period;
1187                local64_set(&hwc->period_left, left);
1188                hwc->last_period = period;
1189                ret = 1;
1190        }
1191        /*
1192         * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1193         */
1194        if (unlikely(left < 2))
1195                left = 2;
1196
1197        if (left > x86_pmu.max_period)
1198                left = x86_pmu.max_period;
1199
1200        if (x86_pmu.limit_period)
1201                left = x86_pmu.limit_period(event, left);
1202
1203        per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1204
1205        /*
1206         * The hw event starts counting from this event offset,
1207         * mark it to be able to extra future deltas:
1208         */
1209        local64_set(&hwc->prev_count, (u64)-left);
1210
1211        wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1212
1213        /*
1214         * Due to erratum on certan cpu we need
1215         * a second write to be sure the register
1216         * is updated properly
1217         */
1218        if (x86_pmu.perfctr_second_write) {
1219                wrmsrl(hwc->event_base,
1220                        (u64)(-left) & x86_pmu.cntval_mask);
1221        }
1222
1223        perf_event_update_userpage(event);
1224
1225        return ret;
1226}
1227
1228void x86_pmu_enable_event(struct perf_event *event)
1229{
1230        if (__this_cpu_read(cpu_hw_events.enabled))
1231                __x86_pmu_enable_event(&event->hw,
1232                                       ARCH_PERFMON_EVENTSEL_ENABLE);
1233}
1234
1235/*
1236 * Add a single event to the PMU.
1237 *
1238 * The event is added to the group of enabled events
1239 * but only if it can be scheduled with existing events.
1240 */
1241static int x86_pmu_add(struct perf_event *event, int flags)
1242{
1243        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1244        struct hw_perf_event *hwc;
1245        int assign[X86_PMC_IDX_MAX];
1246        int n, n0, ret;
1247
1248        hwc = &event->hw;
1249
1250        n0 = cpuc->n_events;
1251        ret = n = collect_events(cpuc, event, false);
1252        if (ret < 0)
1253                goto out;
1254
1255        hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1256        if (!(flags & PERF_EF_START))
1257                hwc->state |= PERF_HES_ARCH;
1258
1259        /*
1260         * If group events scheduling transaction was started,
1261         * skip the schedulability test here, it will be performed
1262         * at commit time (->commit_txn) as a whole.
1263         *
1264         * If commit fails, we'll call ->del() on all events
1265         * for which ->add() was called.
1266         */
1267        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1268                goto done_collect;
1269
1270        ret = x86_pmu.schedule_events(cpuc, n, assign);
1271        if (ret)
1272                goto out;
1273        /*
1274         * copy new assignment, now we know it is possible
1275         * will be used by hw_perf_enable()
1276         */
1277        memcpy(cpuc->assign, assign, n*sizeof(int));
1278
1279done_collect:
1280        /*
1281         * Commit the collect_events() state. See x86_pmu_del() and
1282         * x86_pmu_*_txn().
1283         */
1284        cpuc->n_events = n;
1285        cpuc->n_added += n - n0;
1286        cpuc->n_txn += n - n0;
1287
1288        if (x86_pmu.add) {
1289                /*
1290                 * This is before x86_pmu_enable() will call x86_pmu_start(),
1291                 * so we enable LBRs before an event needs them etc..
1292                 */
1293                x86_pmu.add(event);
1294        }
1295
1296        ret = 0;
1297out:
1298        return ret;
1299}
1300
1301static void x86_pmu_start(struct perf_event *event, int flags)
1302{
1303        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1304        int idx = event->hw.idx;
1305
1306        if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1307                return;
1308
1309        if (WARN_ON_ONCE(idx == -1))
1310                return;
1311
1312        if (flags & PERF_EF_RELOAD) {
1313                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1314                x86_perf_event_set_period(event);
1315        }
1316
1317        event->hw.state = 0;
1318
1319        cpuc->events[idx] = event;
1320        __set_bit(idx, cpuc->active_mask);
1321        __set_bit(idx, cpuc->running);
1322        x86_pmu.enable(event);
1323        perf_event_update_userpage(event);
1324}
1325
1326void perf_event_print_debug(void)
1327{
1328        u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1329        u64 pebs, debugctl;
1330        struct cpu_hw_events *cpuc;
1331        unsigned long flags;
1332        int cpu, idx;
1333
1334        if (!x86_pmu.num_counters)
1335                return;
1336
1337        local_irq_save(flags);
1338
1339        cpu = smp_processor_id();
1340        cpuc = &per_cpu(cpu_hw_events, cpu);
1341
1342        if (x86_pmu.version >= 2) {
1343                rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1344                rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1345                rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1346                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1347
1348                pr_info("\n");
1349                pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1350                pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1351                pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1352                pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1353                if (x86_pmu.pebs_constraints) {
1354                        rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1355                        pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1356                }
1357                if (x86_pmu.lbr_nr) {
1358                        rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1359                        pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1360                }
1361        }
1362        pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1363
1364        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1365                rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1366                rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1367
1368                prev_left = per_cpu(pmc_prev_left[idx], cpu);
1369
1370                pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1371                        cpu, idx, pmc_ctrl);
1372                pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1373                        cpu, idx, pmc_count);
1374                pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1375                        cpu, idx, prev_left);
1376        }
1377        for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1378                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1379
1380                pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1381                        cpu, idx, pmc_count);
1382        }
1383        local_irq_restore(flags);
1384}
1385
1386void x86_pmu_stop(struct perf_event *event, int flags)
1387{
1388        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1389        struct hw_perf_event *hwc = &event->hw;
1390
1391        if (test_bit(hwc->idx, cpuc->active_mask)) {
1392                x86_pmu.disable(event);
1393                __clear_bit(hwc->idx, cpuc->active_mask);
1394                cpuc->events[hwc->idx] = NULL;
1395                WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1396                hwc->state |= PERF_HES_STOPPED;
1397        }
1398
1399        if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1400                /*
1401                 * Drain the remaining delta count out of a event
1402                 * that we are disabling:
1403                 */
1404                x86_perf_event_update(event);
1405                hwc->state |= PERF_HES_UPTODATE;
1406        }
1407}
1408
1409static void x86_pmu_del(struct perf_event *event, int flags)
1410{
1411        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1412        int i;
1413
1414        /*
1415         * If we're called during a txn, we only need to undo x86_pmu.add.
1416         * The events never got scheduled and ->cancel_txn will truncate
1417         * the event_list.
1418         *
1419         * XXX assumes any ->del() called during a TXN will only be on
1420         * an event added during that same TXN.
1421         */
1422        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1423                goto do_del;
1424
1425        /*
1426         * Not a TXN, therefore cleanup properly.
1427         */
1428        x86_pmu_stop(event, PERF_EF_UPDATE);
1429
1430        for (i = 0; i < cpuc->n_events; i++) {
1431                if (event == cpuc->event_list[i])
1432                        break;
1433        }
1434
1435        if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1436                return;
1437
1438        /* If we have a newly added event; make sure to decrease n_added. */
1439        if (i >= cpuc->n_events - cpuc->n_added)
1440                --cpuc->n_added;
1441
1442        if (x86_pmu.put_event_constraints)
1443                x86_pmu.put_event_constraints(cpuc, event);
1444
1445        /* Delete the array entry. */
1446        while (++i < cpuc->n_events) {
1447                cpuc->event_list[i-1] = cpuc->event_list[i];
1448                cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1449        }
1450        cpuc->event_constraint[i-1] = NULL;
1451        --cpuc->n_events;
1452
1453        perf_event_update_userpage(event);
1454
1455do_del:
1456        if (x86_pmu.del) {
1457                /*
1458                 * This is after x86_pmu_stop(); so we disable LBRs after any
1459                 * event can need them etc..
1460                 */
1461                x86_pmu.del(event);
1462        }
1463}
1464
1465int x86_pmu_handle_irq(struct pt_regs *regs)
1466{
1467        struct perf_sample_data data;
1468        struct cpu_hw_events *cpuc;
1469        struct perf_event *event;
1470        int idx, handled = 0;
1471        u64 val;
1472
1473        cpuc = this_cpu_ptr(&cpu_hw_events);
1474
1475        /*
1476         * Some chipsets need to unmask the LVTPC in a particular spot
1477         * inside the nmi handler.  As a result, the unmasking was pushed
1478         * into all the nmi handlers.
1479         *
1480         * This generic handler doesn't seem to have any issues where the
1481         * unmasking occurs so it was left at the top.
1482         */
1483        apic_write(APIC_LVTPC, APIC_DM_NMI);
1484
1485        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1486                if (!test_bit(idx, cpuc->active_mask))
1487                        continue;
1488
1489                event = cpuc->events[idx];
1490
1491                val = x86_perf_event_update(event);
1492                if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1493                        continue;
1494
1495                /*
1496                 * event overflow
1497                 */
1498                handled++;
1499                perf_sample_data_init(&data, 0, event->hw.last_period);
1500
1501                if (!x86_perf_event_set_period(event))
1502                        continue;
1503
1504                if (perf_event_overflow(event, &data, regs))
1505                        x86_pmu_stop(event, 0);
1506        }
1507
1508        if (handled)
1509                inc_irq_stat(apic_perf_irqs);
1510
1511        return handled;
1512}
1513
1514void perf_events_lapic_init(void)
1515{
1516        if (!x86_pmu.apic || !x86_pmu_initialized())
1517                return;
1518
1519        /*
1520         * Always use NMI for PMU
1521         */
1522        apic_write(APIC_LVTPC, APIC_DM_NMI);
1523}
1524
1525static int
1526perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1527{
1528        u64 start_clock;
1529        u64 finish_clock;
1530        int ret;
1531
1532        /*
1533         * All PMUs/events that share this PMI handler should make sure to
1534         * increment active_events for their events.
1535         */
1536        if (!atomic_read(&active_events))
1537                return NMI_DONE;
1538
1539        start_clock = sched_clock();
1540        ret = x86_pmu.handle_irq(regs);
1541        finish_clock = sched_clock();
1542
1543        perf_sample_event_took(finish_clock - start_clock);
1544
1545        return ret;
1546}
1547NOKPROBE_SYMBOL(perf_event_nmi_handler);
1548
1549struct event_constraint emptyconstraint;
1550struct event_constraint unconstrained;
1551
1552static int x86_pmu_prepare_cpu(unsigned int cpu)
1553{
1554        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1555        int i;
1556
1557        for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1558                cpuc->kfree_on_online[i] = NULL;
1559        if (x86_pmu.cpu_prepare)
1560                return x86_pmu.cpu_prepare(cpu);
1561        return 0;
1562}
1563
1564static int x86_pmu_dead_cpu(unsigned int cpu)
1565{
1566        if (x86_pmu.cpu_dead)
1567                x86_pmu.cpu_dead(cpu);
1568        return 0;
1569}
1570
1571static int x86_pmu_online_cpu(unsigned int cpu)
1572{
1573        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1574        int i;
1575
1576        for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1577                kfree(cpuc->kfree_on_online[i]);
1578                cpuc->kfree_on_online[i] = NULL;
1579        }
1580        return 0;
1581}
1582
1583static int x86_pmu_starting_cpu(unsigned int cpu)
1584{
1585        if (x86_pmu.cpu_starting)
1586                x86_pmu.cpu_starting(cpu);
1587        return 0;
1588}
1589
1590static int x86_pmu_dying_cpu(unsigned int cpu)
1591{
1592        if (x86_pmu.cpu_dying)
1593                x86_pmu.cpu_dying(cpu);
1594        return 0;
1595}
1596
1597static void __init pmu_check_apic(void)
1598{
1599        if (boot_cpu_has(X86_FEATURE_APIC))
1600                return;
1601
1602        x86_pmu.apic = 0;
1603        pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1604        pr_info("no hardware sampling interrupt available.\n");
1605
1606        /*
1607         * If we have a PMU initialized but no APIC
1608         * interrupts, we cannot sample hardware
1609         * events (user-space has to fall back and
1610         * sample via a hrtimer based software event):
1611         */
1612        pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1613
1614}
1615
1616static struct attribute_group x86_pmu_format_group __ro_after_init = {
1617        .name = "format",
1618        .attrs = NULL,
1619};
1620
1621ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1622{
1623        struct perf_pmu_events_attr *pmu_attr = \
1624                container_of(attr, struct perf_pmu_events_attr, attr);
1625        u64 config = x86_pmu.event_map(pmu_attr->id);
1626
1627        /* string trumps id */
1628        if (pmu_attr->event_str)
1629                return sprintf(page, "%s", pmu_attr->event_str);
1630
1631        return x86_pmu.events_sysfs_show(page, config);
1632}
1633EXPORT_SYMBOL_GPL(events_sysfs_show);
1634
1635ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1636                          char *page)
1637{
1638        struct perf_pmu_events_ht_attr *pmu_attr =
1639                container_of(attr, struct perf_pmu_events_ht_attr, attr);
1640
1641        /*
1642         * Report conditional events depending on Hyper-Threading.
1643         *
1644         * This is overly conservative as usually the HT special
1645         * handling is not needed if the other CPU thread is idle.
1646         *
1647         * Note this does not (and cannot) handle the case when thread
1648         * siblings are invisible, for example with virtualization
1649         * if they are owned by some other guest.  The user tool
1650         * has to re-read when a thread sibling gets onlined later.
1651         */
1652        return sprintf(page, "%s",
1653                        topology_max_smt_threads() > 1 ?
1654                        pmu_attr->event_str_ht :
1655                        pmu_attr->event_str_noht);
1656}
1657
1658EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1659EVENT_ATTR(instructions,                INSTRUCTIONS            );
1660EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1661EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1662EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1663EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1664EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1665EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1666EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1667EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1668
1669static struct attribute *empty_attrs;
1670
1671static struct attribute *events_attr[] = {
1672        EVENT_PTR(CPU_CYCLES),
1673        EVENT_PTR(INSTRUCTIONS),
1674        EVENT_PTR(CACHE_REFERENCES),
1675        EVENT_PTR(CACHE_MISSES),
1676        EVENT_PTR(BRANCH_INSTRUCTIONS),
1677        EVENT_PTR(BRANCH_MISSES),
1678        EVENT_PTR(BUS_CYCLES),
1679        EVENT_PTR(STALLED_CYCLES_FRONTEND),
1680        EVENT_PTR(STALLED_CYCLES_BACKEND),
1681        EVENT_PTR(REF_CPU_CYCLES),
1682        NULL,
1683};
1684
1685/*
1686 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1687 * out of events_attr attributes.
1688 */
1689static umode_t
1690is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1691{
1692        struct perf_pmu_events_attr *pmu_attr;
1693
1694        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1695        /* str trumps id */
1696        return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1697}
1698
1699static struct attribute_group x86_pmu_events_group __ro_after_init = {
1700        .name = "events",
1701        .attrs = events_attr,
1702        .is_visible = is_visible,
1703};
1704
1705ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1706{
1707        u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1708        u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1709        bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1710        bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1711        bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1712        bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1713        ssize_t ret;
1714
1715        /*
1716        * We have whole page size to spend and just little data
1717        * to write, so we can safely use sprintf.
1718        */
1719        ret = sprintf(page, "event=0x%02llx", event);
1720
1721        if (umask)
1722                ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1723
1724        if (edge)
1725                ret += sprintf(page + ret, ",edge");
1726
1727        if (pc)
1728                ret += sprintf(page + ret, ",pc");
1729
1730        if (any)
1731                ret += sprintf(page + ret, ",any");
1732
1733        if (inv)
1734                ret += sprintf(page + ret, ",inv");
1735
1736        if (cmask)
1737                ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1738
1739        ret += sprintf(page + ret, "\n");
1740
1741        return ret;
1742}
1743
1744static struct attribute_group x86_pmu_attr_group;
1745static struct attribute_group x86_pmu_caps_group;
1746
1747static int __init init_hw_perf_events(void)
1748{
1749        struct x86_pmu_quirk *quirk;
1750        int err;
1751
1752        pr_info("Performance Events: ");
1753
1754        switch (boot_cpu_data.x86_vendor) {
1755        case X86_VENDOR_INTEL:
1756                err = intel_pmu_init();
1757                break;
1758        case X86_VENDOR_AMD:
1759                err = amd_pmu_init();
1760                break;
1761        case X86_VENDOR_HYGON:
1762                err = amd_pmu_init();
1763                x86_pmu.name = "HYGON";
1764                break;
1765        default:
1766                err = -ENOTSUPP;
1767        }
1768        if (err != 0) {
1769                pr_cont("no PMU driver, software events only.\n");
1770                return 0;
1771        }
1772
1773        pmu_check_apic();
1774
1775        /* sanity check that the hardware exists or is emulated */
1776        if (!check_hw_exists())
1777                return 0;
1778
1779        pr_cont("%s PMU driver.\n", x86_pmu.name);
1780
1781        x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1782
1783        for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1784                quirk->func();
1785
1786        if (!x86_pmu.intel_ctrl)
1787                x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1788
1789        perf_events_lapic_init();
1790        register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1791
1792        unconstrained = (struct event_constraint)
1793                __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1794                                   0, x86_pmu.num_counters, 0, 0);
1795
1796        x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1797
1798        if (!x86_pmu.events_sysfs_show)
1799                x86_pmu_events_group.attrs = &empty_attrs;
1800
1801        pmu.attr_update = x86_pmu.attr_update;
1802
1803        pr_info("... version:                %d\n",     x86_pmu.version);
1804        pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1805        pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1806        pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1807        pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1808        pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1809        pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1810
1811        /*
1812         * Install callbacks. Core will call them for each online
1813         * cpu.
1814         */
1815        err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1816                                x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1817        if (err)
1818                return err;
1819
1820        err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1821                                "perf/x86:starting", x86_pmu_starting_cpu,
1822                                x86_pmu_dying_cpu);
1823        if (err)
1824                goto out;
1825
1826        err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1827                                x86_pmu_online_cpu, NULL);
1828        if (err)
1829                goto out1;
1830
1831        err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1832        if (err)
1833                goto out2;
1834
1835        return 0;
1836
1837out2:
1838        cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1839out1:
1840        cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1841out:
1842        cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1843        return err;
1844}
1845early_initcall(init_hw_perf_events);
1846
1847static inline void x86_pmu_read(struct perf_event *event)
1848{
1849        if (x86_pmu.read)
1850                return x86_pmu.read(event);
1851        x86_perf_event_update(event);
1852}
1853
1854/*
1855 * Start group events scheduling transaction
1856 * Set the flag to make pmu::enable() not perform the
1857 * schedulability test, it will be performed at commit time
1858 *
1859 * We only support PERF_PMU_TXN_ADD transactions. Save the
1860 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1861 * transactions.
1862 */
1863static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1864{
1865        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1866
1867        WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1868
1869        cpuc->txn_flags = txn_flags;
1870        if (txn_flags & ~PERF_PMU_TXN_ADD)
1871                return;
1872
1873        perf_pmu_disable(pmu);
1874        __this_cpu_write(cpu_hw_events.n_txn, 0);
1875}
1876
1877/*
1878 * Stop group events scheduling transaction
1879 * Clear the flag and pmu::enable() will perform the
1880 * schedulability test.
1881 */
1882static void x86_pmu_cancel_txn(struct pmu *pmu)
1883{
1884        unsigned int txn_flags;
1885        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1886
1887        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1888
1889        txn_flags = cpuc->txn_flags;
1890        cpuc->txn_flags = 0;
1891        if (txn_flags & ~PERF_PMU_TXN_ADD)
1892                return;
1893
1894        /*
1895         * Truncate collected array by the number of events added in this
1896         * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1897         */
1898        __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1899        __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1900        perf_pmu_enable(pmu);
1901}
1902
1903/*
1904 * Commit group events scheduling transaction
1905 * Perform the group schedulability test as a whole
1906 * Return 0 if success
1907 *
1908 * Does not cancel the transaction on failure; expects the caller to do this.
1909 */
1910static int x86_pmu_commit_txn(struct pmu *pmu)
1911{
1912        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1913        int assign[X86_PMC_IDX_MAX];
1914        int n, ret;
1915
1916        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1917
1918        if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1919                cpuc->txn_flags = 0;
1920                return 0;
1921        }
1922
1923        n = cpuc->n_events;
1924
1925        if (!x86_pmu_initialized())
1926                return -EAGAIN;
1927
1928        ret = x86_pmu.schedule_events(cpuc, n, assign);
1929        if (ret)
1930                return ret;
1931
1932        /*
1933         * copy new assignment, now we know it is possible
1934         * will be used by hw_perf_enable()
1935         */
1936        memcpy(cpuc->assign, assign, n*sizeof(int));
1937
1938        cpuc->txn_flags = 0;
1939        perf_pmu_enable(pmu);
1940        return 0;
1941}
1942/*
1943 * a fake_cpuc is used to validate event groups. Due to
1944 * the extra reg logic, we need to also allocate a fake
1945 * per_core and per_cpu structure. Otherwise, group events
1946 * using extra reg may conflict without the kernel being
1947 * able to catch this when the last event gets added to
1948 * the group.
1949 */
1950static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1951{
1952        intel_cpuc_finish(cpuc);
1953        kfree(cpuc);
1954}
1955
1956static struct cpu_hw_events *allocate_fake_cpuc(void)
1957{
1958        struct cpu_hw_events *cpuc;
1959        int cpu = raw_smp_processor_id();
1960
1961        cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1962        if (!cpuc)
1963                return ERR_PTR(-ENOMEM);
1964        cpuc->is_fake = 1;
1965
1966        if (intel_cpuc_prepare(cpuc, cpu))
1967                goto error;
1968
1969        return cpuc;
1970error:
1971        free_fake_cpuc(cpuc);
1972        return ERR_PTR(-ENOMEM);
1973}
1974
1975/*
1976 * validate that we can schedule this event
1977 */
1978static int validate_event(struct perf_event *event)
1979{
1980        struct cpu_hw_events *fake_cpuc;
1981        struct event_constraint *c;
1982        int ret = 0;
1983
1984        fake_cpuc = allocate_fake_cpuc();
1985        if (IS_ERR(fake_cpuc))
1986                return PTR_ERR(fake_cpuc);
1987
1988        c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
1989
1990        if (!c || !c->weight)
1991                ret = -EINVAL;
1992
1993        if (x86_pmu.put_event_constraints)
1994                x86_pmu.put_event_constraints(fake_cpuc, event);
1995
1996        free_fake_cpuc(fake_cpuc);
1997
1998        return ret;
1999}
2000
2001/*
2002 * validate a single event group
2003 *
2004 * validation include:
2005 *      - check events are compatible which each other
2006 *      - events do not compete for the same counter
2007 *      - number of events <= number of counters
2008 *
2009 * validation ensures the group can be loaded onto the
2010 * PMU if it was the only group available.
2011 */
2012static int validate_group(struct perf_event *event)
2013{
2014        struct perf_event *leader = event->group_leader;
2015        struct cpu_hw_events *fake_cpuc;
2016        int ret = -EINVAL, n;
2017
2018        fake_cpuc = allocate_fake_cpuc();
2019        if (IS_ERR(fake_cpuc))
2020                return PTR_ERR(fake_cpuc);
2021        /*
2022         * the event is not yet connected with its
2023         * siblings therefore we must first collect
2024         * existing siblings, then add the new event
2025         * before we can simulate the scheduling
2026         */
2027        n = collect_events(fake_cpuc, leader, true);
2028        if (n < 0)
2029                goto out;
2030
2031        fake_cpuc->n_events = n;
2032        n = collect_events(fake_cpuc, event, false);
2033        if (n < 0)
2034                goto out;
2035
2036        fake_cpuc->n_events = 0;
2037        ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2038
2039out:
2040        free_fake_cpuc(fake_cpuc);
2041        return ret;
2042}
2043
2044static int x86_pmu_event_init(struct perf_event *event)
2045{
2046        struct pmu *tmp;
2047        int err;
2048
2049        switch (event->attr.type) {
2050        case PERF_TYPE_RAW:
2051        case PERF_TYPE_HARDWARE:
2052        case PERF_TYPE_HW_CACHE:
2053                break;
2054
2055        default:
2056                return -ENOENT;
2057        }
2058
2059        err = __x86_pmu_event_init(event);
2060        if (!err) {
2061                /*
2062                 * we temporarily connect event to its pmu
2063                 * such that validate_group() can classify
2064                 * it as an x86 event using is_x86_event()
2065                 */
2066                tmp = event->pmu;
2067                event->pmu = &pmu;
2068
2069                if (event->group_leader != event)
2070                        err = validate_group(event);
2071                else
2072                        err = validate_event(event);
2073
2074                event->pmu = tmp;
2075        }
2076        if (err) {
2077                if (event->destroy)
2078                        event->destroy(event);
2079        }
2080
2081        if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2082            !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2083                event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2084
2085        return err;
2086}
2087
2088static void refresh_pce(void *ignored)
2089{
2090        load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2091}
2092
2093static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2094{
2095        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2096                return;
2097
2098        /*
2099         * This function relies on not being called concurrently in two
2100         * tasks in the same mm.  Otherwise one task could observe
2101         * perf_rdpmc_allowed > 1 and return all the way back to
2102         * userspace with CR4.PCE clear while another task is still
2103         * doing on_each_cpu_mask() to propagate CR4.PCE.
2104         *
2105         * For now, this can't happen because all callers hold mmap_sem
2106         * for write.  If this changes, we'll need a different solution.
2107         */
2108        lockdep_assert_held_write(&mm->mmap_sem);
2109
2110        if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2111                on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2112}
2113
2114static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2115{
2116
2117        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2118                return;
2119
2120        if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2121                on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2122}
2123
2124static int x86_pmu_event_idx(struct perf_event *event)
2125{
2126        int idx = event->hw.idx;
2127
2128        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2129                return 0;
2130
2131        if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2132                idx -= INTEL_PMC_IDX_FIXED;
2133                idx |= 1 << 30;
2134        }
2135
2136        return idx + 1;
2137}
2138
2139static ssize_t get_attr_rdpmc(struct device *cdev,
2140                              struct device_attribute *attr,
2141                              char *buf)
2142{
2143        return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2144}
2145
2146static ssize_t set_attr_rdpmc(struct device *cdev,
2147                              struct device_attribute *attr,
2148                              const char *buf, size_t count)
2149{
2150        unsigned long val;
2151        ssize_t ret;
2152
2153        ret = kstrtoul(buf, 0, &val);
2154        if (ret)
2155                return ret;
2156
2157        if (val > 2)
2158                return -EINVAL;
2159
2160        if (x86_pmu.attr_rdpmc_broken)
2161                return -ENOTSUPP;
2162
2163        if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2164                /*
2165                 * Changing into or out of always available, aka
2166                 * perf-event-bypassing mode.  This path is extremely slow,
2167                 * but only root can trigger it, so it's okay.
2168                 */
2169                if (val == 2)
2170                        static_branch_inc(&rdpmc_always_available_key);
2171                else
2172                        static_branch_dec(&rdpmc_always_available_key);
2173                on_each_cpu(refresh_pce, NULL, 1);
2174        }
2175
2176        x86_pmu.attr_rdpmc = val;
2177
2178        return count;
2179}
2180
2181static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2182
2183static struct attribute *x86_pmu_attrs[] = {
2184        &dev_attr_rdpmc.attr,
2185        NULL,
2186};
2187
2188static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2189        .attrs = x86_pmu_attrs,
2190};
2191
2192static ssize_t max_precise_show(struct device *cdev,
2193                                  struct device_attribute *attr,
2194                                  char *buf)
2195{
2196        return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2197}
2198
2199static DEVICE_ATTR_RO(max_precise);
2200
2201static struct attribute *x86_pmu_caps_attrs[] = {
2202        &dev_attr_max_precise.attr,
2203        NULL
2204};
2205
2206static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2207        .name = "caps",
2208        .attrs = x86_pmu_caps_attrs,
2209};
2210
2211static const struct attribute_group *x86_pmu_attr_groups[] = {
2212        &x86_pmu_attr_group,
2213        &x86_pmu_format_group,
2214        &x86_pmu_events_group,
2215        &x86_pmu_caps_group,
2216        NULL,
2217};
2218
2219static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2220{
2221        if (x86_pmu.sched_task)
2222                x86_pmu.sched_task(ctx, sched_in);
2223}
2224
2225void perf_check_microcode(void)
2226{
2227        if (x86_pmu.check_microcode)
2228                x86_pmu.check_microcode();
2229}
2230
2231static int x86_pmu_check_period(struct perf_event *event, u64 value)
2232{
2233        if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2234                return -EINVAL;
2235
2236        if (value && x86_pmu.limit_period) {
2237                if (x86_pmu.limit_period(event, value) > value)
2238                        return -EINVAL;
2239        }
2240
2241        return 0;
2242}
2243
2244static struct pmu pmu = {
2245        .pmu_enable             = x86_pmu_enable,
2246        .pmu_disable            = x86_pmu_disable,
2247
2248        .attr_groups            = x86_pmu_attr_groups,
2249
2250        .event_init             = x86_pmu_event_init,
2251
2252        .event_mapped           = x86_pmu_event_mapped,
2253        .event_unmapped         = x86_pmu_event_unmapped,
2254
2255        .add                    = x86_pmu_add,
2256        .del                    = x86_pmu_del,
2257        .start                  = x86_pmu_start,
2258        .stop                   = x86_pmu_stop,
2259        .read                   = x86_pmu_read,
2260
2261        .start_txn              = x86_pmu_start_txn,
2262        .cancel_txn             = x86_pmu_cancel_txn,
2263        .commit_txn             = x86_pmu_commit_txn,
2264
2265        .event_idx              = x86_pmu_event_idx,
2266        .sched_task             = x86_pmu_sched_task,
2267        .task_ctx_size          = sizeof(struct x86_perf_task_context),
2268        .check_period           = x86_pmu_check_period,
2269};
2270
2271void arch_perf_update_userpage(struct perf_event *event,
2272                               struct perf_event_mmap_page *userpg, u64 now)
2273{
2274        struct cyc2ns_data data;
2275        u64 offset;
2276
2277        userpg->cap_user_time = 0;
2278        userpg->cap_user_time_zero = 0;
2279        userpg->cap_user_rdpmc =
2280                !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2281        userpg->pmc_width = x86_pmu.cntval_bits;
2282
2283        if (!using_native_sched_clock() || !sched_clock_stable())
2284                return;
2285
2286        cyc2ns_read_begin(&data);
2287
2288        offset = data.cyc2ns_offset + __sched_clock_offset;
2289
2290        /*
2291         * Internal timekeeping for enabled/running/stopped times
2292         * is always in the local_clock domain.
2293         */
2294        userpg->cap_user_time = 1;
2295        userpg->time_mult = data.cyc2ns_mul;
2296        userpg->time_shift = data.cyc2ns_shift;
2297        userpg->time_offset = offset - now;
2298
2299        /*
2300         * cap_user_time_zero doesn't make sense when we're using a different
2301         * time base for the records.
2302         */
2303        if (!event->attr.use_clockid) {
2304                userpg->cap_user_time_zero = 1;
2305                userpg->time_zero = offset;
2306        }
2307
2308        cyc2ns_read_end();
2309}
2310
2311/*
2312 * Determine whether the regs were taken from an irq/exception handler rather
2313 * than from perf_arch_fetch_caller_regs().
2314 */
2315static bool perf_hw_regs(struct pt_regs *regs)
2316{
2317        return regs->flags & X86_EFLAGS_FIXED;
2318}
2319
2320void
2321perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2322{
2323        struct unwind_state state;
2324        unsigned long addr;
2325
2326        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2327                /* TODO: We don't support guest os callchain now */
2328                return;
2329        }
2330
2331        if (perf_callchain_store(entry, regs->ip))
2332                return;
2333
2334        if (perf_hw_regs(regs))
2335                unwind_start(&state, current, regs, NULL);
2336        else
2337                unwind_start(&state, current, NULL, (void *)regs->sp);
2338
2339        for (; !unwind_done(&state); unwind_next_frame(&state)) {
2340                addr = unwind_get_return_address(&state);
2341                if (!addr || perf_callchain_store(entry, addr))
2342                        return;
2343        }
2344}
2345
2346static inline int
2347valid_user_frame(const void __user *fp, unsigned long size)
2348{
2349        return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2350}
2351
2352static unsigned long get_segment_base(unsigned int segment)
2353{
2354        struct desc_struct *desc;
2355        unsigned int idx = segment >> 3;
2356
2357        if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2358#ifdef CONFIG_MODIFY_LDT_SYSCALL
2359                struct ldt_struct *ldt;
2360
2361                /* IRQs are off, so this synchronizes with smp_store_release */
2362                ldt = READ_ONCE(current->active_mm->context.ldt);
2363                if (!ldt || idx >= ldt->nr_entries)
2364                        return 0;
2365
2366                desc = &ldt->entries[idx];
2367#else
2368                return 0;
2369#endif
2370        } else {
2371                if (idx >= GDT_ENTRIES)
2372                        return 0;
2373
2374                desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2375        }
2376
2377        return get_desc_base(desc);
2378}
2379
2380#ifdef CONFIG_IA32_EMULATION
2381
2382#include <linux/compat.h>
2383
2384static inline int
2385perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2386{
2387        /* 32-bit process in 64-bit kernel. */
2388        unsigned long ss_base, cs_base;
2389        struct stack_frame_ia32 frame;
2390        const void __user *fp;
2391
2392        if (!test_thread_flag(TIF_IA32))
2393                return 0;
2394
2395        cs_base = get_segment_base(regs->cs);
2396        ss_base = get_segment_base(regs->ss);
2397
2398        fp = compat_ptr(ss_base + regs->bp);
2399        pagefault_disable();
2400        while (entry->nr < entry->max_stack) {
2401                unsigned long bytes;
2402                frame.next_frame     = 0;
2403                frame.return_address = 0;
2404
2405                if (!valid_user_frame(fp, sizeof(frame)))
2406                        break;
2407
2408                bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2409                if (bytes != 0)
2410                        break;
2411                bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2412                if (bytes != 0)
2413                        break;
2414
2415                perf_callchain_store(entry, cs_base + frame.return_address);
2416                fp = compat_ptr(ss_base + frame.next_frame);
2417        }
2418        pagefault_enable();
2419        return 1;
2420}
2421#else
2422static inline int
2423perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2424{
2425    return 0;
2426}
2427#endif
2428
2429void
2430perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2431{
2432        struct stack_frame frame;
2433        const unsigned long __user *fp;
2434
2435        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2436                /* TODO: We don't support guest os callchain now */
2437                return;
2438        }
2439
2440        /*
2441         * We don't know what to do with VM86 stacks.. ignore them for now.
2442         */
2443        if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2444                return;
2445
2446        fp = (unsigned long __user *)regs->bp;
2447
2448        perf_callchain_store(entry, regs->ip);
2449
2450        if (!nmi_uaccess_okay())
2451                return;
2452
2453        if (perf_callchain_user32(regs, entry))
2454                return;
2455
2456        pagefault_disable();
2457        while (entry->nr < entry->max_stack) {
2458                unsigned long bytes;
2459
2460                frame.next_frame             = NULL;
2461                frame.return_address = 0;
2462
2463                if (!valid_user_frame(fp, sizeof(frame)))
2464                        break;
2465
2466                bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2467                if (bytes != 0)
2468                        break;
2469                bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2470                if (bytes != 0)
2471                        break;
2472
2473                perf_callchain_store(entry, frame.return_address);
2474                fp = (void __user *)frame.next_frame;
2475        }
2476        pagefault_enable();
2477}
2478
2479/*
2480 * Deal with code segment offsets for the various execution modes:
2481 *
2482 *   VM86 - the good olde 16 bit days, where the linear address is
2483 *          20 bits and we use regs->ip + 0x10 * regs->cs.
2484 *
2485 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2486 *          to figure out what the 32bit base address is.
2487 *
2488 *    X32 - has TIF_X32 set, but is running in x86_64
2489 *
2490 * X86_64 - CS,DS,SS,ES are all zero based.
2491 */
2492static unsigned long code_segment_base(struct pt_regs *regs)
2493{
2494        /*
2495         * For IA32 we look at the GDT/LDT segment base to convert the
2496         * effective IP to a linear address.
2497         */
2498
2499#ifdef CONFIG_X86_32
2500        /*
2501         * If we are in VM86 mode, add the segment offset to convert to a
2502         * linear address.
2503         */
2504        if (regs->flags & X86_VM_MASK)
2505                return 0x10 * regs->cs;
2506
2507        if (user_mode(regs) && regs->cs != __USER_CS)
2508                return get_segment_base(regs->cs);
2509#else
2510        if (user_mode(regs) && !user_64bit_mode(regs) &&
2511            regs->cs != __USER32_CS)
2512                return get_segment_base(regs->cs);
2513#endif
2514        return 0;
2515}
2516
2517unsigned long perf_instruction_pointer(struct pt_regs *regs)
2518{
2519        if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2520                return perf_guest_cbs->get_guest_ip();
2521
2522        return regs->ip + code_segment_base(regs);
2523}
2524
2525unsigned long perf_misc_flags(struct pt_regs *regs)
2526{
2527        int misc = 0;
2528
2529        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2530                if (perf_guest_cbs->is_user_mode())
2531                        misc |= PERF_RECORD_MISC_GUEST_USER;
2532                else
2533                        misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2534        } else {
2535                if (user_mode(regs))
2536                        misc |= PERF_RECORD_MISC_USER;
2537                else
2538                        misc |= PERF_RECORD_MISC_KERNEL;
2539        }
2540
2541        if (regs->flags & PERF_EFLAGS_EXACT)
2542                misc |= PERF_RECORD_MISC_EXACT_IP;
2543
2544        return misc;
2545}
2546
2547void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2548{
2549        cap->version            = x86_pmu.version;
2550        cap->num_counters_gp    = x86_pmu.num_counters;
2551        cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2552        cap->bit_width_gp       = x86_pmu.cntval_bits;
2553        cap->bit_width_fixed    = x86_pmu.cntval_bits;
2554        cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2555        cap->events_mask_len    = x86_pmu.events_mask_len;
2556}
2557EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2558