linux/arch/x86/events/intel/lbr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/perf_event.h>
   3#include <linux/types.h>
   4
   5#include <asm/perf_event.h>
   6#include <asm/msr.h>
   7#include <asm/insn.h>
   8
   9#include "../perf_event.h"
  10
  11enum {
  12        LBR_FORMAT_32           = 0x00,
  13        LBR_FORMAT_LIP          = 0x01,
  14        LBR_FORMAT_EIP          = 0x02,
  15        LBR_FORMAT_EIP_FLAGS    = 0x03,
  16        LBR_FORMAT_EIP_FLAGS2   = 0x04,
  17        LBR_FORMAT_INFO         = 0x05,
  18        LBR_FORMAT_TIME         = 0x06,
  19        LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
  20};
  21
  22static const enum {
  23        LBR_EIP_FLAGS           = 1,
  24        LBR_TSX                 = 2,
  25} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
  26        [LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
  27        [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
  28};
  29
  30/*
  31 * Intel LBR_SELECT bits
  32 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
  33 *
  34 * Hardware branch filter (not available on all CPUs)
  35 */
  36#define LBR_KERNEL_BIT          0 /* do not capture at ring0 */
  37#define LBR_USER_BIT            1 /* do not capture at ring > 0 */
  38#define LBR_JCC_BIT             2 /* do not capture conditional branches */
  39#define LBR_REL_CALL_BIT        3 /* do not capture relative calls */
  40#define LBR_IND_CALL_BIT        4 /* do not capture indirect calls */
  41#define LBR_RETURN_BIT          5 /* do not capture near returns */
  42#define LBR_IND_JMP_BIT         6 /* do not capture indirect jumps */
  43#define LBR_REL_JMP_BIT         7 /* do not capture relative jumps */
  44#define LBR_FAR_BIT             8 /* do not capture far branches */
  45#define LBR_CALL_STACK_BIT      9 /* enable call stack */
  46
  47/*
  48 * Following bit only exists in Linux; we mask it out before writing it to
  49 * the actual MSR. But it helps the constraint perf code to understand
  50 * that this is a separate configuration.
  51 */
  52#define LBR_NO_INFO_BIT        63 /* don't read LBR_INFO. */
  53
  54#define LBR_KERNEL      (1 << LBR_KERNEL_BIT)
  55#define LBR_USER        (1 << LBR_USER_BIT)
  56#define LBR_JCC         (1 << LBR_JCC_BIT)
  57#define LBR_REL_CALL    (1 << LBR_REL_CALL_BIT)
  58#define LBR_IND_CALL    (1 << LBR_IND_CALL_BIT)
  59#define LBR_RETURN      (1 << LBR_RETURN_BIT)
  60#define LBR_REL_JMP     (1 << LBR_REL_JMP_BIT)
  61#define LBR_IND_JMP     (1 << LBR_IND_JMP_BIT)
  62#define LBR_FAR         (1 << LBR_FAR_BIT)
  63#define LBR_CALL_STACK  (1 << LBR_CALL_STACK_BIT)
  64#define LBR_NO_INFO     (1ULL << LBR_NO_INFO_BIT)
  65
  66#define LBR_PLM (LBR_KERNEL | LBR_USER)
  67
  68#define LBR_SEL_MASK    0x3ff   /* valid bits in LBR_SELECT */
  69#define LBR_NOT_SUPP    -1      /* LBR filter not supported */
  70#define LBR_IGN         0       /* ignored */
  71
  72#define LBR_ANY          \
  73        (LBR_JCC        |\
  74         LBR_REL_CALL   |\
  75         LBR_IND_CALL   |\
  76         LBR_RETURN     |\
  77         LBR_REL_JMP    |\
  78         LBR_IND_JMP    |\
  79         LBR_FAR)
  80
  81#define LBR_FROM_FLAG_MISPRED   BIT_ULL(63)
  82#define LBR_FROM_FLAG_IN_TX     BIT_ULL(62)
  83#define LBR_FROM_FLAG_ABORT     BIT_ULL(61)
  84
  85#define LBR_FROM_SIGNEXT_2MSB   (BIT_ULL(60) | BIT_ULL(59))
  86
  87/*
  88 * x86control flow change classification
  89 * x86control flow changes include branches, interrupts, traps, faults
  90 */
  91enum {
  92        X86_BR_NONE             = 0,      /* unknown */
  93
  94        X86_BR_USER             = 1 << 0, /* branch target is user */
  95        X86_BR_KERNEL           = 1 << 1, /* branch target is kernel */
  96
  97        X86_BR_CALL             = 1 << 2, /* call */
  98        X86_BR_RET              = 1 << 3, /* return */
  99        X86_BR_SYSCALL          = 1 << 4, /* syscall */
 100        X86_BR_SYSRET           = 1 << 5, /* syscall return */
 101        X86_BR_INT              = 1 << 6, /* sw interrupt */
 102        X86_BR_IRET             = 1 << 7, /* return from interrupt */
 103        X86_BR_JCC              = 1 << 8, /* conditional */
 104        X86_BR_JMP              = 1 << 9, /* jump */
 105        X86_BR_IRQ              = 1 << 10,/* hw interrupt or trap or fault */
 106        X86_BR_IND_CALL         = 1 << 11,/* indirect calls */
 107        X86_BR_ABORT            = 1 << 12,/* transaction abort */
 108        X86_BR_IN_TX            = 1 << 13,/* in transaction */
 109        X86_BR_NO_TX            = 1 << 14,/* not in transaction */
 110        X86_BR_ZERO_CALL        = 1 << 15,/* zero length call */
 111        X86_BR_CALL_STACK       = 1 << 16,/* call stack */
 112        X86_BR_IND_JMP          = 1 << 17,/* indirect jump */
 113
 114        X86_BR_TYPE_SAVE        = 1 << 18,/* indicate to save branch type */
 115
 116};
 117
 118#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
 119#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
 120
 121#define X86_BR_ANY       \
 122        (X86_BR_CALL    |\
 123         X86_BR_RET     |\
 124         X86_BR_SYSCALL |\
 125         X86_BR_SYSRET  |\
 126         X86_BR_INT     |\
 127         X86_BR_IRET    |\
 128         X86_BR_JCC     |\
 129         X86_BR_JMP      |\
 130         X86_BR_IRQ      |\
 131         X86_BR_ABORT    |\
 132         X86_BR_IND_CALL |\
 133         X86_BR_IND_JMP  |\
 134         X86_BR_ZERO_CALL)
 135
 136#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
 137
 138#define X86_BR_ANY_CALL          \
 139        (X86_BR_CALL            |\
 140         X86_BR_IND_CALL        |\
 141         X86_BR_ZERO_CALL       |\
 142         X86_BR_SYSCALL         |\
 143         X86_BR_IRQ             |\
 144         X86_BR_INT)
 145
 146static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
 147
 148/*
 149 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
 150 * otherwise it becomes near impossible to get a reliable stack.
 151 */
 152
 153static void __intel_pmu_lbr_enable(bool pmi)
 154{
 155        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 156        u64 debugctl, lbr_select = 0, orig_debugctl;
 157
 158        /*
 159         * No need to unfreeze manually, as v4 can do that as part
 160         * of the GLOBAL_STATUS ack.
 161         */
 162        if (pmi && x86_pmu.version >= 4)
 163                return;
 164
 165        /*
 166         * No need to reprogram LBR_SELECT in a PMI, as it
 167         * did not change.
 168         */
 169        if (cpuc->lbr_sel)
 170                lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
 171        if (!pmi && cpuc->lbr_sel)
 172                wrmsrl(MSR_LBR_SELECT, lbr_select);
 173
 174        rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 175        orig_debugctl = debugctl;
 176        debugctl |= DEBUGCTLMSR_LBR;
 177        /*
 178         * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
 179         * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
 180         * may cause superfluous increase/decrease of LBR_TOS.
 181         */
 182        if (!(lbr_select & LBR_CALL_STACK))
 183                debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
 184        if (orig_debugctl != debugctl)
 185                wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 186}
 187
 188static void __intel_pmu_lbr_disable(void)
 189{
 190        u64 debugctl;
 191
 192        rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 193        debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
 194        wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 195}
 196
 197static void intel_pmu_lbr_reset_32(void)
 198{
 199        int i;
 200
 201        for (i = 0; i < x86_pmu.lbr_nr; i++)
 202                wrmsrl(x86_pmu.lbr_from + i, 0);
 203}
 204
 205static void intel_pmu_lbr_reset_64(void)
 206{
 207        int i;
 208
 209        for (i = 0; i < x86_pmu.lbr_nr; i++) {
 210                wrmsrl(x86_pmu.lbr_from + i, 0);
 211                wrmsrl(x86_pmu.lbr_to   + i, 0);
 212                if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
 213                        wrmsrl(MSR_LBR_INFO_0 + i, 0);
 214        }
 215}
 216
 217void intel_pmu_lbr_reset(void)
 218{
 219        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 220
 221        if (!x86_pmu.lbr_nr)
 222                return;
 223
 224        if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
 225                intel_pmu_lbr_reset_32();
 226        else
 227                intel_pmu_lbr_reset_64();
 228
 229        cpuc->last_task_ctx = NULL;
 230        cpuc->last_log_id = 0;
 231}
 232
 233/*
 234 * TOS = most recently recorded branch
 235 */
 236static inline u64 intel_pmu_lbr_tos(void)
 237{
 238        u64 tos;
 239
 240        rdmsrl(x86_pmu.lbr_tos, tos);
 241        return tos;
 242}
 243
 244enum {
 245        LBR_NONE,
 246        LBR_VALID,
 247};
 248
 249/*
 250 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
 251 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
 252 * TSX is not supported they have no consistent behavior:
 253 *
 254 *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
 255 *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
 256 *     part of the sign extension.
 257 *
 258 * Therefore, if:
 259 *
 260 *   1) LBR has TSX format
 261 *   2) CPU has no TSX support enabled
 262 *
 263 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
 264 * value from rdmsr() must be converted to have a 61 bits sign extension,
 265 * ignoring the TSX flags.
 266 */
 267static inline bool lbr_from_signext_quirk_needed(void)
 268{
 269        int lbr_format = x86_pmu.intel_cap.lbr_format;
 270        bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
 271                           boot_cpu_has(X86_FEATURE_RTM);
 272
 273        return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
 274}
 275
 276DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
 277
 278/* If quirk is enabled, ensure sign extension is 63 bits: */
 279inline u64 lbr_from_signext_quirk_wr(u64 val)
 280{
 281        if (static_branch_unlikely(&lbr_from_quirk_key)) {
 282                /*
 283                 * Sign extend into bits 61:62 while preserving bit 63.
 284                 *
 285                 * Quirk is enabled when TSX is disabled. Therefore TSX bits
 286                 * in val are always OFF and must be changed to be sign
 287                 * extension bits. Since bits 59:60 are guaranteed to be
 288                 * part of the sign extension bits, we can just copy them
 289                 * to 61:62.
 290                 */
 291                val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
 292        }
 293        return val;
 294}
 295
 296/*
 297 * If quirk is needed, ensure sign extension is 61 bits:
 298 */
 299static u64 lbr_from_signext_quirk_rd(u64 val)
 300{
 301        if (static_branch_unlikely(&lbr_from_quirk_key)) {
 302                /*
 303                 * Quirk is on when TSX is not enabled. Therefore TSX
 304                 * flags must be read as OFF.
 305                 */
 306                val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
 307        }
 308        return val;
 309}
 310
 311static inline void wrlbr_from(unsigned int idx, u64 val)
 312{
 313        val = lbr_from_signext_quirk_wr(val);
 314        wrmsrl(x86_pmu.lbr_from + idx, val);
 315}
 316
 317static inline void wrlbr_to(unsigned int idx, u64 val)
 318{
 319        wrmsrl(x86_pmu.lbr_to + idx, val);
 320}
 321
 322static inline u64 rdlbr_from(unsigned int idx)
 323{
 324        u64 val;
 325
 326        rdmsrl(x86_pmu.lbr_from + idx, val);
 327
 328        return lbr_from_signext_quirk_rd(val);
 329}
 330
 331static inline u64 rdlbr_to(unsigned int idx)
 332{
 333        u64 val;
 334
 335        rdmsrl(x86_pmu.lbr_to + idx, val);
 336
 337        return val;
 338}
 339
 340static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
 341{
 342        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 343        int i;
 344        unsigned lbr_idx, mask;
 345        u64 tos;
 346
 347        if (task_ctx->lbr_callstack_users == 0 ||
 348            task_ctx->lbr_stack_state == LBR_NONE) {
 349                intel_pmu_lbr_reset();
 350                return;
 351        }
 352
 353        tos = task_ctx->tos;
 354        /*
 355         * Does not restore the LBR registers, if
 356         * - No one else touched them, and
 357         * - Did not enter C6
 358         */
 359        if ((task_ctx == cpuc->last_task_ctx) &&
 360            (task_ctx->log_id == cpuc->last_log_id) &&
 361            rdlbr_from(tos)) {
 362                task_ctx->lbr_stack_state = LBR_NONE;
 363                return;
 364        }
 365
 366        mask = x86_pmu.lbr_nr - 1;
 367        for (i = 0; i < task_ctx->valid_lbrs; i++) {
 368                lbr_idx = (tos - i) & mask;
 369                wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
 370                wrlbr_to  (lbr_idx, task_ctx->lbr_to[i]);
 371
 372                if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
 373                        wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
 374        }
 375
 376        for (; i < x86_pmu.lbr_nr; i++) {
 377                lbr_idx = (tos - i) & mask;
 378                wrlbr_from(lbr_idx, 0);
 379                wrlbr_to(lbr_idx, 0);
 380                if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
 381                        wrmsrl(MSR_LBR_INFO_0 + lbr_idx, 0);
 382        }
 383
 384        wrmsrl(x86_pmu.lbr_tos, tos);
 385        task_ctx->lbr_stack_state = LBR_NONE;
 386}
 387
 388static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
 389{
 390        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 391        unsigned lbr_idx, mask;
 392        u64 tos, from;
 393        int i;
 394
 395        if (task_ctx->lbr_callstack_users == 0) {
 396                task_ctx->lbr_stack_state = LBR_NONE;
 397                return;
 398        }
 399
 400        mask = x86_pmu.lbr_nr - 1;
 401        tos = intel_pmu_lbr_tos();
 402        for (i = 0; i < x86_pmu.lbr_nr; i++) {
 403                lbr_idx = (tos - i) & mask;
 404                from = rdlbr_from(lbr_idx);
 405                if (!from)
 406                        break;
 407                task_ctx->lbr_from[i] = from;
 408                task_ctx->lbr_to[i]   = rdlbr_to(lbr_idx);
 409                if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
 410                        rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
 411        }
 412        task_ctx->valid_lbrs = i;
 413        task_ctx->tos = tos;
 414        task_ctx->lbr_stack_state = LBR_VALID;
 415
 416        cpuc->last_task_ctx = task_ctx;
 417        cpuc->last_log_id = ++task_ctx->log_id;
 418}
 419
 420void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
 421{
 422        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 423        struct x86_perf_task_context *task_ctx;
 424
 425        if (!cpuc->lbr_users)
 426                return;
 427
 428        /*
 429         * If LBR callstack feature is enabled and the stack was saved when
 430         * the task was scheduled out, restore the stack. Otherwise flush
 431         * the LBR stack.
 432         */
 433        task_ctx = ctx ? ctx->task_ctx_data : NULL;
 434        if (task_ctx) {
 435                if (sched_in)
 436                        __intel_pmu_lbr_restore(task_ctx);
 437                else
 438                        __intel_pmu_lbr_save(task_ctx);
 439                return;
 440        }
 441
 442        /*
 443         * Since a context switch can flip the address space and LBR entries
 444         * are not tagged with an identifier, we need to wipe the LBR, even for
 445         * per-cpu events. You simply cannot resolve the branches from the old
 446         * address space.
 447         */
 448        if (sched_in)
 449                intel_pmu_lbr_reset();
 450}
 451
 452static inline bool branch_user_callstack(unsigned br_sel)
 453{
 454        return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
 455}
 456
 457void intel_pmu_lbr_add(struct perf_event *event)
 458{
 459        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 460        struct x86_perf_task_context *task_ctx;
 461
 462        if (!x86_pmu.lbr_nr)
 463                return;
 464
 465        cpuc->br_sel = event->hw.branch_reg.reg;
 466
 467        if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
 468                task_ctx = event->ctx->task_ctx_data;
 469                task_ctx->lbr_callstack_users++;
 470        }
 471
 472        /*
 473         * Request pmu::sched_task() callback, which will fire inside the
 474         * regular perf event scheduling, so that call will:
 475         *
 476         *  - restore or wipe; when LBR-callstack,
 477         *  - wipe; otherwise,
 478         *
 479         * when this is from __perf_event_task_sched_in().
 480         *
 481         * However, if this is from perf_install_in_context(), no such callback
 482         * will follow and we'll need to reset the LBR here if this is the
 483         * first LBR event.
 484         *
 485         * The problem is, we cannot tell these cases apart... but we can
 486         * exclude the biggest chunk of cases by looking at
 487         * event->total_time_running. An event that has accrued runtime cannot
 488         * be 'new'. Conversely, a new event can get installed through the
 489         * context switch path for the first time.
 490         */
 491        if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
 492                cpuc->lbr_pebs_users++;
 493        perf_sched_cb_inc(event->ctx->pmu);
 494        if (!cpuc->lbr_users++ && !event->total_time_running)
 495                intel_pmu_lbr_reset();
 496}
 497
 498void intel_pmu_lbr_del(struct perf_event *event)
 499{
 500        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 501        struct x86_perf_task_context *task_ctx;
 502
 503        if (!x86_pmu.lbr_nr)
 504                return;
 505
 506        if (branch_user_callstack(cpuc->br_sel) &&
 507            event->ctx->task_ctx_data) {
 508                task_ctx = event->ctx->task_ctx_data;
 509                task_ctx->lbr_callstack_users--;
 510        }
 511
 512        if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
 513                cpuc->lbr_pebs_users--;
 514        cpuc->lbr_users--;
 515        WARN_ON_ONCE(cpuc->lbr_users < 0);
 516        WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
 517        perf_sched_cb_dec(event->ctx->pmu);
 518}
 519
 520void intel_pmu_lbr_enable_all(bool pmi)
 521{
 522        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 523
 524        if (cpuc->lbr_users)
 525                __intel_pmu_lbr_enable(pmi);
 526}
 527
 528void intel_pmu_lbr_disable_all(void)
 529{
 530        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 531
 532        if (cpuc->lbr_users)
 533                __intel_pmu_lbr_disable();
 534}
 535
 536static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
 537{
 538        unsigned long mask = x86_pmu.lbr_nr - 1;
 539        u64 tos = intel_pmu_lbr_tos();
 540        int i;
 541
 542        for (i = 0; i < x86_pmu.lbr_nr; i++) {
 543                unsigned long lbr_idx = (tos - i) & mask;
 544                union {
 545                        struct {
 546                                u32 from;
 547                                u32 to;
 548                        };
 549                        u64     lbr;
 550                } msr_lastbranch;
 551
 552                rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
 553
 554                cpuc->lbr_entries[i].from       = msr_lastbranch.from;
 555                cpuc->lbr_entries[i].to         = msr_lastbranch.to;
 556                cpuc->lbr_entries[i].mispred    = 0;
 557                cpuc->lbr_entries[i].predicted  = 0;
 558                cpuc->lbr_entries[i].in_tx      = 0;
 559                cpuc->lbr_entries[i].abort      = 0;
 560                cpuc->lbr_entries[i].cycles     = 0;
 561                cpuc->lbr_entries[i].type       = 0;
 562                cpuc->lbr_entries[i].reserved   = 0;
 563        }
 564        cpuc->lbr_stack.nr = i;
 565}
 566
 567/*
 568 * Due to lack of segmentation in Linux the effective address (offset)
 569 * is the same as the linear address, allowing us to merge the LIP and EIP
 570 * LBR formats.
 571 */
 572static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
 573{
 574        bool need_info = false, call_stack = false;
 575        unsigned long mask = x86_pmu.lbr_nr - 1;
 576        int lbr_format = x86_pmu.intel_cap.lbr_format;
 577        u64 tos = intel_pmu_lbr_tos();
 578        int i;
 579        int out = 0;
 580        int num = x86_pmu.lbr_nr;
 581
 582        if (cpuc->lbr_sel) {
 583                need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
 584                if (cpuc->lbr_sel->config & LBR_CALL_STACK)
 585                        call_stack = true;
 586        }
 587
 588        for (i = 0; i < num; i++) {
 589                unsigned long lbr_idx = (tos - i) & mask;
 590                u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
 591                int skip = 0;
 592                u16 cycles = 0;
 593                int lbr_flags = lbr_desc[lbr_format];
 594
 595                from = rdlbr_from(lbr_idx);
 596                to   = rdlbr_to(lbr_idx);
 597
 598                /*
 599                 * Read LBR call stack entries
 600                 * until invalid entry (0s) is detected.
 601                 */
 602                if (call_stack && !from)
 603                        break;
 604
 605                if (lbr_format == LBR_FORMAT_INFO && need_info) {
 606                        u64 info;
 607
 608                        rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
 609                        mis = !!(info & LBR_INFO_MISPRED);
 610                        pred = !mis;
 611                        in_tx = !!(info & LBR_INFO_IN_TX);
 612                        abort = !!(info & LBR_INFO_ABORT);
 613                        cycles = (info & LBR_INFO_CYCLES);
 614                }
 615
 616                if (lbr_format == LBR_FORMAT_TIME) {
 617                        mis = !!(from & LBR_FROM_FLAG_MISPRED);
 618                        pred = !mis;
 619                        skip = 1;
 620                        cycles = ((to >> 48) & LBR_INFO_CYCLES);
 621
 622                        to = (u64)((((s64)to) << 16) >> 16);
 623                }
 624
 625                if (lbr_flags & LBR_EIP_FLAGS) {
 626                        mis = !!(from & LBR_FROM_FLAG_MISPRED);
 627                        pred = !mis;
 628                        skip = 1;
 629                }
 630                if (lbr_flags & LBR_TSX) {
 631                        in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
 632                        abort = !!(from & LBR_FROM_FLAG_ABORT);
 633                        skip = 3;
 634                }
 635                from = (u64)((((s64)from) << skip) >> skip);
 636
 637                /*
 638                 * Some CPUs report duplicated abort records,
 639                 * with the second entry not having an abort bit set.
 640                 * Skip them here. This loop runs backwards,
 641                 * so we need to undo the previous record.
 642                 * If the abort just happened outside the window
 643                 * the extra entry cannot be removed.
 644                 */
 645                if (abort && x86_pmu.lbr_double_abort && out > 0)
 646                        out--;
 647
 648                cpuc->lbr_entries[out].from      = from;
 649                cpuc->lbr_entries[out].to        = to;
 650                cpuc->lbr_entries[out].mispred   = mis;
 651                cpuc->lbr_entries[out].predicted = pred;
 652                cpuc->lbr_entries[out].in_tx     = in_tx;
 653                cpuc->lbr_entries[out].abort     = abort;
 654                cpuc->lbr_entries[out].cycles    = cycles;
 655                cpuc->lbr_entries[out].type      = 0;
 656                cpuc->lbr_entries[out].reserved  = 0;
 657                out++;
 658        }
 659        cpuc->lbr_stack.nr = out;
 660}
 661
 662void intel_pmu_lbr_read(void)
 663{
 664        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 665
 666        /*
 667         * Don't read when all LBRs users are using adaptive PEBS.
 668         *
 669         * This could be smarter and actually check the event,
 670         * but this simple approach seems to work for now.
 671         */
 672        if (!cpuc->lbr_users || cpuc->lbr_users == cpuc->lbr_pebs_users)
 673                return;
 674
 675        if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
 676                intel_pmu_lbr_read_32(cpuc);
 677        else
 678                intel_pmu_lbr_read_64(cpuc);
 679
 680        intel_pmu_lbr_filter(cpuc);
 681}
 682
 683/*
 684 * SW filter is used:
 685 * - in case there is no HW filter
 686 * - in case the HW filter has errata or limitations
 687 */
 688static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
 689{
 690        u64 br_type = event->attr.branch_sample_type;
 691        int mask = 0;
 692
 693        if (br_type & PERF_SAMPLE_BRANCH_USER)
 694                mask |= X86_BR_USER;
 695
 696        if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
 697                mask |= X86_BR_KERNEL;
 698
 699        /* we ignore BRANCH_HV here */
 700
 701        if (br_type & PERF_SAMPLE_BRANCH_ANY)
 702                mask |= X86_BR_ANY;
 703
 704        if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
 705                mask |= X86_BR_ANY_CALL;
 706
 707        if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
 708                mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
 709
 710        if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
 711                mask |= X86_BR_IND_CALL;
 712
 713        if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
 714                mask |= X86_BR_ABORT;
 715
 716        if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
 717                mask |= X86_BR_IN_TX;
 718
 719        if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
 720                mask |= X86_BR_NO_TX;
 721
 722        if (br_type & PERF_SAMPLE_BRANCH_COND)
 723                mask |= X86_BR_JCC;
 724
 725        if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
 726                if (!x86_pmu_has_lbr_callstack())
 727                        return -EOPNOTSUPP;
 728                if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
 729                        return -EINVAL;
 730                mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
 731                        X86_BR_CALL_STACK;
 732        }
 733
 734        if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
 735                mask |= X86_BR_IND_JMP;
 736
 737        if (br_type & PERF_SAMPLE_BRANCH_CALL)
 738                mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
 739
 740        if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
 741                mask |= X86_BR_TYPE_SAVE;
 742
 743        /*
 744         * stash actual user request into reg, it may
 745         * be used by fixup code for some CPU
 746         */
 747        event->hw.branch_reg.reg = mask;
 748        return 0;
 749}
 750
 751/*
 752 * setup the HW LBR filter
 753 * Used only when available, may not be enough to disambiguate
 754 * all branches, may need the help of the SW filter
 755 */
 756static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
 757{
 758        struct hw_perf_event_extra *reg;
 759        u64 br_type = event->attr.branch_sample_type;
 760        u64 mask = 0, v;
 761        int i;
 762
 763        for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
 764                if (!(br_type & (1ULL << i)))
 765                        continue;
 766
 767                v = x86_pmu.lbr_sel_map[i];
 768                if (v == LBR_NOT_SUPP)
 769                        return -EOPNOTSUPP;
 770
 771                if (v != LBR_IGN)
 772                        mask |= v;
 773        }
 774
 775        reg = &event->hw.branch_reg;
 776        reg->idx = EXTRA_REG_LBR;
 777
 778        /*
 779         * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
 780         * in suppress mode. So LBR_SELECT should be set to
 781         * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
 782         * But the 10th bit LBR_CALL_STACK does not operate
 783         * in suppress mode.
 784         */
 785        reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
 786
 787        if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
 788            (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
 789            (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
 790                reg->config |= LBR_NO_INFO;
 791
 792        return 0;
 793}
 794
 795int intel_pmu_setup_lbr_filter(struct perf_event *event)
 796{
 797        int ret = 0;
 798
 799        /*
 800         * no LBR on this PMU
 801         */
 802        if (!x86_pmu.lbr_nr)
 803                return -EOPNOTSUPP;
 804
 805        /*
 806         * setup SW LBR filter
 807         */
 808        ret = intel_pmu_setup_sw_lbr_filter(event);
 809        if (ret)
 810                return ret;
 811
 812        /*
 813         * setup HW LBR filter, if any
 814         */
 815        if (x86_pmu.lbr_sel_map)
 816                ret = intel_pmu_setup_hw_lbr_filter(event);
 817
 818        return ret;
 819}
 820
 821/*
 822 * return the type of control flow change at address "from"
 823 * instruction is not necessarily a branch (in case of interrupt).
 824 *
 825 * The branch type returned also includes the priv level of the
 826 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
 827 *
 828 * If a branch type is unknown OR the instruction cannot be
 829 * decoded (e.g., text page not present), then X86_BR_NONE is
 830 * returned.
 831 */
 832static int branch_type(unsigned long from, unsigned long to, int abort)
 833{
 834        struct insn insn;
 835        void *addr;
 836        int bytes_read, bytes_left;
 837        int ret = X86_BR_NONE;
 838        int ext, to_plm, from_plm;
 839        u8 buf[MAX_INSN_SIZE];
 840        int is64 = 0;
 841
 842        to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
 843        from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
 844
 845        /*
 846         * maybe zero if lbr did not fill up after a reset by the time
 847         * we get a PMU interrupt
 848         */
 849        if (from == 0 || to == 0)
 850                return X86_BR_NONE;
 851
 852        if (abort)
 853                return X86_BR_ABORT | to_plm;
 854
 855        if (from_plm == X86_BR_USER) {
 856                /*
 857                 * can happen if measuring at the user level only
 858                 * and we interrupt in a kernel thread, e.g., idle.
 859                 */
 860                if (!current->mm)
 861                        return X86_BR_NONE;
 862
 863                /* may fail if text not present */
 864                bytes_left = copy_from_user_nmi(buf, (void __user *)from,
 865                                                MAX_INSN_SIZE);
 866                bytes_read = MAX_INSN_SIZE - bytes_left;
 867                if (!bytes_read)
 868                        return X86_BR_NONE;
 869
 870                addr = buf;
 871        } else {
 872                /*
 873                 * The LBR logs any address in the IP, even if the IP just
 874                 * faulted. This means userspace can control the from address.
 875                 * Ensure we don't blindy read any address by validating it is
 876                 * a known text address.
 877                 */
 878                if (kernel_text_address(from)) {
 879                        addr = (void *)from;
 880                        /*
 881                         * Assume we can get the maximum possible size
 882                         * when grabbing kernel data.  This is not
 883                         * _strictly_ true since we could possibly be
 884                         * executing up next to a memory hole, but
 885                         * it is very unlikely to be a problem.
 886                         */
 887                        bytes_read = MAX_INSN_SIZE;
 888                } else {
 889                        return X86_BR_NONE;
 890                }
 891        }
 892
 893        /*
 894         * decoder needs to know the ABI especially
 895         * on 64-bit systems running 32-bit apps
 896         */
 897#ifdef CONFIG_X86_64
 898        is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
 899#endif
 900        insn_init(&insn, addr, bytes_read, is64);
 901        insn_get_opcode(&insn);
 902        if (!insn.opcode.got)
 903                return X86_BR_ABORT;
 904
 905        switch (insn.opcode.bytes[0]) {
 906        case 0xf:
 907                switch (insn.opcode.bytes[1]) {
 908                case 0x05: /* syscall */
 909                case 0x34: /* sysenter */
 910                        ret = X86_BR_SYSCALL;
 911                        break;
 912                case 0x07: /* sysret */
 913                case 0x35: /* sysexit */
 914                        ret = X86_BR_SYSRET;
 915                        break;
 916                case 0x80 ... 0x8f: /* conditional */
 917                        ret = X86_BR_JCC;
 918                        break;
 919                default:
 920                        ret = X86_BR_NONE;
 921                }
 922                break;
 923        case 0x70 ... 0x7f: /* conditional */
 924                ret = X86_BR_JCC;
 925                break;
 926        case 0xc2: /* near ret */
 927        case 0xc3: /* near ret */
 928        case 0xca: /* far ret */
 929        case 0xcb: /* far ret */
 930                ret = X86_BR_RET;
 931                break;
 932        case 0xcf: /* iret */
 933                ret = X86_BR_IRET;
 934                break;
 935        case 0xcc ... 0xce: /* int */
 936                ret = X86_BR_INT;
 937                break;
 938        case 0xe8: /* call near rel */
 939                insn_get_immediate(&insn);
 940                if (insn.immediate1.value == 0) {
 941                        /* zero length call */
 942                        ret = X86_BR_ZERO_CALL;
 943                        break;
 944                }
 945                /* fall through */
 946        case 0x9a: /* call far absolute */
 947                ret = X86_BR_CALL;
 948                break;
 949        case 0xe0 ... 0xe3: /* loop jmp */
 950                ret = X86_BR_JCC;
 951                break;
 952        case 0xe9 ... 0xeb: /* jmp */
 953                ret = X86_BR_JMP;
 954                break;
 955        case 0xff: /* call near absolute, call far absolute ind */
 956                insn_get_modrm(&insn);
 957                ext = (insn.modrm.bytes[0] >> 3) & 0x7;
 958                switch (ext) {
 959                case 2: /* near ind call */
 960                case 3: /* far ind call */
 961                        ret = X86_BR_IND_CALL;
 962                        break;
 963                case 4:
 964                case 5:
 965                        ret = X86_BR_IND_JMP;
 966                        break;
 967                }
 968                break;
 969        default:
 970                ret = X86_BR_NONE;
 971        }
 972        /*
 973         * interrupts, traps, faults (and thus ring transition) may
 974         * occur on any instructions. Thus, to classify them correctly,
 975         * we need to first look at the from and to priv levels. If they
 976         * are different and to is in the kernel, then it indicates
 977         * a ring transition. If the from instruction is not a ring
 978         * transition instr (syscall, systenter, int), then it means
 979         * it was a irq, trap or fault.
 980         *
 981         * we have no way of detecting kernel to kernel faults.
 982         */
 983        if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
 984            && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
 985                ret = X86_BR_IRQ;
 986
 987        /*
 988         * branch priv level determined by target as
 989         * is done by HW when LBR_SELECT is implemented
 990         */
 991        if (ret != X86_BR_NONE)
 992                ret |= to_plm;
 993
 994        return ret;
 995}
 996
 997#define X86_BR_TYPE_MAP_MAX     16
 998
 999static int branch_map[X86_BR_TYPE_MAP_MAX] = {
1000        PERF_BR_CALL,           /* X86_BR_CALL */
1001        PERF_BR_RET,            /* X86_BR_RET */
1002        PERF_BR_SYSCALL,        /* X86_BR_SYSCALL */
1003        PERF_BR_SYSRET,         /* X86_BR_SYSRET */
1004        PERF_BR_UNKNOWN,        /* X86_BR_INT */
1005        PERF_BR_UNKNOWN,        /* X86_BR_IRET */
1006        PERF_BR_COND,           /* X86_BR_JCC */
1007        PERF_BR_UNCOND,         /* X86_BR_JMP */
1008        PERF_BR_UNKNOWN,        /* X86_BR_IRQ */
1009        PERF_BR_IND_CALL,       /* X86_BR_IND_CALL */
1010        PERF_BR_UNKNOWN,        /* X86_BR_ABORT */
1011        PERF_BR_UNKNOWN,        /* X86_BR_IN_TX */
1012        PERF_BR_UNKNOWN,        /* X86_BR_NO_TX */
1013        PERF_BR_CALL,           /* X86_BR_ZERO_CALL */
1014        PERF_BR_UNKNOWN,        /* X86_BR_CALL_STACK */
1015        PERF_BR_IND,            /* X86_BR_IND_JMP */
1016};
1017
1018static int
1019common_branch_type(int type)
1020{
1021        int i;
1022
1023        type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
1024
1025        if (type) {
1026                i = __ffs(type);
1027                if (i < X86_BR_TYPE_MAP_MAX)
1028                        return branch_map[i];
1029        }
1030
1031        return PERF_BR_UNKNOWN;
1032}
1033
1034/*
1035 * implement actual branch filter based on user demand.
1036 * Hardware may not exactly satisfy that request, thus
1037 * we need to inspect opcodes. Mismatched branches are
1038 * discarded. Therefore, the number of branches returned
1039 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1040 */
1041static void
1042intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1043{
1044        u64 from, to;
1045        int br_sel = cpuc->br_sel;
1046        int i, j, type;
1047        bool compress = false;
1048
1049        /* if sampling all branches, then nothing to filter */
1050        if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1051            ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1052                return;
1053
1054        for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1055
1056                from = cpuc->lbr_entries[i].from;
1057                to = cpuc->lbr_entries[i].to;
1058
1059                type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1060                if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1061                        if (cpuc->lbr_entries[i].in_tx)
1062                                type |= X86_BR_IN_TX;
1063                        else
1064                                type |= X86_BR_NO_TX;
1065                }
1066
1067                /* if type does not correspond, then discard */
1068                if (type == X86_BR_NONE || (br_sel & type) != type) {
1069                        cpuc->lbr_entries[i].from = 0;
1070                        compress = true;
1071                }
1072
1073                if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1074                        cpuc->lbr_entries[i].type = common_branch_type(type);
1075        }
1076
1077        if (!compress)
1078                return;
1079
1080        /* remove all entries with from=0 */
1081        for (i = 0; i < cpuc->lbr_stack.nr; ) {
1082                if (!cpuc->lbr_entries[i].from) {
1083                        j = i;
1084                        while (++j < cpuc->lbr_stack.nr)
1085                                cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1086                        cpuc->lbr_stack.nr--;
1087                        if (!cpuc->lbr_entries[i].from)
1088                                continue;
1089                }
1090                i++;
1091        }
1092}
1093
1094void intel_pmu_store_pebs_lbrs(struct pebs_lbr *lbr)
1095{
1096        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1097        int i;
1098
1099        cpuc->lbr_stack.nr = x86_pmu.lbr_nr;
1100        for (i = 0; i < x86_pmu.lbr_nr; i++) {
1101                u64 info = lbr->lbr[i].info;
1102                struct perf_branch_entry *e = &cpuc->lbr_entries[i];
1103
1104                e->from         = lbr->lbr[i].from;
1105                e->to           = lbr->lbr[i].to;
1106                e->mispred      = !!(info & LBR_INFO_MISPRED);
1107                e->predicted    = !(info & LBR_INFO_MISPRED);
1108                e->in_tx        = !!(info & LBR_INFO_IN_TX);
1109                e->abort        = !!(info & LBR_INFO_ABORT);
1110                e->cycles       = info & LBR_INFO_CYCLES;
1111                e->reserved     = 0;
1112        }
1113        intel_pmu_lbr_filter(cpuc);
1114}
1115
1116/*
1117 * Map interface branch filters onto LBR filters
1118 */
1119static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1120        [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1121        [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1122        [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1123        [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1124        [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_REL_JMP
1125                                                | LBR_IND_JMP | LBR_FAR,
1126        /*
1127         * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1128         */
1129        [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1130         LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1131        /*
1132         * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1133         */
1134        [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1135        [PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1136        [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1137};
1138
1139static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1140        [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1141        [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1142        [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1143        [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1144        [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_FAR,
1145        [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = LBR_REL_CALL | LBR_IND_CALL
1146                                                | LBR_FAR,
1147        [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = LBR_IND_CALL,
1148        [PERF_SAMPLE_BRANCH_COND_SHIFT]         = LBR_JCC,
1149        [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = LBR_IND_JMP,
1150        [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = LBR_REL_CALL,
1151};
1152
1153static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1154        [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1155        [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1156        [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1157        [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1158        [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_FAR,
1159        [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = LBR_REL_CALL | LBR_IND_CALL
1160                                                | LBR_FAR,
1161        [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = LBR_IND_CALL,
1162        [PERF_SAMPLE_BRANCH_COND_SHIFT]         = LBR_JCC,
1163        [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = LBR_REL_CALL | LBR_IND_CALL
1164                                                | LBR_RETURN | LBR_CALL_STACK,
1165        [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = LBR_IND_JMP,
1166        [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = LBR_REL_CALL,
1167};
1168
1169/* core */
1170void __init intel_pmu_lbr_init_core(void)
1171{
1172        x86_pmu.lbr_nr     = 4;
1173        x86_pmu.lbr_tos    = MSR_LBR_TOS;
1174        x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1175        x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1176
1177        /*
1178         * SW branch filter usage:
1179         * - compensate for lack of HW filter
1180         */
1181}
1182
1183/* nehalem/westmere */
1184void __init intel_pmu_lbr_init_nhm(void)
1185{
1186        x86_pmu.lbr_nr     = 16;
1187        x86_pmu.lbr_tos    = MSR_LBR_TOS;
1188        x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1189        x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1190
1191        x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1192        x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1193
1194        /*
1195         * SW branch filter usage:
1196         * - workaround LBR_SEL errata (see above)
1197         * - support syscall, sysret capture.
1198         *   That requires LBR_FAR but that means far
1199         *   jmp need to be filtered out
1200         */
1201}
1202
1203/* sandy bridge */
1204void __init intel_pmu_lbr_init_snb(void)
1205{
1206        x86_pmu.lbr_nr   = 16;
1207        x86_pmu.lbr_tos  = MSR_LBR_TOS;
1208        x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1209        x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1210
1211        x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1212        x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1213
1214        /*
1215         * SW branch filter usage:
1216         * - support syscall, sysret capture.
1217         *   That requires LBR_FAR but that means far
1218         *   jmp need to be filtered out
1219         */
1220}
1221
1222/* haswell */
1223void intel_pmu_lbr_init_hsw(void)
1224{
1225        x86_pmu.lbr_nr   = 16;
1226        x86_pmu.lbr_tos  = MSR_LBR_TOS;
1227        x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1228        x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1229
1230        x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1231        x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1232
1233        if (lbr_from_signext_quirk_needed())
1234                static_branch_enable(&lbr_from_quirk_key);
1235}
1236
1237/* skylake */
1238__init void intel_pmu_lbr_init_skl(void)
1239{
1240        x86_pmu.lbr_nr   = 32;
1241        x86_pmu.lbr_tos  = MSR_LBR_TOS;
1242        x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1243        x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1244
1245        x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1246        x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1247
1248        /*
1249         * SW branch filter usage:
1250         * - support syscall, sysret capture.
1251         *   That requires LBR_FAR but that means far
1252         *   jmp need to be filtered out
1253         */
1254}
1255
1256/* atom */
1257void __init intel_pmu_lbr_init_atom(void)
1258{
1259        /*
1260         * only models starting at stepping 10 seems
1261         * to have an operational LBR which can freeze
1262         * on PMU interrupt
1263         */
1264        if (boot_cpu_data.x86_model == 28
1265            && boot_cpu_data.x86_stepping < 10) {
1266                pr_cont("LBR disabled due to erratum");
1267                return;
1268        }
1269
1270        x86_pmu.lbr_nr     = 8;
1271        x86_pmu.lbr_tos    = MSR_LBR_TOS;
1272        x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1273        x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1274
1275        /*
1276         * SW branch filter usage:
1277         * - compensate for lack of HW filter
1278         */
1279}
1280
1281/* slm */
1282void __init intel_pmu_lbr_init_slm(void)
1283{
1284        x86_pmu.lbr_nr     = 8;
1285        x86_pmu.lbr_tos    = MSR_LBR_TOS;
1286        x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1287        x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1288
1289        x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1290        x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1291
1292        /*
1293         * SW branch filter usage:
1294         * - compensate for lack of HW filter
1295         */
1296        pr_cont("8-deep LBR, ");
1297}
1298
1299/* Knights Landing */
1300void intel_pmu_lbr_init_knl(void)
1301{
1302        x86_pmu.lbr_nr     = 8;
1303        x86_pmu.lbr_tos    = MSR_LBR_TOS;
1304        x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1305        x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1306
1307        x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1308        x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1309
1310        /* Knights Landing does have MISPREDICT bit */
1311        if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1312                x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1313}
1314