linux/arch/x86/include/asm/pgtable-3level.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_X86_PGTABLE_3LEVEL_H
   3#define _ASM_X86_PGTABLE_3LEVEL_H
   4
   5#include <asm/atomic64_32.h>
   6
   7/*
   8 * Intel Physical Address Extension (PAE) Mode - three-level page
   9 * tables on PPro+ CPUs.
  10 *
  11 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
  12 */
  13
  14#define pte_ERROR(e)                                                    \
  15        pr_err("%s:%d: bad pte %p(%08lx%08lx)\n",                       \
  16               __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
  17#define pmd_ERROR(e)                                                    \
  18        pr_err("%s:%d: bad pmd %p(%016Lx)\n",                           \
  19               __FILE__, __LINE__, &(e), pmd_val(e))
  20#define pgd_ERROR(e)                                                    \
  21        pr_err("%s:%d: bad pgd %p(%016Lx)\n",                           \
  22               __FILE__, __LINE__, &(e), pgd_val(e))
  23
  24/* Rules for using set_pte: the pte being assigned *must* be
  25 * either not present or in a state where the hardware will
  26 * not attempt to update the pte.  In places where this is
  27 * not possible, use pte_get_and_clear to obtain the old pte
  28 * value and then use set_pte to update it.  -ben
  29 */
  30static inline void native_set_pte(pte_t *ptep, pte_t pte)
  31{
  32        ptep->pte_high = pte.pte_high;
  33        smp_wmb();
  34        ptep->pte_low = pte.pte_low;
  35}
  36
  37#define pmd_read_atomic pmd_read_atomic
  38/*
  39 * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
  40 * a "*pmdp" dereference done by gcc. Problem is, in certain places
  41 * where pte_offset_map_lock is called, concurrent page faults are
  42 * allowed, if the mmap_sem is hold for reading. An example is mincore
  43 * vs page faults vs MADV_DONTNEED. On the page fault side
  44 * pmd_populate rightfully does a set_64bit, but if we're reading the
  45 * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
  46 * because gcc will not read the 64bit of the pmd atomically. To fix
  47 * this all places running pmd_offset_map_lock() while holding the
  48 * mmap_sem in read mode, shall read the pmdp pointer using this
  49 * function to know if the pmd is null nor not, and in turn to know if
  50 * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
  51 * operations.
  52 *
  53 * Without THP if the mmap_sem is hold for reading, the pmd can only
  54 * transition from null to not null while pmd_read_atomic runs. So
  55 * we can always return atomic pmd values with this function.
  56 *
  57 * With THP if the mmap_sem is hold for reading, the pmd can become
  58 * trans_huge or none or point to a pte (and in turn become "stable")
  59 * at any time under pmd_read_atomic. We could read it really
  60 * atomically here with a atomic64_read for the THP enabled case (and
  61 * it would be a whole lot simpler), but to avoid using cmpxchg8b we
  62 * only return an atomic pmdval if the low part of the pmdval is later
  63 * found stable (i.e. pointing to a pte). And we're returning a none
  64 * pmdval if the low part of the pmd is none. In some cases the high
  65 * and low part of the pmdval returned may not be consistent if THP is
  66 * enabled (the low part may point to previously mapped hugepage,
  67 * while the high part may point to a more recently mapped hugepage),
  68 * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
  69 * of the pmd to be read atomically to decide if the pmd is unstable
  70 * or not, with the only exception of when the low part of the pmd is
  71 * zero in which case we return a none pmd.
  72 */
  73static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
  74{
  75        pmdval_t ret;
  76        u32 *tmp = (u32 *)pmdp;
  77
  78        ret = (pmdval_t) (*tmp);
  79        if (ret) {
  80                /*
  81                 * If the low part is null, we must not read the high part
  82                 * or we can end up with a partial pmd.
  83                 */
  84                smp_rmb();
  85                ret |= ((pmdval_t)*(tmp + 1)) << 32;
  86        }
  87
  88        return (pmd_t) { ret };
  89}
  90
  91static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
  92{
  93        set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
  94}
  95
  96static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
  97{
  98        set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
  99}
 100
 101static inline void native_set_pud(pud_t *pudp, pud_t pud)
 102{
 103#ifdef CONFIG_PAGE_TABLE_ISOLATION
 104        pud.p4d.pgd = pti_set_user_pgtbl(&pudp->p4d.pgd, pud.p4d.pgd);
 105#endif
 106        set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
 107}
 108
 109/*
 110 * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
 111 * entry, so clear the bottom half first and enforce ordering with a compiler
 112 * barrier.
 113 */
 114static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
 115                                    pte_t *ptep)
 116{
 117        ptep->pte_low = 0;
 118        smp_wmb();
 119        ptep->pte_high = 0;
 120}
 121
 122static inline void native_pmd_clear(pmd_t *pmd)
 123{
 124        u32 *tmp = (u32 *)pmd;
 125        *tmp = 0;
 126        smp_wmb();
 127        *(tmp + 1) = 0;
 128}
 129
 130static inline void native_pud_clear(pud_t *pudp)
 131{
 132}
 133
 134static inline void pud_clear(pud_t *pudp)
 135{
 136        set_pud(pudp, __pud(0));
 137
 138        /*
 139         * According to Intel App note "TLBs, Paging-Structure Caches,
 140         * and Their Invalidation", April 2007, document 317080-001,
 141         * section 8.1: in PAE mode we explicitly have to flush the
 142         * TLB via cr3 if the top-level pgd is changed...
 143         *
 144         * Currently all places where pud_clear() is called either have
 145         * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
 146         * pud_clear_bad()), so we don't need TLB flush here.
 147         */
 148}
 149
 150#ifdef CONFIG_SMP
 151static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
 152{
 153        pte_t res;
 154
 155        res.pte = (pteval_t)arch_atomic64_xchg((atomic64_t *)ptep, 0);
 156
 157        return res;
 158}
 159#else
 160#define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
 161#endif
 162
 163union split_pmd {
 164        struct {
 165                u32 pmd_low;
 166                u32 pmd_high;
 167        };
 168        pmd_t pmd;
 169};
 170
 171#ifdef CONFIG_SMP
 172static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
 173{
 174        union split_pmd res, *orig = (union split_pmd *)pmdp;
 175
 176        /* xchg acts as a barrier before setting of the high bits */
 177        res.pmd_low = xchg(&orig->pmd_low, 0);
 178        res.pmd_high = orig->pmd_high;
 179        orig->pmd_high = 0;
 180
 181        return res.pmd;
 182}
 183#else
 184#define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
 185#endif
 186
 187#ifndef pmdp_establish
 188#define pmdp_establish pmdp_establish
 189static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
 190                unsigned long address, pmd_t *pmdp, pmd_t pmd)
 191{
 192        pmd_t old;
 193
 194        /*
 195         * If pmd has present bit cleared we can get away without expensive
 196         * cmpxchg64: we can update pmdp half-by-half without racing with
 197         * anybody.
 198         */
 199        if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
 200                union split_pmd old, new, *ptr;
 201
 202                ptr = (union split_pmd *)pmdp;
 203
 204                new.pmd = pmd;
 205
 206                /* xchg acts as a barrier before setting of the high bits */
 207                old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low);
 208                old.pmd_high = ptr->pmd_high;
 209                ptr->pmd_high = new.pmd_high;
 210                return old.pmd;
 211        }
 212
 213        do {
 214                old = *pmdp;
 215        } while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
 216
 217        return old;
 218}
 219#endif
 220
 221#ifdef CONFIG_SMP
 222union split_pud {
 223        struct {
 224                u32 pud_low;
 225                u32 pud_high;
 226        };
 227        pud_t pud;
 228};
 229
 230static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
 231{
 232        union split_pud res, *orig = (union split_pud *)pudp;
 233
 234#ifdef CONFIG_PAGE_TABLE_ISOLATION
 235        pti_set_user_pgtbl(&pudp->p4d.pgd, __pgd(0));
 236#endif
 237
 238        /* xchg acts as a barrier before setting of the high bits */
 239        res.pud_low = xchg(&orig->pud_low, 0);
 240        res.pud_high = orig->pud_high;
 241        orig->pud_high = 0;
 242
 243        return res.pud;
 244}
 245#else
 246#define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
 247#endif
 248
 249/* Encode and de-code a swap entry */
 250#define SWP_TYPE_BITS           5
 251
 252#define SWP_OFFSET_FIRST_BIT    (_PAGE_BIT_PROTNONE + 1)
 253
 254/* We always extract/encode the offset by shifting it all the way up, and then down again */
 255#define SWP_OFFSET_SHIFT        (SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS)
 256
 257#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
 258#define __swp_type(x)                   (((x).val) & 0x1f)
 259#define __swp_offset(x)                 ((x).val >> 5)
 260#define __swp_entry(type, offset)       ((swp_entry_t){(type) | (offset) << 5})
 261
 262/*
 263 * Normally, __swp_entry() converts from arch-independent swp_entry_t to
 264 * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result
 265 * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the
 266 * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to
 267 * __swp_entry_to_pte() through the following helper macro based on 64bit
 268 * __swp_entry().
 269 */
 270#define __swp_pteval_entry(type, offset) ((pteval_t) { \
 271        (~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \
 272        | ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) })
 273
 274#define __swp_entry_to_pte(x)   ((pte_t){ .pte = \
 275                __swp_pteval_entry(__swp_type(x), __swp_offset(x)) })
 276/*
 277 * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent
 278 * swp_entry_t, but also has to convert it from 64bit to the 32bit
 279 * intermediate representation, using the following macros based on 64bit
 280 * __swp_type() and __swp_offset().
 281 */
 282#define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS)))
 283#define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT))
 284
 285#define __pte_to_swp_entry(pte) (__swp_entry(__pteval_swp_type(pte), \
 286                                             __pteval_swp_offset(pte)))
 287
 288#include <asm/pgtable-invert.h>
 289
 290#endif /* _ASM_X86_PGTABLE_3LEVEL_H */
 291