linux/arch/x86/include/asm/processor.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_X86_PROCESSOR_H
   3#define _ASM_X86_PROCESSOR_H
   4
   5#include <asm/processor-flags.h>
   6
   7/* Forward declaration, a strange C thing */
   8struct task_struct;
   9struct mm_struct;
  10struct vm86;
  11
  12#include <asm/math_emu.h>
  13#include <asm/segment.h>
  14#include <asm/types.h>
  15#include <uapi/asm/sigcontext.h>
  16#include <asm/current.h>
  17#include <asm/cpufeatures.h>
  18#include <asm/page.h>
  19#include <asm/pgtable_types.h>
  20#include <asm/percpu.h>
  21#include <asm/msr.h>
  22#include <asm/desc_defs.h>
  23#include <asm/nops.h>
  24#include <asm/special_insns.h>
  25#include <asm/fpu/types.h>
  26#include <asm/unwind_hints.h>
  27
  28#include <linux/personality.h>
  29#include <linux/cache.h>
  30#include <linux/threads.h>
  31#include <linux/math64.h>
  32#include <linux/err.h>
  33#include <linux/irqflags.h>
  34#include <linux/mem_encrypt.h>
  35
  36/*
  37 * We handle most unaligned accesses in hardware.  On the other hand
  38 * unaligned DMA can be quite expensive on some Nehalem processors.
  39 *
  40 * Based on this we disable the IP header alignment in network drivers.
  41 */
  42#define NET_IP_ALIGN    0
  43
  44#define HBP_NUM 4
  45
  46/*
  47 * These alignment constraints are for performance in the vSMP case,
  48 * but in the task_struct case we must also meet hardware imposed
  49 * alignment requirements of the FPU state:
  50 */
  51#ifdef CONFIG_X86_VSMP
  52# define ARCH_MIN_TASKALIGN             (1 << INTERNODE_CACHE_SHIFT)
  53# define ARCH_MIN_MMSTRUCT_ALIGN        (1 << INTERNODE_CACHE_SHIFT)
  54#else
  55# define ARCH_MIN_TASKALIGN             __alignof__(union fpregs_state)
  56# define ARCH_MIN_MMSTRUCT_ALIGN        0
  57#endif
  58
  59enum tlb_infos {
  60        ENTRIES,
  61        NR_INFO
  62};
  63
  64extern u16 __read_mostly tlb_lli_4k[NR_INFO];
  65extern u16 __read_mostly tlb_lli_2m[NR_INFO];
  66extern u16 __read_mostly tlb_lli_4m[NR_INFO];
  67extern u16 __read_mostly tlb_lld_4k[NR_INFO];
  68extern u16 __read_mostly tlb_lld_2m[NR_INFO];
  69extern u16 __read_mostly tlb_lld_4m[NR_INFO];
  70extern u16 __read_mostly tlb_lld_1g[NR_INFO];
  71
  72/*
  73 *  CPU type and hardware bug flags. Kept separately for each CPU.
  74 *  Members of this structure are referenced in head_32.S, so think twice
  75 *  before touching them. [mj]
  76 */
  77
  78struct cpuinfo_x86 {
  79        __u8                    x86;            /* CPU family */
  80        __u8                    x86_vendor;     /* CPU vendor */
  81        __u8                    x86_model;
  82        __u8                    x86_stepping;
  83#ifdef CONFIG_X86_64
  84        /* Number of 4K pages in DTLB/ITLB combined(in pages): */
  85        int                     x86_tlbsize;
  86#endif
  87        __u8                    x86_virt_bits;
  88        __u8                    x86_phys_bits;
  89        /* CPUID returned core id bits: */
  90        __u8                    x86_coreid_bits;
  91        __u8                    cu_id;
  92        /* Max extended CPUID function supported: */
  93        __u32                   extended_cpuid_level;
  94        /* Maximum supported CPUID level, -1=no CPUID: */
  95        int                     cpuid_level;
  96        __u32                   x86_capability[NCAPINTS + NBUGINTS];
  97        char                    x86_vendor_id[16];
  98        char                    x86_model_id[64];
  99        /* in KB - valid for CPUS which support this call: */
 100        unsigned int            x86_cache_size;
 101        int                     x86_cache_alignment;    /* In bytes */
 102        /* Cache QoS architectural values: */
 103        int                     x86_cache_max_rmid;     /* max index */
 104        int                     x86_cache_occ_scale;    /* scale to bytes */
 105        int                     x86_power;
 106        unsigned long           loops_per_jiffy;
 107        /* cpuid returned max cores value: */
 108        u16                     x86_max_cores;
 109        u16                     apicid;
 110        u16                     initial_apicid;
 111        u16                     x86_clflush_size;
 112        /* number of cores as seen by the OS: */
 113        u16                     booted_cores;
 114        /* Physical processor id: */
 115        u16                     phys_proc_id;
 116        /* Logical processor id: */
 117        u16                     logical_proc_id;
 118        /* Core id: */
 119        u16                     cpu_core_id;
 120        u16                     cpu_die_id;
 121        u16                     logical_die_id;
 122        /* Index into per_cpu list: */
 123        u16                     cpu_index;
 124        u32                     microcode;
 125        /* Address space bits used by the cache internally */
 126        u8                      x86_cache_bits;
 127        unsigned                initialized : 1;
 128} __randomize_layout;
 129
 130struct cpuid_regs {
 131        u32 eax, ebx, ecx, edx;
 132};
 133
 134enum cpuid_regs_idx {
 135        CPUID_EAX = 0,
 136        CPUID_EBX,
 137        CPUID_ECX,
 138        CPUID_EDX,
 139};
 140
 141#define X86_VENDOR_INTEL        0
 142#define X86_VENDOR_CYRIX        1
 143#define X86_VENDOR_AMD          2
 144#define X86_VENDOR_UMC          3
 145#define X86_VENDOR_CENTAUR      5
 146#define X86_VENDOR_TRANSMETA    7
 147#define X86_VENDOR_NSC          8
 148#define X86_VENDOR_HYGON        9
 149#define X86_VENDOR_ZHAOXIN      10
 150#define X86_VENDOR_NUM          11
 151
 152#define X86_VENDOR_UNKNOWN      0xff
 153
 154/*
 155 * capabilities of CPUs
 156 */
 157extern struct cpuinfo_x86       boot_cpu_data;
 158extern struct cpuinfo_x86       new_cpu_data;
 159
 160extern struct x86_hw_tss        doublefault_tss;
 161extern __u32                    cpu_caps_cleared[NCAPINTS + NBUGINTS];
 162extern __u32                    cpu_caps_set[NCAPINTS + NBUGINTS];
 163
 164#ifdef CONFIG_SMP
 165DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 166#define cpu_data(cpu)           per_cpu(cpu_info, cpu)
 167#else
 168#define cpu_info                boot_cpu_data
 169#define cpu_data(cpu)           boot_cpu_data
 170#endif
 171
 172extern const struct seq_operations cpuinfo_op;
 173
 174#define cache_line_size()       (boot_cpu_data.x86_cache_alignment)
 175
 176extern void cpu_detect(struct cpuinfo_x86 *c);
 177
 178static inline unsigned long long l1tf_pfn_limit(void)
 179{
 180        return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
 181}
 182
 183extern void early_cpu_init(void);
 184extern void identify_boot_cpu(void);
 185extern void identify_secondary_cpu(struct cpuinfo_x86 *);
 186extern void print_cpu_info(struct cpuinfo_x86 *);
 187void print_cpu_msr(struct cpuinfo_x86 *);
 188
 189#ifdef CONFIG_X86_32
 190extern int have_cpuid_p(void);
 191#else
 192static inline int have_cpuid_p(void)
 193{
 194        return 1;
 195}
 196#endif
 197static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
 198                                unsigned int *ecx, unsigned int *edx)
 199{
 200        /* ecx is often an input as well as an output. */
 201        asm volatile("cpuid"
 202            : "=a" (*eax),
 203              "=b" (*ebx),
 204              "=c" (*ecx),
 205              "=d" (*edx)
 206            : "0" (*eax), "2" (*ecx)
 207            : "memory");
 208}
 209
 210#define native_cpuid_reg(reg)                                   \
 211static inline unsigned int native_cpuid_##reg(unsigned int op)  \
 212{                                                               \
 213        unsigned int eax = op, ebx, ecx = 0, edx;               \
 214                                                                \
 215        native_cpuid(&eax, &ebx, &ecx, &edx);                   \
 216                                                                \
 217        return reg;                                             \
 218}
 219
 220/*
 221 * Native CPUID functions returning a single datum.
 222 */
 223native_cpuid_reg(eax)
 224native_cpuid_reg(ebx)
 225native_cpuid_reg(ecx)
 226native_cpuid_reg(edx)
 227
 228/*
 229 * Friendlier CR3 helpers.
 230 */
 231static inline unsigned long read_cr3_pa(void)
 232{
 233        return __read_cr3() & CR3_ADDR_MASK;
 234}
 235
 236static inline unsigned long native_read_cr3_pa(void)
 237{
 238        return __native_read_cr3() & CR3_ADDR_MASK;
 239}
 240
 241static inline void load_cr3(pgd_t *pgdir)
 242{
 243        write_cr3(__sme_pa(pgdir));
 244}
 245
 246/*
 247 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
 248 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
 249 * unrelated to the task-switch mechanism:
 250 */
 251#ifdef CONFIG_X86_32
 252/* This is the TSS defined by the hardware. */
 253struct x86_hw_tss {
 254        unsigned short          back_link, __blh;
 255        unsigned long           sp0;
 256        unsigned short          ss0, __ss0h;
 257        unsigned long           sp1;
 258
 259        /*
 260         * We don't use ring 1, so ss1 is a convenient scratch space in
 261         * the same cacheline as sp0.  We use ss1 to cache the value in
 262         * MSR_IA32_SYSENTER_CS.  When we context switch
 263         * MSR_IA32_SYSENTER_CS, we first check if the new value being
 264         * written matches ss1, and, if it's not, then we wrmsr the new
 265         * value and update ss1.
 266         *
 267         * The only reason we context switch MSR_IA32_SYSENTER_CS is
 268         * that we set it to zero in vm86 tasks to avoid corrupting the
 269         * stack if we were to go through the sysenter path from vm86
 270         * mode.
 271         */
 272        unsigned short          ss1;    /* MSR_IA32_SYSENTER_CS */
 273
 274        unsigned short          __ss1h;
 275        unsigned long           sp2;
 276        unsigned short          ss2, __ss2h;
 277        unsigned long           __cr3;
 278        unsigned long           ip;
 279        unsigned long           flags;
 280        unsigned long           ax;
 281        unsigned long           cx;
 282        unsigned long           dx;
 283        unsigned long           bx;
 284        unsigned long           sp;
 285        unsigned long           bp;
 286        unsigned long           si;
 287        unsigned long           di;
 288        unsigned short          es, __esh;
 289        unsigned short          cs, __csh;
 290        unsigned short          ss, __ssh;
 291        unsigned short          ds, __dsh;
 292        unsigned short          fs, __fsh;
 293        unsigned short          gs, __gsh;
 294        unsigned short          ldt, __ldth;
 295        unsigned short          trace;
 296        unsigned short          io_bitmap_base;
 297
 298} __attribute__((packed));
 299#else
 300struct x86_hw_tss {
 301        u32                     reserved1;
 302        u64                     sp0;
 303
 304        /*
 305         * We store cpu_current_top_of_stack in sp1 so it's always accessible.
 306         * Linux does not use ring 1, so sp1 is not otherwise needed.
 307         */
 308        u64                     sp1;
 309
 310        /*
 311         * Since Linux does not use ring 2, the 'sp2' slot is unused by
 312         * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
 313         * the user RSP value.
 314         */
 315        u64                     sp2;
 316
 317        u64                     reserved2;
 318        u64                     ist[7];
 319        u32                     reserved3;
 320        u32                     reserved4;
 321        u16                     reserved5;
 322        u16                     io_bitmap_base;
 323
 324} __attribute__((packed));
 325#endif
 326
 327/*
 328 * IO-bitmap sizes:
 329 */
 330#define IO_BITMAP_BITS                  65536
 331#define IO_BITMAP_BYTES                 (IO_BITMAP_BITS/8)
 332#define IO_BITMAP_LONGS                 (IO_BITMAP_BYTES/sizeof(long))
 333#define IO_BITMAP_OFFSET                (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
 334#define INVALID_IO_BITMAP_OFFSET        0x8000
 335
 336struct entry_stack {
 337        unsigned long           words[64];
 338};
 339
 340struct entry_stack_page {
 341        struct entry_stack stack;
 342} __aligned(PAGE_SIZE);
 343
 344struct tss_struct {
 345        /*
 346         * The fixed hardware portion.  This must not cross a page boundary
 347         * at risk of violating the SDM's advice and potentially triggering
 348         * errata.
 349         */
 350        struct x86_hw_tss       x86_tss;
 351
 352        /*
 353         * The extra 1 is there because the CPU will access an
 354         * additional byte beyond the end of the IO permission
 355         * bitmap. The extra byte must be all 1 bits, and must
 356         * be within the limit.
 357         */
 358        unsigned long           io_bitmap[IO_BITMAP_LONGS + 1];
 359} __aligned(PAGE_SIZE);
 360
 361DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
 362
 363/*
 364 * sizeof(unsigned long) coming from an extra "long" at the end
 365 * of the iobitmap.
 366 *
 367 * -1? seg base+limit should be pointing to the address of the
 368 * last valid byte
 369 */
 370#define __KERNEL_TSS_LIMIT      \
 371        (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
 372
 373/* Per CPU interrupt stacks */
 374struct irq_stack {
 375        char            stack[IRQ_STACK_SIZE];
 376} __aligned(IRQ_STACK_SIZE);
 377
 378DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
 379
 380#ifdef CONFIG_X86_32
 381DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
 382#else
 383/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
 384#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
 385#endif
 386
 387#ifdef CONFIG_X86_64
 388struct fixed_percpu_data {
 389        /*
 390         * GCC hardcodes the stack canary as %gs:40.  Since the
 391         * irq_stack is the object at %gs:0, we reserve the bottom
 392         * 48 bytes of the irq stack for the canary.
 393         */
 394        char            gs_base[40];
 395        unsigned long   stack_canary;
 396};
 397
 398DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
 399DECLARE_INIT_PER_CPU(fixed_percpu_data);
 400
 401static inline unsigned long cpu_kernelmode_gs_base(int cpu)
 402{
 403        return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
 404}
 405
 406DECLARE_PER_CPU(unsigned int, irq_count);
 407extern asmlinkage void ignore_sysret(void);
 408
 409#if IS_ENABLED(CONFIG_KVM)
 410/* Save actual FS/GS selectors and bases to current->thread */
 411void save_fsgs_for_kvm(void);
 412#endif
 413#else   /* X86_64 */
 414#ifdef CONFIG_STACKPROTECTOR
 415/*
 416 * Make sure stack canary segment base is cached-aligned:
 417 *   "For Intel Atom processors, avoid non zero segment base address
 418 *    that is not aligned to cache line boundary at all cost."
 419 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
 420 */
 421struct stack_canary {
 422        char __pad[20];         /* canary at %gs:20 */
 423        unsigned long canary;
 424};
 425DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
 426#endif
 427/* Per CPU softirq stack pointer */
 428DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
 429#endif  /* X86_64 */
 430
 431extern unsigned int fpu_kernel_xstate_size;
 432extern unsigned int fpu_user_xstate_size;
 433
 434struct perf_event;
 435
 436typedef struct {
 437        unsigned long           seg;
 438} mm_segment_t;
 439
 440struct thread_struct {
 441        /* Cached TLS descriptors: */
 442        struct desc_struct      tls_array[GDT_ENTRY_TLS_ENTRIES];
 443#ifdef CONFIG_X86_32
 444        unsigned long           sp0;
 445#endif
 446        unsigned long           sp;
 447#ifdef CONFIG_X86_32
 448        unsigned long           sysenter_cs;
 449#else
 450        unsigned short          es;
 451        unsigned short          ds;
 452        unsigned short          fsindex;
 453        unsigned short          gsindex;
 454#endif
 455
 456#ifdef CONFIG_X86_64
 457        unsigned long           fsbase;
 458        unsigned long           gsbase;
 459#else
 460        /*
 461         * XXX: this could presumably be unsigned short.  Alternatively,
 462         * 32-bit kernels could be taught to use fsindex instead.
 463         */
 464        unsigned long fs;
 465        unsigned long gs;
 466#endif
 467
 468        /* Save middle states of ptrace breakpoints */
 469        struct perf_event       *ptrace_bps[HBP_NUM];
 470        /* Debug status used for traps, single steps, etc... */
 471        unsigned long           debugreg6;
 472        /* Keep track of the exact dr7 value set by the user */
 473        unsigned long           ptrace_dr7;
 474        /* Fault info: */
 475        unsigned long           cr2;
 476        unsigned long           trap_nr;
 477        unsigned long           error_code;
 478#ifdef CONFIG_VM86
 479        /* Virtual 86 mode info */
 480        struct vm86             *vm86;
 481#endif
 482        /* IO permissions: */
 483        unsigned long           *io_bitmap_ptr;
 484        unsigned long           iopl;
 485        /* Max allowed port in the bitmap, in bytes: */
 486        unsigned                io_bitmap_max;
 487
 488        mm_segment_t            addr_limit;
 489
 490        unsigned int            sig_on_uaccess_err:1;
 491        unsigned int            uaccess_err:1;  /* uaccess failed */
 492
 493        /* Floating point and extended processor state */
 494        struct fpu              fpu;
 495        /*
 496         * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
 497         * the end.
 498         */
 499};
 500
 501/* Whitelist the FPU state from the task_struct for hardened usercopy. */
 502static inline void arch_thread_struct_whitelist(unsigned long *offset,
 503                                                unsigned long *size)
 504{
 505        *offset = offsetof(struct thread_struct, fpu.state);
 506        *size = fpu_kernel_xstate_size;
 507}
 508
 509/*
 510 * Thread-synchronous status.
 511 *
 512 * This is different from the flags in that nobody else
 513 * ever touches our thread-synchronous status, so we don't
 514 * have to worry about atomic accesses.
 515 */
 516#define TS_COMPAT               0x0002  /* 32bit syscall active (64BIT)*/
 517
 518/*
 519 * Set IOPL bits in EFLAGS from given mask
 520 */
 521static inline void native_set_iopl_mask(unsigned mask)
 522{
 523#ifdef CONFIG_X86_32
 524        unsigned int reg;
 525
 526        asm volatile ("pushfl;"
 527                      "popl %0;"
 528                      "andl %1, %0;"
 529                      "orl %2, %0;"
 530                      "pushl %0;"
 531                      "popfl"
 532                      : "=&r" (reg)
 533                      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
 534#endif
 535}
 536
 537static inline void
 538native_load_sp0(unsigned long sp0)
 539{
 540        this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
 541}
 542
 543static inline void native_swapgs(void)
 544{
 545#ifdef CONFIG_X86_64
 546        asm volatile("swapgs" ::: "memory");
 547#endif
 548}
 549
 550static inline unsigned long current_top_of_stack(void)
 551{
 552        /*
 553         *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
 554         *  and around vm86 mode and sp0 on x86_64 is special because of the
 555         *  entry trampoline.
 556         */
 557        return this_cpu_read_stable(cpu_current_top_of_stack);
 558}
 559
 560static inline bool on_thread_stack(void)
 561{
 562        return (unsigned long)(current_top_of_stack() -
 563                               current_stack_pointer) < THREAD_SIZE;
 564}
 565
 566#ifdef CONFIG_PARAVIRT_XXL
 567#include <asm/paravirt.h>
 568#else
 569#define __cpuid                 native_cpuid
 570
 571static inline void load_sp0(unsigned long sp0)
 572{
 573        native_load_sp0(sp0);
 574}
 575
 576#define set_iopl_mask native_set_iopl_mask
 577#endif /* CONFIG_PARAVIRT_XXL */
 578
 579/* Free all resources held by a thread. */
 580extern void release_thread(struct task_struct *);
 581
 582unsigned long get_wchan(struct task_struct *p);
 583
 584/*
 585 * Generic CPUID function
 586 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
 587 * resulting in stale register contents being returned.
 588 */
 589static inline void cpuid(unsigned int op,
 590                         unsigned int *eax, unsigned int *ebx,
 591                         unsigned int *ecx, unsigned int *edx)
 592{
 593        *eax = op;
 594        *ecx = 0;
 595        __cpuid(eax, ebx, ecx, edx);
 596}
 597
 598/* Some CPUID calls want 'count' to be placed in ecx */
 599static inline void cpuid_count(unsigned int op, int count,
 600                               unsigned int *eax, unsigned int *ebx,
 601                               unsigned int *ecx, unsigned int *edx)
 602{
 603        *eax = op;
 604        *ecx = count;
 605        __cpuid(eax, ebx, ecx, edx);
 606}
 607
 608/*
 609 * CPUID functions returning a single datum
 610 */
 611static inline unsigned int cpuid_eax(unsigned int op)
 612{
 613        unsigned int eax, ebx, ecx, edx;
 614
 615        cpuid(op, &eax, &ebx, &ecx, &edx);
 616
 617        return eax;
 618}
 619
 620static inline unsigned int cpuid_ebx(unsigned int op)
 621{
 622        unsigned int eax, ebx, ecx, edx;
 623
 624        cpuid(op, &eax, &ebx, &ecx, &edx);
 625
 626        return ebx;
 627}
 628
 629static inline unsigned int cpuid_ecx(unsigned int op)
 630{
 631        unsigned int eax, ebx, ecx, edx;
 632
 633        cpuid(op, &eax, &ebx, &ecx, &edx);
 634
 635        return ecx;
 636}
 637
 638static inline unsigned int cpuid_edx(unsigned int op)
 639{
 640        unsigned int eax, ebx, ecx, edx;
 641
 642        cpuid(op, &eax, &ebx, &ecx, &edx);
 643
 644        return edx;
 645}
 646
 647/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
 648static __always_inline void rep_nop(void)
 649{
 650        asm volatile("rep; nop" ::: "memory");
 651}
 652
 653static __always_inline void cpu_relax(void)
 654{
 655        rep_nop();
 656}
 657
 658/*
 659 * This function forces the icache and prefetched instruction stream to
 660 * catch up with reality in two very specific cases:
 661 *
 662 *  a) Text was modified using one virtual address and is about to be executed
 663 *     from the same physical page at a different virtual address.
 664 *
 665 *  b) Text was modified on a different CPU, may subsequently be
 666 *     executed on this CPU, and you want to make sure the new version
 667 *     gets executed.  This generally means you're calling this in a IPI.
 668 *
 669 * If you're calling this for a different reason, you're probably doing
 670 * it wrong.
 671 */
 672static inline void sync_core(void)
 673{
 674        /*
 675         * There are quite a few ways to do this.  IRET-to-self is nice
 676         * because it works on every CPU, at any CPL (so it's compatible
 677         * with paravirtualization), and it never exits to a hypervisor.
 678         * The only down sides are that it's a bit slow (it seems to be
 679         * a bit more than 2x slower than the fastest options) and that
 680         * it unmasks NMIs.  The "push %cs" is needed because, in
 681         * paravirtual environments, __KERNEL_CS may not be a valid CS
 682         * value when we do IRET directly.
 683         *
 684         * In case NMI unmasking or performance ever becomes a problem,
 685         * the next best option appears to be MOV-to-CR2 and an
 686         * unconditional jump.  That sequence also works on all CPUs,
 687         * but it will fault at CPL3 (i.e. Xen PV).
 688         *
 689         * CPUID is the conventional way, but it's nasty: it doesn't
 690         * exist on some 486-like CPUs, and it usually exits to a
 691         * hypervisor.
 692         *
 693         * Like all of Linux's memory ordering operations, this is a
 694         * compiler barrier as well.
 695         */
 696#ifdef CONFIG_X86_32
 697        asm volatile (
 698                "pushfl\n\t"
 699                "pushl %%cs\n\t"
 700                "pushl $1f\n\t"
 701                "iret\n\t"
 702                "1:"
 703                : ASM_CALL_CONSTRAINT : : "memory");
 704#else
 705        unsigned int tmp;
 706
 707        asm volatile (
 708                UNWIND_HINT_SAVE
 709                "mov %%ss, %0\n\t"
 710                "pushq %q0\n\t"
 711                "pushq %%rsp\n\t"
 712                "addq $8, (%%rsp)\n\t"
 713                "pushfq\n\t"
 714                "mov %%cs, %0\n\t"
 715                "pushq %q0\n\t"
 716                "pushq $1f\n\t"
 717                "iretq\n\t"
 718                UNWIND_HINT_RESTORE
 719                "1:"
 720                : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
 721#endif
 722}
 723
 724extern void select_idle_routine(const struct cpuinfo_x86 *c);
 725extern void amd_e400_c1e_apic_setup(void);
 726
 727extern unsigned long            boot_option_idle_override;
 728
 729enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
 730                         IDLE_POLL};
 731
 732extern void enable_sep_cpu(void);
 733extern int sysenter_setup(void);
 734
 735
 736/* Defined in head.S */
 737extern struct desc_ptr          early_gdt_descr;
 738
 739extern void switch_to_new_gdt(int);
 740extern void load_direct_gdt(int);
 741extern void load_fixmap_gdt(int);
 742extern void load_percpu_segment(int);
 743extern void cpu_init(void);
 744extern void cr4_init(void);
 745
 746static inline unsigned long get_debugctlmsr(void)
 747{
 748        unsigned long debugctlmsr = 0;
 749
 750#ifndef CONFIG_X86_DEBUGCTLMSR
 751        if (boot_cpu_data.x86 < 6)
 752                return 0;
 753#endif
 754        rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
 755
 756        return debugctlmsr;
 757}
 758
 759static inline void update_debugctlmsr(unsigned long debugctlmsr)
 760{
 761#ifndef CONFIG_X86_DEBUGCTLMSR
 762        if (boot_cpu_data.x86 < 6)
 763                return;
 764#endif
 765        wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
 766}
 767
 768extern void set_task_blockstep(struct task_struct *task, bool on);
 769
 770/* Boot loader type from the setup header: */
 771extern int                      bootloader_type;
 772extern int                      bootloader_version;
 773
 774extern char                     ignore_fpu_irq;
 775
 776#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
 777#define ARCH_HAS_PREFETCHW
 778#define ARCH_HAS_SPINLOCK_PREFETCH
 779
 780#ifdef CONFIG_X86_32
 781# define BASE_PREFETCH          ""
 782# define ARCH_HAS_PREFETCH
 783#else
 784# define BASE_PREFETCH          "prefetcht0 %P1"
 785#endif
 786
 787/*
 788 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
 789 *
 790 * It's not worth to care about 3dnow prefetches for the K6
 791 * because they are microcoded there and very slow.
 792 */
 793static inline void prefetch(const void *x)
 794{
 795        alternative_input(BASE_PREFETCH, "prefetchnta %P1",
 796                          X86_FEATURE_XMM,
 797                          "m" (*(const char *)x));
 798}
 799
 800/*
 801 * 3dnow prefetch to get an exclusive cache line.
 802 * Useful for spinlocks to avoid one state transition in the
 803 * cache coherency protocol:
 804 */
 805static inline void prefetchw(const void *x)
 806{
 807        alternative_input(BASE_PREFETCH, "prefetchw %P1",
 808                          X86_FEATURE_3DNOWPREFETCH,
 809                          "m" (*(const char *)x));
 810}
 811
 812static inline void spin_lock_prefetch(const void *x)
 813{
 814        prefetchw(x);
 815}
 816
 817#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
 818                           TOP_OF_KERNEL_STACK_PADDING)
 819
 820#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
 821
 822#define task_pt_regs(task) \
 823({                                                                      \
 824        unsigned long __ptr = (unsigned long)task_stack_page(task);     \
 825        __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;             \
 826        ((struct pt_regs *)__ptr) - 1;                                  \
 827})
 828
 829#ifdef CONFIG_X86_32
 830/*
 831 * User space process size: 3GB (default).
 832 */
 833#define IA32_PAGE_OFFSET        PAGE_OFFSET
 834#define TASK_SIZE               PAGE_OFFSET
 835#define TASK_SIZE_LOW           TASK_SIZE
 836#define TASK_SIZE_MAX           TASK_SIZE
 837#define DEFAULT_MAP_WINDOW      TASK_SIZE
 838#define STACK_TOP               TASK_SIZE
 839#define STACK_TOP_MAX           STACK_TOP
 840
 841#define INIT_THREAD  {                                                    \
 842        .sp0                    = TOP_OF_INIT_STACK,                      \
 843        .sysenter_cs            = __KERNEL_CS,                            \
 844        .io_bitmap_ptr          = NULL,                                   \
 845        .addr_limit             = KERNEL_DS,                              \
 846}
 847
 848#define KSTK_ESP(task)          (task_pt_regs(task)->sp)
 849
 850#else
 851/*
 852 * User space process size.  This is the first address outside the user range.
 853 * There are a few constraints that determine this:
 854 *
 855 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
 856 * address, then that syscall will enter the kernel with a
 857 * non-canonical return address, and SYSRET will explode dangerously.
 858 * We avoid this particular problem by preventing anything executable
 859 * from being mapped at the maximum canonical address.
 860 *
 861 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
 862 * CPUs malfunction if they execute code from the highest canonical page.
 863 * They'll speculate right off the end of the canonical space, and
 864 * bad things happen.  This is worked around in the same way as the
 865 * Intel problem.
 866 *
 867 * With page table isolation enabled, we map the LDT in ... [stay tuned]
 868 */
 869#define TASK_SIZE_MAX   ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
 870
 871#define DEFAULT_MAP_WINDOW      ((1UL << 47) - PAGE_SIZE)
 872
 873/* This decides where the kernel will search for a free chunk of vm
 874 * space during mmap's.
 875 */
 876#define IA32_PAGE_OFFSET        ((current->personality & ADDR_LIMIT_3GB) ? \
 877                                        0xc0000000 : 0xFFFFe000)
 878
 879#define TASK_SIZE_LOW           (test_thread_flag(TIF_ADDR32) ? \
 880                                        IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
 881#define TASK_SIZE               (test_thread_flag(TIF_ADDR32) ? \
 882                                        IA32_PAGE_OFFSET : TASK_SIZE_MAX)
 883#define TASK_SIZE_OF(child)     ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
 884                                        IA32_PAGE_OFFSET : TASK_SIZE_MAX)
 885
 886#define STACK_TOP               TASK_SIZE_LOW
 887#define STACK_TOP_MAX           TASK_SIZE_MAX
 888
 889#define INIT_THREAD  {                                          \
 890        .addr_limit             = KERNEL_DS,                    \
 891}
 892
 893extern unsigned long KSTK_ESP(struct task_struct *task);
 894
 895#endif /* CONFIG_X86_64 */
 896
 897extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
 898                                               unsigned long new_sp);
 899
 900/*
 901 * This decides where the kernel will search for a free chunk of vm
 902 * space during mmap's.
 903 */
 904#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
 905#define TASK_UNMAPPED_BASE              __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
 906
 907#define KSTK_EIP(task)          (task_pt_regs(task)->ip)
 908
 909/* Get/set a process' ability to use the timestamp counter instruction */
 910#define GET_TSC_CTL(adr)        get_tsc_mode((adr))
 911#define SET_TSC_CTL(val)        set_tsc_mode((val))
 912
 913extern int get_tsc_mode(unsigned long adr);
 914extern int set_tsc_mode(unsigned int val);
 915
 916DECLARE_PER_CPU(u64, msr_misc_features_shadow);
 917
 918/* Register/unregister a process' MPX related resource */
 919#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
 920#define MPX_DISABLE_MANAGEMENT()        mpx_disable_management()
 921
 922#ifdef CONFIG_X86_INTEL_MPX
 923extern int mpx_enable_management(void);
 924extern int mpx_disable_management(void);
 925#else
 926static inline int mpx_enable_management(void)
 927{
 928        return -EINVAL;
 929}
 930static inline int mpx_disable_management(void)
 931{
 932        return -EINVAL;
 933}
 934#endif /* CONFIG_X86_INTEL_MPX */
 935
 936#ifdef CONFIG_CPU_SUP_AMD
 937extern u16 amd_get_nb_id(int cpu);
 938extern u32 amd_get_nodes_per_socket(void);
 939#else
 940static inline u16 amd_get_nb_id(int cpu)                { return 0; }
 941static inline u32 amd_get_nodes_per_socket(void)        { return 0; }
 942#endif
 943
 944static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
 945{
 946        uint32_t base, eax, signature[3];
 947
 948        for (base = 0x40000000; base < 0x40010000; base += 0x100) {
 949                cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
 950
 951                if (!memcmp(sig, signature, 12) &&
 952                    (leaves == 0 || ((eax - base) >= leaves)))
 953                        return base;
 954        }
 955
 956        return 0;
 957}
 958
 959extern unsigned long arch_align_stack(unsigned long sp);
 960void free_init_pages(const char *what, unsigned long begin, unsigned long end);
 961extern void free_kernel_image_pages(void *begin, void *end);
 962
 963void default_idle(void);
 964#ifdef  CONFIG_XEN
 965bool xen_set_default_idle(void);
 966#else
 967#define xen_set_default_idle 0
 968#endif
 969
 970void stop_this_cpu(void *dummy);
 971void df_debug(struct pt_regs *regs, long error_code);
 972void microcode_check(void);
 973
 974enum l1tf_mitigations {
 975        L1TF_MITIGATION_OFF,
 976        L1TF_MITIGATION_FLUSH_NOWARN,
 977        L1TF_MITIGATION_FLUSH,
 978        L1TF_MITIGATION_FLUSH_NOSMT,
 979        L1TF_MITIGATION_FULL,
 980        L1TF_MITIGATION_FULL_FORCE
 981};
 982
 983extern enum l1tf_mitigations l1tf_mitigation;
 984
 985enum mds_mitigations {
 986        MDS_MITIGATION_OFF,
 987        MDS_MITIGATION_FULL,
 988        MDS_MITIGATION_VMWERV,
 989};
 990
 991#endif /* _ASM_X86_PROCESSOR_H */
 992