linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * User interface for Resource Alloction in Resource Director Technology(RDT)
   4 *
   5 * Copyright (C) 2016 Intel Corporation
   6 *
   7 * Author: Fenghua Yu <fenghua.yu@intel.com>
   8 *
   9 * More information about RDT be found in the Intel (R) x86 Architecture
  10 * Software Developer Manual.
  11 */
  12
  13#define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
  14
  15#include <linux/cacheinfo.h>
  16#include <linux/cpu.h>
  17#include <linux/debugfs.h>
  18#include <linux/fs.h>
  19#include <linux/fs_parser.h>
  20#include <linux/sysfs.h>
  21#include <linux/kernfs.h>
  22#include <linux/seq_buf.h>
  23#include <linux/seq_file.h>
  24#include <linux/sched/signal.h>
  25#include <linux/sched/task.h>
  26#include <linux/slab.h>
  27#include <linux/task_work.h>
  28#include <linux/user_namespace.h>
  29
  30#include <uapi/linux/magic.h>
  31
  32#include <asm/resctrl_sched.h>
  33#include "internal.h"
  34
  35DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
  36DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
  37DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
  38static struct kernfs_root *rdt_root;
  39struct rdtgroup rdtgroup_default;
  40LIST_HEAD(rdt_all_groups);
  41
  42/* Kernel fs node for "info" directory under root */
  43static struct kernfs_node *kn_info;
  44
  45/* Kernel fs node for "mon_groups" directory under root */
  46static struct kernfs_node *kn_mongrp;
  47
  48/* Kernel fs node for "mon_data" directory under root */
  49static struct kernfs_node *kn_mondata;
  50
  51static struct seq_buf last_cmd_status;
  52static char last_cmd_status_buf[512];
  53
  54struct dentry *debugfs_resctrl;
  55
  56void rdt_last_cmd_clear(void)
  57{
  58        lockdep_assert_held(&rdtgroup_mutex);
  59        seq_buf_clear(&last_cmd_status);
  60}
  61
  62void rdt_last_cmd_puts(const char *s)
  63{
  64        lockdep_assert_held(&rdtgroup_mutex);
  65        seq_buf_puts(&last_cmd_status, s);
  66}
  67
  68void rdt_last_cmd_printf(const char *fmt, ...)
  69{
  70        va_list ap;
  71
  72        va_start(ap, fmt);
  73        lockdep_assert_held(&rdtgroup_mutex);
  74        seq_buf_vprintf(&last_cmd_status, fmt, ap);
  75        va_end(ap);
  76}
  77
  78/*
  79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
  80 * we can keep a bitmap of free CLOSIDs in a single integer.
  81 *
  82 * Using a global CLOSID across all resources has some advantages and
  83 * some drawbacks:
  84 * + We can simply set "current->closid" to assign a task to a resource
  85 *   group.
  86 * + Context switch code can avoid extra memory references deciding which
  87 *   CLOSID to load into the PQR_ASSOC MSR
  88 * - We give up some options in configuring resource groups across multi-socket
  89 *   systems.
  90 * - Our choices on how to configure each resource become progressively more
  91 *   limited as the number of resources grows.
  92 */
  93static int closid_free_map;
  94static int closid_free_map_len;
  95
  96int closids_supported(void)
  97{
  98        return closid_free_map_len;
  99}
 100
 101static void closid_init(void)
 102{
 103        struct rdt_resource *r;
 104        int rdt_min_closid = 32;
 105
 106        /* Compute rdt_min_closid across all resources */
 107        for_each_alloc_enabled_rdt_resource(r)
 108                rdt_min_closid = min(rdt_min_closid, r->num_closid);
 109
 110        closid_free_map = BIT_MASK(rdt_min_closid) - 1;
 111
 112        /* CLOSID 0 is always reserved for the default group */
 113        closid_free_map &= ~1;
 114        closid_free_map_len = rdt_min_closid;
 115}
 116
 117static int closid_alloc(void)
 118{
 119        u32 closid = ffs(closid_free_map);
 120
 121        if (closid == 0)
 122                return -ENOSPC;
 123        closid--;
 124        closid_free_map &= ~(1 << closid);
 125
 126        return closid;
 127}
 128
 129void closid_free(int closid)
 130{
 131        closid_free_map |= 1 << closid;
 132}
 133
 134/**
 135 * closid_allocated - test if provided closid is in use
 136 * @closid: closid to be tested
 137 *
 138 * Return: true if @closid is currently associated with a resource group,
 139 * false if @closid is free
 140 */
 141static bool closid_allocated(unsigned int closid)
 142{
 143        return (closid_free_map & (1 << closid)) == 0;
 144}
 145
 146/**
 147 * rdtgroup_mode_by_closid - Return mode of resource group with closid
 148 * @closid: closid if the resource group
 149 *
 150 * Each resource group is associated with a @closid. Here the mode
 151 * of a resource group can be queried by searching for it using its closid.
 152 *
 153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
 154 */
 155enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
 156{
 157        struct rdtgroup *rdtgrp;
 158
 159        list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
 160                if (rdtgrp->closid == closid)
 161                        return rdtgrp->mode;
 162        }
 163
 164        return RDT_NUM_MODES;
 165}
 166
 167static const char * const rdt_mode_str[] = {
 168        [RDT_MODE_SHAREABLE]            = "shareable",
 169        [RDT_MODE_EXCLUSIVE]            = "exclusive",
 170        [RDT_MODE_PSEUDO_LOCKSETUP]     = "pseudo-locksetup",
 171        [RDT_MODE_PSEUDO_LOCKED]        = "pseudo-locked",
 172};
 173
 174/**
 175 * rdtgroup_mode_str - Return the string representation of mode
 176 * @mode: the resource group mode as &enum rdtgroup_mode
 177 *
 178 * Return: string representation of valid mode, "unknown" otherwise
 179 */
 180static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
 181{
 182        if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
 183                return "unknown";
 184
 185        return rdt_mode_str[mode];
 186}
 187
 188/* set uid and gid of rdtgroup dirs and files to that of the creator */
 189static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
 190{
 191        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
 192                                .ia_uid = current_fsuid(),
 193                                .ia_gid = current_fsgid(), };
 194
 195        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
 196            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
 197                return 0;
 198
 199        return kernfs_setattr(kn, &iattr);
 200}
 201
 202static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
 203{
 204        struct kernfs_node *kn;
 205        int ret;
 206
 207        kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
 208                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 209                                  0, rft->kf_ops, rft, NULL, NULL);
 210        if (IS_ERR(kn))
 211                return PTR_ERR(kn);
 212
 213        ret = rdtgroup_kn_set_ugid(kn);
 214        if (ret) {
 215                kernfs_remove(kn);
 216                return ret;
 217        }
 218
 219        return 0;
 220}
 221
 222static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
 223{
 224        struct kernfs_open_file *of = m->private;
 225        struct rftype *rft = of->kn->priv;
 226
 227        if (rft->seq_show)
 228                return rft->seq_show(of, m, arg);
 229        return 0;
 230}
 231
 232static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
 233                                   size_t nbytes, loff_t off)
 234{
 235        struct rftype *rft = of->kn->priv;
 236
 237        if (rft->write)
 238                return rft->write(of, buf, nbytes, off);
 239
 240        return -EINVAL;
 241}
 242
 243static struct kernfs_ops rdtgroup_kf_single_ops = {
 244        .atomic_write_len       = PAGE_SIZE,
 245        .write                  = rdtgroup_file_write,
 246        .seq_show               = rdtgroup_seqfile_show,
 247};
 248
 249static struct kernfs_ops kf_mondata_ops = {
 250        .atomic_write_len       = PAGE_SIZE,
 251        .seq_show               = rdtgroup_mondata_show,
 252};
 253
 254static bool is_cpu_list(struct kernfs_open_file *of)
 255{
 256        struct rftype *rft = of->kn->priv;
 257
 258        return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
 259}
 260
 261static int rdtgroup_cpus_show(struct kernfs_open_file *of,
 262                              struct seq_file *s, void *v)
 263{
 264        struct rdtgroup *rdtgrp;
 265        struct cpumask *mask;
 266        int ret = 0;
 267
 268        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 269
 270        if (rdtgrp) {
 271                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
 272                        if (!rdtgrp->plr->d) {
 273                                rdt_last_cmd_clear();
 274                                rdt_last_cmd_puts("Cache domain offline\n");
 275                                ret = -ENODEV;
 276                        } else {
 277                                mask = &rdtgrp->plr->d->cpu_mask;
 278                                seq_printf(s, is_cpu_list(of) ?
 279                                           "%*pbl\n" : "%*pb\n",
 280                                           cpumask_pr_args(mask));
 281                        }
 282                } else {
 283                        seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
 284                                   cpumask_pr_args(&rdtgrp->cpu_mask));
 285                }
 286        } else {
 287                ret = -ENOENT;
 288        }
 289        rdtgroup_kn_unlock(of->kn);
 290
 291        return ret;
 292}
 293
 294/*
 295 * This is safe against resctrl_sched_in() called from __switch_to()
 296 * because __switch_to() is executed with interrupts disabled. A local call
 297 * from update_closid_rmid() is proteced against __switch_to() because
 298 * preemption is disabled.
 299 */
 300static void update_cpu_closid_rmid(void *info)
 301{
 302        struct rdtgroup *r = info;
 303
 304        if (r) {
 305                this_cpu_write(pqr_state.default_closid, r->closid);
 306                this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
 307        }
 308
 309        /*
 310         * We cannot unconditionally write the MSR because the current
 311         * executing task might have its own closid selected. Just reuse
 312         * the context switch code.
 313         */
 314        resctrl_sched_in();
 315}
 316
 317/*
 318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
 319 *
 320 * Per task closids/rmids must have been set up before calling this function.
 321 */
 322static void
 323update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
 324{
 325        int cpu = get_cpu();
 326
 327        if (cpumask_test_cpu(cpu, cpu_mask))
 328                update_cpu_closid_rmid(r);
 329        smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
 330        put_cpu();
 331}
 332
 333static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
 334                          cpumask_var_t tmpmask)
 335{
 336        struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
 337        struct list_head *head;
 338
 339        /* Check whether cpus belong to parent ctrl group */
 340        cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
 341        if (cpumask_weight(tmpmask)) {
 342                rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
 343                return -EINVAL;
 344        }
 345
 346        /* Check whether cpus are dropped from this group */
 347        cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
 348        if (cpumask_weight(tmpmask)) {
 349                /* Give any dropped cpus to parent rdtgroup */
 350                cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
 351                update_closid_rmid(tmpmask, prgrp);
 352        }
 353
 354        /*
 355         * If we added cpus, remove them from previous group that owned them
 356         * and update per-cpu rmid
 357         */
 358        cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
 359        if (cpumask_weight(tmpmask)) {
 360                head = &prgrp->mon.crdtgrp_list;
 361                list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
 362                        if (crgrp == rdtgrp)
 363                                continue;
 364                        cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
 365                                       tmpmask);
 366                }
 367                update_closid_rmid(tmpmask, rdtgrp);
 368        }
 369
 370        /* Done pushing/pulling - update this group with new mask */
 371        cpumask_copy(&rdtgrp->cpu_mask, newmask);
 372
 373        return 0;
 374}
 375
 376static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
 377{
 378        struct rdtgroup *crgrp;
 379
 380        cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
 381        /* update the child mon group masks as well*/
 382        list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
 383                cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
 384}
 385
 386static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
 387                           cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
 388{
 389        struct rdtgroup *r, *crgrp;
 390        struct list_head *head;
 391
 392        /* Check whether cpus are dropped from this group */
 393        cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
 394        if (cpumask_weight(tmpmask)) {
 395                /* Can't drop from default group */
 396                if (rdtgrp == &rdtgroup_default) {
 397                        rdt_last_cmd_puts("Can't drop CPUs from default group\n");
 398                        return -EINVAL;
 399                }
 400
 401                /* Give any dropped cpus to rdtgroup_default */
 402                cpumask_or(&rdtgroup_default.cpu_mask,
 403                           &rdtgroup_default.cpu_mask, tmpmask);
 404                update_closid_rmid(tmpmask, &rdtgroup_default);
 405        }
 406
 407        /*
 408         * If we added cpus, remove them from previous group and
 409         * the prev group's child groups that owned them
 410         * and update per-cpu closid/rmid.
 411         */
 412        cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
 413        if (cpumask_weight(tmpmask)) {
 414                list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
 415                        if (r == rdtgrp)
 416                                continue;
 417                        cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
 418                        if (cpumask_weight(tmpmask1))
 419                                cpumask_rdtgrp_clear(r, tmpmask1);
 420                }
 421                update_closid_rmid(tmpmask, rdtgrp);
 422        }
 423
 424        /* Done pushing/pulling - update this group with new mask */
 425        cpumask_copy(&rdtgrp->cpu_mask, newmask);
 426
 427        /*
 428         * Clear child mon group masks since there is a new parent mask
 429         * now and update the rmid for the cpus the child lost.
 430         */
 431        head = &rdtgrp->mon.crdtgrp_list;
 432        list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
 433                cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
 434                update_closid_rmid(tmpmask, rdtgrp);
 435                cpumask_clear(&crgrp->cpu_mask);
 436        }
 437
 438        return 0;
 439}
 440
 441static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
 442                                   char *buf, size_t nbytes, loff_t off)
 443{
 444        cpumask_var_t tmpmask, newmask, tmpmask1;
 445        struct rdtgroup *rdtgrp;
 446        int ret;
 447
 448        if (!buf)
 449                return -EINVAL;
 450
 451        if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
 452                return -ENOMEM;
 453        if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
 454                free_cpumask_var(tmpmask);
 455                return -ENOMEM;
 456        }
 457        if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
 458                free_cpumask_var(tmpmask);
 459                free_cpumask_var(newmask);
 460                return -ENOMEM;
 461        }
 462
 463        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 464        rdt_last_cmd_clear();
 465        if (!rdtgrp) {
 466                ret = -ENOENT;
 467                rdt_last_cmd_puts("Directory was removed\n");
 468                goto unlock;
 469        }
 470
 471        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
 472            rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
 473                ret = -EINVAL;
 474                rdt_last_cmd_puts("Pseudo-locking in progress\n");
 475                goto unlock;
 476        }
 477
 478        if (is_cpu_list(of))
 479                ret = cpulist_parse(buf, newmask);
 480        else
 481                ret = cpumask_parse(buf, newmask);
 482
 483        if (ret) {
 484                rdt_last_cmd_puts("Bad CPU list/mask\n");
 485                goto unlock;
 486        }
 487
 488        /* check that user didn't specify any offline cpus */
 489        cpumask_andnot(tmpmask, newmask, cpu_online_mask);
 490        if (cpumask_weight(tmpmask)) {
 491                ret = -EINVAL;
 492                rdt_last_cmd_puts("Can only assign online CPUs\n");
 493                goto unlock;
 494        }
 495
 496        if (rdtgrp->type == RDTCTRL_GROUP)
 497                ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
 498        else if (rdtgrp->type == RDTMON_GROUP)
 499                ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
 500        else
 501                ret = -EINVAL;
 502
 503unlock:
 504        rdtgroup_kn_unlock(of->kn);
 505        free_cpumask_var(tmpmask);
 506        free_cpumask_var(newmask);
 507        free_cpumask_var(tmpmask1);
 508
 509        return ret ?: nbytes;
 510}
 511
 512struct task_move_callback {
 513        struct callback_head    work;
 514        struct rdtgroup         *rdtgrp;
 515};
 516
 517static void move_myself(struct callback_head *head)
 518{
 519        struct task_move_callback *callback;
 520        struct rdtgroup *rdtgrp;
 521
 522        callback = container_of(head, struct task_move_callback, work);
 523        rdtgrp = callback->rdtgrp;
 524
 525        /*
 526         * If resource group was deleted before this task work callback
 527         * was invoked, then assign the task to root group and free the
 528         * resource group.
 529         */
 530        if (atomic_dec_and_test(&rdtgrp->waitcount) &&
 531            (rdtgrp->flags & RDT_DELETED)) {
 532                current->closid = 0;
 533                current->rmid = 0;
 534                kfree(rdtgrp);
 535        }
 536
 537        preempt_disable();
 538        /* update PQR_ASSOC MSR to make resource group go into effect */
 539        resctrl_sched_in();
 540        preempt_enable();
 541
 542        kfree(callback);
 543}
 544
 545static int __rdtgroup_move_task(struct task_struct *tsk,
 546                                struct rdtgroup *rdtgrp)
 547{
 548        struct task_move_callback *callback;
 549        int ret;
 550
 551        callback = kzalloc(sizeof(*callback), GFP_KERNEL);
 552        if (!callback)
 553                return -ENOMEM;
 554        callback->work.func = move_myself;
 555        callback->rdtgrp = rdtgrp;
 556
 557        /*
 558         * Take a refcount, so rdtgrp cannot be freed before the
 559         * callback has been invoked.
 560         */
 561        atomic_inc(&rdtgrp->waitcount);
 562        ret = task_work_add(tsk, &callback->work, true);
 563        if (ret) {
 564                /*
 565                 * Task is exiting. Drop the refcount and free the callback.
 566                 * No need to check the refcount as the group cannot be
 567                 * deleted before the write function unlocks rdtgroup_mutex.
 568                 */
 569                atomic_dec(&rdtgrp->waitcount);
 570                kfree(callback);
 571                rdt_last_cmd_puts("Task exited\n");
 572        } else {
 573                /*
 574                 * For ctrl_mon groups move both closid and rmid.
 575                 * For monitor groups, can move the tasks only from
 576                 * their parent CTRL group.
 577                 */
 578                if (rdtgrp->type == RDTCTRL_GROUP) {
 579                        tsk->closid = rdtgrp->closid;
 580                        tsk->rmid = rdtgrp->mon.rmid;
 581                } else if (rdtgrp->type == RDTMON_GROUP) {
 582                        if (rdtgrp->mon.parent->closid == tsk->closid) {
 583                                tsk->rmid = rdtgrp->mon.rmid;
 584                        } else {
 585                                rdt_last_cmd_puts("Can't move task to different control group\n");
 586                                ret = -EINVAL;
 587                        }
 588                }
 589        }
 590        return ret;
 591}
 592
 593/**
 594 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
 595 * @r: Resource group
 596 *
 597 * Return: 1 if tasks have been assigned to @r, 0 otherwise
 598 */
 599int rdtgroup_tasks_assigned(struct rdtgroup *r)
 600{
 601        struct task_struct *p, *t;
 602        int ret = 0;
 603
 604        lockdep_assert_held(&rdtgroup_mutex);
 605
 606        rcu_read_lock();
 607        for_each_process_thread(p, t) {
 608                if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
 609                    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
 610                        ret = 1;
 611                        break;
 612                }
 613        }
 614        rcu_read_unlock();
 615
 616        return ret;
 617}
 618
 619static int rdtgroup_task_write_permission(struct task_struct *task,
 620                                          struct kernfs_open_file *of)
 621{
 622        const struct cred *tcred = get_task_cred(task);
 623        const struct cred *cred = current_cred();
 624        int ret = 0;
 625
 626        /*
 627         * Even if we're attaching all tasks in the thread group, we only
 628         * need to check permissions on one of them.
 629         */
 630        if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 631            !uid_eq(cred->euid, tcred->uid) &&
 632            !uid_eq(cred->euid, tcred->suid)) {
 633                rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
 634                ret = -EPERM;
 635        }
 636
 637        put_cred(tcred);
 638        return ret;
 639}
 640
 641static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
 642                              struct kernfs_open_file *of)
 643{
 644        struct task_struct *tsk;
 645        int ret;
 646
 647        rcu_read_lock();
 648        if (pid) {
 649                tsk = find_task_by_vpid(pid);
 650                if (!tsk) {
 651                        rcu_read_unlock();
 652                        rdt_last_cmd_printf("No task %d\n", pid);
 653                        return -ESRCH;
 654                }
 655        } else {
 656                tsk = current;
 657        }
 658
 659        get_task_struct(tsk);
 660        rcu_read_unlock();
 661
 662        ret = rdtgroup_task_write_permission(tsk, of);
 663        if (!ret)
 664                ret = __rdtgroup_move_task(tsk, rdtgrp);
 665
 666        put_task_struct(tsk);
 667        return ret;
 668}
 669
 670static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
 671                                    char *buf, size_t nbytes, loff_t off)
 672{
 673        struct rdtgroup *rdtgrp;
 674        int ret = 0;
 675        pid_t pid;
 676
 677        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
 678                return -EINVAL;
 679        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 680        if (!rdtgrp) {
 681                rdtgroup_kn_unlock(of->kn);
 682                return -ENOENT;
 683        }
 684        rdt_last_cmd_clear();
 685
 686        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
 687            rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
 688                ret = -EINVAL;
 689                rdt_last_cmd_puts("Pseudo-locking in progress\n");
 690                goto unlock;
 691        }
 692
 693        ret = rdtgroup_move_task(pid, rdtgrp, of);
 694
 695unlock:
 696        rdtgroup_kn_unlock(of->kn);
 697
 698        return ret ?: nbytes;
 699}
 700
 701static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
 702{
 703        struct task_struct *p, *t;
 704
 705        rcu_read_lock();
 706        for_each_process_thread(p, t) {
 707                if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
 708                    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
 709                        seq_printf(s, "%d\n", t->pid);
 710        }
 711        rcu_read_unlock();
 712}
 713
 714static int rdtgroup_tasks_show(struct kernfs_open_file *of,
 715                               struct seq_file *s, void *v)
 716{
 717        struct rdtgroup *rdtgrp;
 718        int ret = 0;
 719
 720        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 721        if (rdtgrp)
 722                show_rdt_tasks(rdtgrp, s);
 723        else
 724                ret = -ENOENT;
 725        rdtgroup_kn_unlock(of->kn);
 726
 727        return ret;
 728}
 729
 730static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
 731                                    struct seq_file *seq, void *v)
 732{
 733        int len;
 734
 735        mutex_lock(&rdtgroup_mutex);
 736        len = seq_buf_used(&last_cmd_status);
 737        if (len)
 738                seq_printf(seq, "%.*s", len, last_cmd_status_buf);
 739        else
 740                seq_puts(seq, "ok\n");
 741        mutex_unlock(&rdtgroup_mutex);
 742        return 0;
 743}
 744
 745static int rdt_num_closids_show(struct kernfs_open_file *of,
 746                                struct seq_file *seq, void *v)
 747{
 748        struct rdt_resource *r = of->kn->parent->priv;
 749
 750        seq_printf(seq, "%d\n", r->num_closid);
 751        return 0;
 752}
 753
 754static int rdt_default_ctrl_show(struct kernfs_open_file *of,
 755                             struct seq_file *seq, void *v)
 756{
 757        struct rdt_resource *r = of->kn->parent->priv;
 758
 759        seq_printf(seq, "%x\n", r->default_ctrl);
 760        return 0;
 761}
 762
 763static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
 764                             struct seq_file *seq, void *v)
 765{
 766        struct rdt_resource *r = of->kn->parent->priv;
 767
 768        seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
 769        return 0;
 770}
 771
 772static int rdt_shareable_bits_show(struct kernfs_open_file *of,
 773                                   struct seq_file *seq, void *v)
 774{
 775        struct rdt_resource *r = of->kn->parent->priv;
 776
 777        seq_printf(seq, "%x\n", r->cache.shareable_bits);
 778        return 0;
 779}
 780
 781/**
 782 * rdt_bit_usage_show - Display current usage of resources
 783 *
 784 * A domain is a shared resource that can now be allocated differently. Here
 785 * we display the current regions of the domain as an annotated bitmask.
 786 * For each domain of this resource its allocation bitmask
 787 * is annotated as below to indicate the current usage of the corresponding bit:
 788 *   0 - currently unused
 789 *   X - currently available for sharing and used by software and hardware
 790 *   H - currently used by hardware only but available for software use
 791 *   S - currently used and shareable by software only
 792 *   E - currently used exclusively by one resource group
 793 *   P - currently pseudo-locked by one resource group
 794 */
 795static int rdt_bit_usage_show(struct kernfs_open_file *of,
 796                              struct seq_file *seq, void *v)
 797{
 798        struct rdt_resource *r = of->kn->parent->priv;
 799        /*
 800         * Use unsigned long even though only 32 bits are used to ensure
 801         * test_bit() is used safely.
 802         */
 803        unsigned long sw_shareable = 0, hw_shareable = 0;
 804        unsigned long exclusive = 0, pseudo_locked = 0;
 805        struct rdt_domain *dom;
 806        int i, hwb, swb, excl, psl;
 807        enum rdtgrp_mode mode;
 808        bool sep = false;
 809        u32 *ctrl;
 810
 811        mutex_lock(&rdtgroup_mutex);
 812        hw_shareable = r->cache.shareable_bits;
 813        list_for_each_entry(dom, &r->domains, list) {
 814                if (sep)
 815                        seq_putc(seq, ';');
 816                ctrl = dom->ctrl_val;
 817                sw_shareable = 0;
 818                exclusive = 0;
 819                seq_printf(seq, "%d=", dom->id);
 820                for (i = 0; i < closids_supported(); i++, ctrl++) {
 821                        if (!closid_allocated(i))
 822                                continue;
 823                        mode = rdtgroup_mode_by_closid(i);
 824                        switch (mode) {
 825                        case RDT_MODE_SHAREABLE:
 826                                sw_shareable |= *ctrl;
 827                                break;
 828                        case RDT_MODE_EXCLUSIVE:
 829                                exclusive |= *ctrl;
 830                                break;
 831                        case RDT_MODE_PSEUDO_LOCKSETUP:
 832                        /*
 833                         * RDT_MODE_PSEUDO_LOCKSETUP is possible
 834                         * here but not included since the CBM
 835                         * associated with this CLOSID in this mode
 836                         * is not initialized and no task or cpu can be
 837                         * assigned this CLOSID.
 838                         */
 839                                break;
 840                        case RDT_MODE_PSEUDO_LOCKED:
 841                        case RDT_NUM_MODES:
 842                                WARN(1,
 843                                     "invalid mode for closid %d\n", i);
 844                                break;
 845                        }
 846                }
 847                for (i = r->cache.cbm_len - 1; i >= 0; i--) {
 848                        pseudo_locked = dom->plr ? dom->plr->cbm : 0;
 849                        hwb = test_bit(i, &hw_shareable);
 850                        swb = test_bit(i, &sw_shareable);
 851                        excl = test_bit(i, &exclusive);
 852                        psl = test_bit(i, &pseudo_locked);
 853                        if (hwb && swb)
 854                                seq_putc(seq, 'X');
 855                        else if (hwb && !swb)
 856                                seq_putc(seq, 'H');
 857                        else if (!hwb && swb)
 858                                seq_putc(seq, 'S');
 859                        else if (excl)
 860                                seq_putc(seq, 'E');
 861                        else if (psl)
 862                                seq_putc(seq, 'P');
 863                        else /* Unused bits remain */
 864                                seq_putc(seq, '0');
 865                }
 866                sep = true;
 867        }
 868        seq_putc(seq, '\n');
 869        mutex_unlock(&rdtgroup_mutex);
 870        return 0;
 871}
 872
 873static int rdt_min_bw_show(struct kernfs_open_file *of,
 874                             struct seq_file *seq, void *v)
 875{
 876        struct rdt_resource *r = of->kn->parent->priv;
 877
 878        seq_printf(seq, "%u\n", r->membw.min_bw);
 879        return 0;
 880}
 881
 882static int rdt_num_rmids_show(struct kernfs_open_file *of,
 883                              struct seq_file *seq, void *v)
 884{
 885        struct rdt_resource *r = of->kn->parent->priv;
 886
 887        seq_printf(seq, "%d\n", r->num_rmid);
 888
 889        return 0;
 890}
 891
 892static int rdt_mon_features_show(struct kernfs_open_file *of,
 893                                 struct seq_file *seq, void *v)
 894{
 895        struct rdt_resource *r = of->kn->parent->priv;
 896        struct mon_evt *mevt;
 897
 898        list_for_each_entry(mevt, &r->evt_list, list)
 899                seq_printf(seq, "%s\n", mevt->name);
 900
 901        return 0;
 902}
 903
 904static int rdt_bw_gran_show(struct kernfs_open_file *of,
 905                             struct seq_file *seq, void *v)
 906{
 907        struct rdt_resource *r = of->kn->parent->priv;
 908
 909        seq_printf(seq, "%u\n", r->membw.bw_gran);
 910        return 0;
 911}
 912
 913static int rdt_delay_linear_show(struct kernfs_open_file *of,
 914                             struct seq_file *seq, void *v)
 915{
 916        struct rdt_resource *r = of->kn->parent->priv;
 917
 918        seq_printf(seq, "%u\n", r->membw.delay_linear);
 919        return 0;
 920}
 921
 922static int max_threshold_occ_show(struct kernfs_open_file *of,
 923                                  struct seq_file *seq, void *v)
 924{
 925        struct rdt_resource *r = of->kn->parent->priv;
 926
 927        seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
 928
 929        return 0;
 930}
 931
 932static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
 933                                       char *buf, size_t nbytes, loff_t off)
 934{
 935        struct rdt_resource *r = of->kn->parent->priv;
 936        unsigned int bytes;
 937        int ret;
 938
 939        ret = kstrtouint(buf, 0, &bytes);
 940        if (ret)
 941                return ret;
 942
 943        if (bytes > (boot_cpu_data.x86_cache_size * 1024))
 944                return -EINVAL;
 945
 946        resctrl_cqm_threshold = bytes / r->mon_scale;
 947
 948        return nbytes;
 949}
 950
 951/*
 952 * rdtgroup_mode_show - Display mode of this resource group
 953 */
 954static int rdtgroup_mode_show(struct kernfs_open_file *of,
 955                              struct seq_file *s, void *v)
 956{
 957        struct rdtgroup *rdtgrp;
 958
 959        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 960        if (!rdtgrp) {
 961                rdtgroup_kn_unlock(of->kn);
 962                return -ENOENT;
 963        }
 964
 965        seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
 966
 967        rdtgroup_kn_unlock(of->kn);
 968        return 0;
 969}
 970
 971/**
 972 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
 973 * @r: RDT resource to which RDT domain @d belongs
 974 * @d: Cache instance for which a CDP peer is requested
 975 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
 976 *         Used to return the result.
 977 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
 978 *         Used to return the result.
 979 *
 980 * RDT resources are managed independently and by extension the RDT domains
 981 * (RDT resource instances) are managed independently also. The Code and
 982 * Data Prioritization (CDP) RDT resources, while managed independently,
 983 * could refer to the same underlying hardware. For example,
 984 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
 985 *
 986 * When provided with an RDT resource @r and an instance of that RDT
 987 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
 988 * resource and the exact instance that shares the same hardware.
 989 *
 990 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
 991 *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
 992 *         and @d_cdp will point to the peer RDT domain.
 993 */
 994static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
 995                            struct rdt_resource **r_cdp,
 996                            struct rdt_domain **d_cdp)
 997{
 998        struct rdt_resource *_r_cdp = NULL;
 999        struct rdt_domain *_d_cdp = NULL;
1000        int ret = 0;
1001
1002        switch (r->rid) {
1003        case RDT_RESOURCE_L3DATA:
1004                _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1005                break;
1006        case RDT_RESOURCE_L3CODE:
1007                _r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1008                break;
1009        case RDT_RESOURCE_L2DATA:
1010                _r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1011                break;
1012        case RDT_RESOURCE_L2CODE:
1013                _r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1014                break;
1015        default:
1016                ret = -ENOENT;
1017                goto out;
1018        }
1019
1020        /*
1021         * When a new CPU comes online and CDP is enabled then the new
1022         * RDT domains (if any) associated with both CDP RDT resources
1023         * are added in the same CPU online routine while the
1024         * rdtgroup_mutex is held. It should thus not happen for one
1025         * RDT domain to exist and be associated with its RDT CDP
1026         * resource but there is no RDT domain associated with the
1027         * peer RDT CDP resource. Hence the WARN.
1028         */
1029        _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1030        if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1031                _r_cdp = NULL;
1032                ret = -EINVAL;
1033        }
1034
1035out:
1036        *r_cdp = _r_cdp;
1037        *d_cdp = _d_cdp;
1038
1039        return ret;
1040}
1041
1042/**
1043 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1044 * @r: Resource to which domain instance @d belongs.
1045 * @d: The domain instance for which @closid is being tested.
1046 * @cbm: Capacity bitmask being tested.
1047 * @closid: Intended closid for @cbm.
1048 * @exclusive: Only check if overlaps with exclusive resource groups
1049 *
1050 * Checks if provided @cbm intended to be used for @closid on domain
1051 * @d overlaps with any other closids or other hardware usage associated
1052 * with this domain. If @exclusive is true then only overlaps with
1053 * resource groups in exclusive mode will be considered. If @exclusive
1054 * is false then overlaps with any resource group or hardware entities
1055 * will be considered.
1056 *
1057 * @cbm is unsigned long, even if only 32 bits are used, to make the
1058 * bitmap functions work correctly.
1059 *
1060 * Return: false if CBM does not overlap, true if it does.
1061 */
1062static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1063                                    unsigned long cbm, int closid, bool exclusive)
1064{
1065        enum rdtgrp_mode mode;
1066        unsigned long ctrl_b;
1067        u32 *ctrl;
1068        int i;
1069
1070        /* Check for any overlap with regions used by hardware directly */
1071        if (!exclusive) {
1072                ctrl_b = r->cache.shareable_bits;
1073                if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1074                        return true;
1075        }
1076
1077        /* Check for overlap with other resource groups */
1078        ctrl = d->ctrl_val;
1079        for (i = 0; i < closids_supported(); i++, ctrl++) {
1080                ctrl_b = *ctrl;
1081                mode = rdtgroup_mode_by_closid(i);
1082                if (closid_allocated(i) && i != closid &&
1083                    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1084                        if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1085                                if (exclusive) {
1086                                        if (mode == RDT_MODE_EXCLUSIVE)
1087                                                return true;
1088                                        continue;
1089                                }
1090                                return true;
1091                        }
1092                }
1093        }
1094
1095        return false;
1096}
1097
1098/**
1099 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1100 * @r: Resource to which domain instance @d belongs.
1101 * @d: The domain instance for which @closid is being tested.
1102 * @cbm: Capacity bitmask being tested.
1103 * @closid: Intended closid for @cbm.
1104 * @exclusive: Only check if overlaps with exclusive resource groups
1105 *
1106 * Resources that can be allocated using a CBM can use the CBM to control
1107 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1108 * for overlap. Overlap test is not limited to the specific resource for
1109 * which the CBM is intended though - when dealing with CDP resources that
1110 * share the underlying hardware the overlap check should be performed on
1111 * the CDP resource sharing the hardware also.
1112 *
1113 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1114 * overlap test.
1115 *
1116 * Return: true if CBM overlap detected, false if there is no overlap
1117 */
1118bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1119                           unsigned long cbm, int closid, bool exclusive)
1120{
1121        struct rdt_resource *r_cdp;
1122        struct rdt_domain *d_cdp;
1123
1124        if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1125                return true;
1126
1127        if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1128                return false;
1129
1130        return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1131}
1132
1133/**
1134 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1135 *
1136 * An exclusive resource group implies that there should be no sharing of
1137 * its allocated resources. At the time this group is considered to be
1138 * exclusive this test can determine if its current schemata supports this
1139 * setting by testing for overlap with all other resource groups.
1140 *
1141 * Return: true if resource group can be exclusive, false if there is overlap
1142 * with allocations of other resource groups and thus this resource group
1143 * cannot be exclusive.
1144 */
1145static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1146{
1147        int closid = rdtgrp->closid;
1148        struct rdt_resource *r;
1149        bool has_cache = false;
1150        struct rdt_domain *d;
1151
1152        for_each_alloc_enabled_rdt_resource(r) {
1153                if (r->rid == RDT_RESOURCE_MBA)
1154                        continue;
1155                has_cache = true;
1156                list_for_each_entry(d, &r->domains, list) {
1157                        if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1158                                                  rdtgrp->closid, false)) {
1159                                rdt_last_cmd_puts("Schemata overlaps\n");
1160                                return false;
1161                        }
1162                }
1163        }
1164
1165        if (!has_cache) {
1166                rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1167                return false;
1168        }
1169
1170        return true;
1171}
1172
1173/**
1174 * rdtgroup_mode_write - Modify the resource group's mode
1175 *
1176 */
1177static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1178                                   char *buf, size_t nbytes, loff_t off)
1179{
1180        struct rdtgroup *rdtgrp;
1181        enum rdtgrp_mode mode;
1182        int ret = 0;
1183
1184        /* Valid input requires a trailing newline */
1185        if (nbytes == 0 || buf[nbytes - 1] != '\n')
1186                return -EINVAL;
1187        buf[nbytes - 1] = '\0';
1188
1189        rdtgrp = rdtgroup_kn_lock_live(of->kn);
1190        if (!rdtgrp) {
1191                rdtgroup_kn_unlock(of->kn);
1192                return -ENOENT;
1193        }
1194
1195        rdt_last_cmd_clear();
1196
1197        mode = rdtgrp->mode;
1198
1199        if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1200            (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1201            (!strcmp(buf, "pseudo-locksetup") &&
1202             mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1203            (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1204                goto out;
1205
1206        if (mode == RDT_MODE_PSEUDO_LOCKED) {
1207                rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1208                ret = -EINVAL;
1209                goto out;
1210        }
1211
1212        if (!strcmp(buf, "shareable")) {
1213                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1214                        ret = rdtgroup_locksetup_exit(rdtgrp);
1215                        if (ret)
1216                                goto out;
1217                }
1218                rdtgrp->mode = RDT_MODE_SHAREABLE;
1219        } else if (!strcmp(buf, "exclusive")) {
1220                if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1221                        ret = -EINVAL;
1222                        goto out;
1223                }
1224                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1225                        ret = rdtgroup_locksetup_exit(rdtgrp);
1226                        if (ret)
1227                                goto out;
1228                }
1229                rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1230        } else if (!strcmp(buf, "pseudo-locksetup")) {
1231                ret = rdtgroup_locksetup_enter(rdtgrp);
1232                if (ret)
1233                        goto out;
1234                rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1235        } else {
1236                rdt_last_cmd_puts("Unknown or unsupported mode\n");
1237                ret = -EINVAL;
1238        }
1239
1240out:
1241        rdtgroup_kn_unlock(of->kn);
1242        return ret ?: nbytes;
1243}
1244
1245/**
1246 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1247 * @r: RDT resource to which @d belongs.
1248 * @d: RDT domain instance.
1249 * @cbm: bitmask for which the size should be computed.
1250 *
1251 * The bitmask provided associated with the RDT domain instance @d will be
1252 * translated into how many bytes it represents. The size in bytes is
1253 * computed by first dividing the total cache size by the CBM length to
1254 * determine how many bytes each bit in the bitmask represents. The result
1255 * is multiplied with the number of bits set in the bitmask.
1256 *
1257 * @cbm is unsigned long, even if only 32 bits are used to make the
1258 * bitmap functions work correctly.
1259 */
1260unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1261                                  struct rdt_domain *d, unsigned long cbm)
1262{
1263        struct cpu_cacheinfo *ci;
1264        unsigned int size = 0;
1265        int num_b, i;
1266
1267        num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1268        ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1269        for (i = 0; i < ci->num_leaves; i++) {
1270                if (ci->info_list[i].level == r->cache_level) {
1271                        size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1272                        break;
1273                }
1274        }
1275
1276        return size;
1277}
1278
1279/**
1280 * rdtgroup_size_show - Display size in bytes of allocated regions
1281 *
1282 * The "size" file mirrors the layout of the "schemata" file, printing the
1283 * size in bytes of each region instead of the capacity bitmask.
1284 *
1285 */
1286static int rdtgroup_size_show(struct kernfs_open_file *of,
1287                              struct seq_file *s, void *v)
1288{
1289        struct rdtgroup *rdtgrp;
1290        struct rdt_resource *r;
1291        struct rdt_domain *d;
1292        unsigned int size;
1293        int ret = 0;
1294        bool sep;
1295        u32 ctrl;
1296
1297        rdtgrp = rdtgroup_kn_lock_live(of->kn);
1298        if (!rdtgrp) {
1299                rdtgroup_kn_unlock(of->kn);
1300                return -ENOENT;
1301        }
1302
1303        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1304                if (!rdtgrp->plr->d) {
1305                        rdt_last_cmd_clear();
1306                        rdt_last_cmd_puts("Cache domain offline\n");
1307                        ret = -ENODEV;
1308                } else {
1309                        seq_printf(s, "%*s:", max_name_width,
1310                                   rdtgrp->plr->r->name);
1311                        size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1312                                                    rdtgrp->plr->d,
1313                                                    rdtgrp->plr->cbm);
1314                        seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1315                }
1316                goto out;
1317        }
1318
1319        for_each_alloc_enabled_rdt_resource(r) {
1320                sep = false;
1321                seq_printf(s, "%*s:", max_name_width, r->name);
1322                list_for_each_entry(d, &r->domains, list) {
1323                        if (sep)
1324                                seq_putc(s, ';');
1325                        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1326                                size = 0;
1327                        } else {
1328                                ctrl = (!is_mba_sc(r) ?
1329                                                d->ctrl_val[rdtgrp->closid] :
1330                                                d->mbps_val[rdtgrp->closid]);
1331                                if (r->rid == RDT_RESOURCE_MBA)
1332                                        size = ctrl;
1333                                else
1334                                        size = rdtgroup_cbm_to_size(r, d, ctrl);
1335                        }
1336                        seq_printf(s, "%d=%u", d->id, size);
1337                        sep = true;
1338                }
1339                seq_putc(s, '\n');
1340        }
1341
1342out:
1343        rdtgroup_kn_unlock(of->kn);
1344
1345        return ret;
1346}
1347
1348/* rdtgroup information files for one cache resource. */
1349static struct rftype res_common_files[] = {
1350        {
1351                .name           = "last_cmd_status",
1352                .mode           = 0444,
1353                .kf_ops         = &rdtgroup_kf_single_ops,
1354                .seq_show       = rdt_last_cmd_status_show,
1355                .fflags         = RF_TOP_INFO,
1356        },
1357        {
1358                .name           = "num_closids",
1359                .mode           = 0444,
1360                .kf_ops         = &rdtgroup_kf_single_ops,
1361                .seq_show       = rdt_num_closids_show,
1362                .fflags         = RF_CTRL_INFO,
1363        },
1364        {
1365                .name           = "mon_features",
1366                .mode           = 0444,
1367                .kf_ops         = &rdtgroup_kf_single_ops,
1368                .seq_show       = rdt_mon_features_show,
1369                .fflags         = RF_MON_INFO,
1370        },
1371        {
1372                .name           = "num_rmids",
1373                .mode           = 0444,
1374                .kf_ops         = &rdtgroup_kf_single_ops,
1375                .seq_show       = rdt_num_rmids_show,
1376                .fflags         = RF_MON_INFO,
1377        },
1378        {
1379                .name           = "cbm_mask",
1380                .mode           = 0444,
1381                .kf_ops         = &rdtgroup_kf_single_ops,
1382                .seq_show       = rdt_default_ctrl_show,
1383                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1384        },
1385        {
1386                .name           = "min_cbm_bits",
1387                .mode           = 0444,
1388                .kf_ops         = &rdtgroup_kf_single_ops,
1389                .seq_show       = rdt_min_cbm_bits_show,
1390                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1391        },
1392        {
1393                .name           = "shareable_bits",
1394                .mode           = 0444,
1395                .kf_ops         = &rdtgroup_kf_single_ops,
1396                .seq_show       = rdt_shareable_bits_show,
1397                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1398        },
1399        {
1400                .name           = "bit_usage",
1401                .mode           = 0444,
1402                .kf_ops         = &rdtgroup_kf_single_ops,
1403                .seq_show       = rdt_bit_usage_show,
1404                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1405        },
1406        {
1407                .name           = "min_bandwidth",
1408                .mode           = 0444,
1409                .kf_ops         = &rdtgroup_kf_single_ops,
1410                .seq_show       = rdt_min_bw_show,
1411                .fflags         = RF_CTRL_INFO | RFTYPE_RES_MB,
1412        },
1413        {
1414                .name           = "bandwidth_gran",
1415                .mode           = 0444,
1416                .kf_ops         = &rdtgroup_kf_single_ops,
1417                .seq_show       = rdt_bw_gran_show,
1418                .fflags         = RF_CTRL_INFO | RFTYPE_RES_MB,
1419        },
1420        {
1421                .name           = "delay_linear",
1422                .mode           = 0444,
1423                .kf_ops         = &rdtgroup_kf_single_ops,
1424                .seq_show       = rdt_delay_linear_show,
1425                .fflags         = RF_CTRL_INFO | RFTYPE_RES_MB,
1426        },
1427        {
1428                .name           = "max_threshold_occupancy",
1429                .mode           = 0644,
1430                .kf_ops         = &rdtgroup_kf_single_ops,
1431                .write          = max_threshold_occ_write,
1432                .seq_show       = max_threshold_occ_show,
1433                .fflags         = RF_MON_INFO | RFTYPE_RES_CACHE,
1434        },
1435        {
1436                .name           = "cpus",
1437                .mode           = 0644,
1438                .kf_ops         = &rdtgroup_kf_single_ops,
1439                .write          = rdtgroup_cpus_write,
1440                .seq_show       = rdtgroup_cpus_show,
1441                .fflags         = RFTYPE_BASE,
1442        },
1443        {
1444                .name           = "cpus_list",
1445                .mode           = 0644,
1446                .kf_ops         = &rdtgroup_kf_single_ops,
1447                .write          = rdtgroup_cpus_write,
1448                .seq_show       = rdtgroup_cpus_show,
1449                .flags          = RFTYPE_FLAGS_CPUS_LIST,
1450                .fflags         = RFTYPE_BASE,
1451        },
1452        {
1453                .name           = "tasks",
1454                .mode           = 0644,
1455                .kf_ops         = &rdtgroup_kf_single_ops,
1456                .write          = rdtgroup_tasks_write,
1457                .seq_show       = rdtgroup_tasks_show,
1458                .fflags         = RFTYPE_BASE,
1459        },
1460        {
1461                .name           = "schemata",
1462                .mode           = 0644,
1463                .kf_ops         = &rdtgroup_kf_single_ops,
1464                .write          = rdtgroup_schemata_write,
1465                .seq_show       = rdtgroup_schemata_show,
1466                .fflags         = RF_CTRL_BASE,
1467        },
1468        {
1469                .name           = "mode",
1470                .mode           = 0644,
1471                .kf_ops         = &rdtgroup_kf_single_ops,
1472                .write          = rdtgroup_mode_write,
1473                .seq_show       = rdtgroup_mode_show,
1474                .fflags         = RF_CTRL_BASE,
1475        },
1476        {
1477                .name           = "size",
1478                .mode           = 0444,
1479                .kf_ops         = &rdtgroup_kf_single_ops,
1480                .seq_show       = rdtgroup_size_show,
1481                .fflags         = RF_CTRL_BASE,
1482        },
1483
1484};
1485
1486static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1487{
1488        struct rftype *rfts, *rft;
1489        int ret, len;
1490
1491        rfts = res_common_files;
1492        len = ARRAY_SIZE(res_common_files);
1493
1494        lockdep_assert_held(&rdtgroup_mutex);
1495
1496        for (rft = rfts; rft < rfts + len; rft++) {
1497                if ((fflags & rft->fflags) == rft->fflags) {
1498                        ret = rdtgroup_add_file(kn, rft);
1499                        if (ret)
1500                                goto error;
1501                }
1502        }
1503
1504        return 0;
1505error:
1506        pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1507        while (--rft >= rfts) {
1508                if ((fflags & rft->fflags) == rft->fflags)
1509                        kernfs_remove_by_name(kn, rft->name);
1510        }
1511        return ret;
1512}
1513
1514/**
1515 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1516 * @r: The resource group with which the file is associated.
1517 * @name: Name of the file
1518 *
1519 * The permissions of named resctrl file, directory, or link are modified
1520 * to not allow read, write, or execute by any user.
1521 *
1522 * WARNING: This function is intended to communicate to the user that the
1523 * resctrl file has been locked down - that it is not relevant to the
1524 * particular state the system finds itself in. It should not be relied
1525 * on to protect from user access because after the file's permissions
1526 * are restricted the user can still change the permissions using chmod
1527 * from the command line.
1528 *
1529 * Return: 0 on success, <0 on failure.
1530 */
1531int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1532{
1533        struct iattr iattr = {.ia_valid = ATTR_MODE,};
1534        struct kernfs_node *kn;
1535        int ret = 0;
1536
1537        kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1538        if (!kn)
1539                return -ENOENT;
1540
1541        switch (kernfs_type(kn)) {
1542        case KERNFS_DIR:
1543                iattr.ia_mode = S_IFDIR;
1544                break;
1545        case KERNFS_FILE:
1546                iattr.ia_mode = S_IFREG;
1547                break;
1548        case KERNFS_LINK:
1549                iattr.ia_mode = S_IFLNK;
1550                break;
1551        }
1552
1553        ret = kernfs_setattr(kn, &iattr);
1554        kernfs_put(kn);
1555        return ret;
1556}
1557
1558/**
1559 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1560 * @r: The resource group with which the file is associated.
1561 * @name: Name of the file
1562 * @mask: Mask of permissions that should be restored
1563 *
1564 * Restore the permissions of the named file. If @name is a directory the
1565 * permissions of its parent will be used.
1566 *
1567 * Return: 0 on success, <0 on failure.
1568 */
1569int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1570                             umode_t mask)
1571{
1572        struct iattr iattr = {.ia_valid = ATTR_MODE,};
1573        struct kernfs_node *kn, *parent;
1574        struct rftype *rfts, *rft;
1575        int ret, len;
1576
1577        rfts = res_common_files;
1578        len = ARRAY_SIZE(res_common_files);
1579
1580        for (rft = rfts; rft < rfts + len; rft++) {
1581                if (!strcmp(rft->name, name))
1582                        iattr.ia_mode = rft->mode & mask;
1583        }
1584
1585        kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1586        if (!kn)
1587                return -ENOENT;
1588
1589        switch (kernfs_type(kn)) {
1590        case KERNFS_DIR:
1591                parent = kernfs_get_parent(kn);
1592                if (parent) {
1593                        iattr.ia_mode |= parent->mode;
1594                        kernfs_put(parent);
1595                }
1596                iattr.ia_mode |= S_IFDIR;
1597                break;
1598        case KERNFS_FILE:
1599                iattr.ia_mode |= S_IFREG;
1600                break;
1601        case KERNFS_LINK:
1602                iattr.ia_mode |= S_IFLNK;
1603                break;
1604        }
1605
1606        ret = kernfs_setattr(kn, &iattr);
1607        kernfs_put(kn);
1608        return ret;
1609}
1610
1611static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1612                                      unsigned long fflags)
1613{
1614        struct kernfs_node *kn_subdir;
1615        int ret;
1616
1617        kn_subdir = kernfs_create_dir(kn_info, name,
1618                                      kn_info->mode, r);
1619        if (IS_ERR(kn_subdir))
1620                return PTR_ERR(kn_subdir);
1621
1622        kernfs_get(kn_subdir);
1623        ret = rdtgroup_kn_set_ugid(kn_subdir);
1624        if (ret)
1625                return ret;
1626
1627        ret = rdtgroup_add_files(kn_subdir, fflags);
1628        if (!ret)
1629                kernfs_activate(kn_subdir);
1630
1631        return ret;
1632}
1633
1634static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1635{
1636        struct rdt_resource *r;
1637        unsigned long fflags;
1638        char name[32];
1639        int ret;
1640
1641        /* create the directory */
1642        kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1643        if (IS_ERR(kn_info))
1644                return PTR_ERR(kn_info);
1645        kernfs_get(kn_info);
1646
1647        ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1648        if (ret)
1649                goto out_destroy;
1650
1651        for_each_alloc_enabled_rdt_resource(r) {
1652                fflags =  r->fflags | RF_CTRL_INFO;
1653                ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1654                if (ret)
1655                        goto out_destroy;
1656        }
1657
1658        for_each_mon_enabled_rdt_resource(r) {
1659                fflags =  r->fflags | RF_MON_INFO;
1660                sprintf(name, "%s_MON", r->name);
1661                ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1662                if (ret)
1663                        goto out_destroy;
1664        }
1665
1666        /*
1667         * This extra ref will be put in kernfs_remove() and guarantees
1668         * that @rdtgrp->kn is always accessible.
1669         */
1670        kernfs_get(kn_info);
1671
1672        ret = rdtgroup_kn_set_ugid(kn_info);
1673        if (ret)
1674                goto out_destroy;
1675
1676        kernfs_activate(kn_info);
1677
1678        return 0;
1679
1680out_destroy:
1681        kernfs_remove(kn_info);
1682        return ret;
1683}
1684
1685static int
1686mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1687                    char *name, struct kernfs_node **dest_kn)
1688{
1689        struct kernfs_node *kn;
1690        int ret;
1691
1692        /* create the directory */
1693        kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1694        if (IS_ERR(kn))
1695                return PTR_ERR(kn);
1696
1697        if (dest_kn)
1698                *dest_kn = kn;
1699
1700        /*
1701         * This extra ref will be put in kernfs_remove() and guarantees
1702         * that @rdtgrp->kn is always accessible.
1703         */
1704        kernfs_get(kn);
1705
1706        ret = rdtgroup_kn_set_ugid(kn);
1707        if (ret)
1708                goto out_destroy;
1709
1710        kernfs_activate(kn);
1711
1712        return 0;
1713
1714out_destroy:
1715        kernfs_remove(kn);
1716        return ret;
1717}
1718
1719static void l3_qos_cfg_update(void *arg)
1720{
1721        bool *enable = arg;
1722
1723        wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1724}
1725
1726static void l2_qos_cfg_update(void *arg)
1727{
1728        bool *enable = arg;
1729
1730        wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1731}
1732
1733static inline bool is_mba_linear(void)
1734{
1735        return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1736}
1737
1738static int set_cache_qos_cfg(int level, bool enable)
1739{
1740        void (*update)(void *arg);
1741        struct rdt_resource *r_l;
1742        cpumask_var_t cpu_mask;
1743        struct rdt_domain *d;
1744        int cpu;
1745
1746        if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1747                return -ENOMEM;
1748
1749        if (level == RDT_RESOURCE_L3)
1750                update = l3_qos_cfg_update;
1751        else if (level == RDT_RESOURCE_L2)
1752                update = l2_qos_cfg_update;
1753        else
1754                return -EINVAL;
1755
1756        r_l = &rdt_resources_all[level];
1757        list_for_each_entry(d, &r_l->domains, list) {
1758                /* Pick one CPU from each domain instance to update MSR */
1759                cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1760        }
1761        cpu = get_cpu();
1762        /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1763        if (cpumask_test_cpu(cpu, cpu_mask))
1764                update(&enable);
1765        /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1766        smp_call_function_many(cpu_mask, update, &enable, 1);
1767        put_cpu();
1768
1769        free_cpumask_var(cpu_mask);
1770
1771        return 0;
1772}
1773
1774/*
1775 * Enable or disable the MBA software controller
1776 * which helps user specify bandwidth in MBps.
1777 * MBA software controller is supported only if
1778 * MBM is supported and MBA is in linear scale.
1779 */
1780static int set_mba_sc(bool mba_sc)
1781{
1782        struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1783        struct rdt_domain *d;
1784
1785        if (!is_mbm_enabled() || !is_mba_linear() ||
1786            mba_sc == is_mba_sc(r))
1787                return -EINVAL;
1788
1789        r->membw.mba_sc = mba_sc;
1790        list_for_each_entry(d, &r->domains, list)
1791                setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1792
1793        return 0;
1794}
1795
1796static int cdp_enable(int level, int data_type, int code_type)
1797{
1798        struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1799        struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1800        struct rdt_resource *r_l = &rdt_resources_all[level];
1801        int ret;
1802
1803        if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1804            !r_lcode->alloc_capable)
1805                return -EINVAL;
1806
1807        ret = set_cache_qos_cfg(level, true);
1808        if (!ret) {
1809                r_l->alloc_enabled = false;
1810                r_ldata->alloc_enabled = true;
1811                r_lcode->alloc_enabled = true;
1812        }
1813        return ret;
1814}
1815
1816static int cdpl3_enable(void)
1817{
1818        return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1819                          RDT_RESOURCE_L3CODE);
1820}
1821
1822static int cdpl2_enable(void)
1823{
1824        return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1825                          RDT_RESOURCE_L2CODE);
1826}
1827
1828static void cdp_disable(int level, int data_type, int code_type)
1829{
1830        struct rdt_resource *r = &rdt_resources_all[level];
1831
1832        r->alloc_enabled = r->alloc_capable;
1833
1834        if (rdt_resources_all[data_type].alloc_enabled) {
1835                rdt_resources_all[data_type].alloc_enabled = false;
1836                rdt_resources_all[code_type].alloc_enabled = false;
1837                set_cache_qos_cfg(level, false);
1838        }
1839}
1840
1841static void cdpl3_disable(void)
1842{
1843        cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1844}
1845
1846static void cdpl2_disable(void)
1847{
1848        cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1849}
1850
1851static void cdp_disable_all(void)
1852{
1853        if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1854                cdpl3_disable();
1855        if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1856                cdpl2_disable();
1857}
1858
1859/*
1860 * We don't allow rdtgroup directories to be created anywhere
1861 * except the root directory. Thus when looking for the rdtgroup
1862 * structure for a kernfs node we are either looking at a directory,
1863 * in which case the rdtgroup structure is pointed at by the "priv"
1864 * field, otherwise we have a file, and need only look to the parent
1865 * to find the rdtgroup.
1866 */
1867static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1868{
1869        if (kernfs_type(kn) == KERNFS_DIR) {
1870                /*
1871                 * All the resource directories use "kn->priv"
1872                 * to point to the "struct rdtgroup" for the
1873                 * resource. "info" and its subdirectories don't
1874                 * have rdtgroup structures, so return NULL here.
1875                 */
1876                if (kn == kn_info || kn->parent == kn_info)
1877                        return NULL;
1878                else
1879                        return kn->priv;
1880        } else {
1881                return kn->parent->priv;
1882        }
1883}
1884
1885struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1886{
1887        struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1888
1889        if (!rdtgrp)
1890                return NULL;
1891
1892        atomic_inc(&rdtgrp->waitcount);
1893        kernfs_break_active_protection(kn);
1894
1895        mutex_lock(&rdtgroup_mutex);
1896
1897        /* Was this group deleted while we waited? */
1898        if (rdtgrp->flags & RDT_DELETED)
1899                return NULL;
1900
1901        return rdtgrp;
1902}
1903
1904void rdtgroup_kn_unlock(struct kernfs_node *kn)
1905{
1906        struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1907
1908        if (!rdtgrp)
1909                return;
1910
1911        mutex_unlock(&rdtgroup_mutex);
1912
1913        if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1914            (rdtgrp->flags & RDT_DELETED)) {
1915                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1916                    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1917                        rdtgroup_pseudo_lock_remove(rdtgrp);
1918                kernfs_unbreak_active_protection(kn);
1919                kernfs_put(rdtgrp->kn);
1920                kfree(rdtgrp);
1921        } else {
1922                kernfs_unbreak_active_protection(kn);
1923        }
1924}
1925
1926static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1927                             struct rdtgroup *prgrp,
1928                             struct kernfs_node **mon_data_kn);
1929
1930static int rdt_enable_ctx(struct rdt_fs_context *ctx)
1931{
1932        int ret = 0;
1933
1934        if (ctx->enable_cdpl2)
1935                ret = cdpl2_enable();
1936
1937        if (!ret && ctx->enable_cdpl3)
1938                ret = cdpl3_enable();
1939
1940        if (!ret && ctx->enable_mba_mbps)
1941                ret = set_mba_sc(true);
1942
1943        return ret;
1944}
1945
1946static int rdt_get_tree(struct fs_context *fc)
1947{
1948        struct rdt_fs_context *ctx = rdt_fc2context(fc);
1949        struct rdt_domain *dom;
1950        struct rdt_resource *r;
1951        int ret;
1952
1953        cpus_read_lock();
1954        mutex_lock(&rdtgroup_mutex);
1955        /*
1956         * resctrl file system can only be mounted once.
1957         */
1958        if (static_branch_unlikely(&rdt_enable_key)) {
1959                ret = -EBUSY;
1960                goto out;
1961        }
1962
1963        ret = rdt_enable_ctx(ctx);
1964        if (ret < 0)
1965                goto out_cdp;
1966
1967        closid_init();
1968
1969        ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1970        if (ret < 0)
1971                goto out_mba;
1972
1973        if (rdt_mon_capable) {
1974                ret = mongroup_create_dir(rdtgroup_default.kn,
1975                                          NULL, "mon_groups",
1976                                          &kn_mongrp);
1977                if (ret < 0)
1978                        goto out_info;
1979                kernfs_get(kn_mongrp);
1980
1981                ret = mkdir_mondata_all(rdtgroup_default.kn,
1982                                        &rdtgroup_default, &kn_mondata);
1983                if (ret < 0)
1984                        goto out_mongrp;
1985                kernfs_get(kn_mondata);
1986                rdtgroup_default.mon.mon_data_kn = kn_mondata;
1987        }
1988
1989        ret = rdt_pseudo_lock_init();
1990        if (ret)
1991                goto out_mondata;
1992
1993        ret = kernfs_get_tree(fc);
1994        if (ret < 0)
1995                goto out_psl;
1996
1997        if (rdt_alloc_capable)
1998                static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
1999        if (rdt_mon_capable)
2000                static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2001
2002        if (rdt_alloc_capable || rdt_mon_capable)
2003                static_branch_enable_cpuslocked(&rdt_enable_key);
2004
2005        if (is_mbm_enabled()) {
2006                r = &rdt_resources_all[RDT_RESOURCE_L3];
2007                list_for_each_entry(dom, &r->domains, list)
2008                        mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2009        }
2010
2011        goto out;
2012
2013out_psl:
2014        rdt_pseudo_lock_release();
2015out_mondata:
2016        if (rdt_mon_capable)
2017                kernfs_remove(kn_mondata);
2018out_mongrp:
2019        if (rdt_mon_capable)
2020                kernfs_remove(kn_mongrp);
2021out_info:
2022        kernfs_remove(kn_info);
2023out_mba:
2024        if (ctx->enable_mba_mbps)
2025                set_mba_sc(false);
2026out_cdp:
2027        cdp_disable_all();
2028out:
2029        rdt_last_cmd_clear();
2030        mutex_unlock(&rdtgroup_mutex);
2031        cpus_read_unlock();
2032        return ret;
2033}
2034
2035enum rdt_param {
2036        Opt_cdp,
2037        Opt_cdpl2,
2038        Opt_mba_mbps,
2039        nr__rdt_params
2040};
2041
2042static const struct fs_parameter_spec rdt_param_specs[] = {
2043        fsparam_flag("cdp",             Opt_cdp),
2044        fsparam_flag("cdpl2",           Opt_cdpl2),
2045        fsparam_flag("mba_MBps",        Opt_mba_mbps),
2046        {}
2047};
2048
2049static const struct fs_parameter_description rdt_fs_parameters = {
2050        .name           = "rdt",
2051        .specs          = rdt_param_specs,
2052};
2053
2054static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2055{
2056        struct rdt_fs_context *ctx = rdt_fc2context(fc);
2057        struct fs_parse_result result;
2058        int opt;
2059
2060        opt = fs_parse(fc, &rdt_fs_parameters, param, &result);
2061        if (opt < 0)
2062                return opt;
2063
2064        switch (opt) {
2065        case Opt_cdp:
2066                ctx->enable_cdpl3 = true;
2067                return 0;
2068        case Opt_cdpl2:
2069                ctx->enable_cdpl2 = true;
2070                return 0;
2071        case Opt_mba_mbps:
2072                if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2073                        return -EINVAL;
2074                ctx->enable_mba_mbps = true;
2075                return 0;
2076        }
2077
2078        return -EINVAL;
2079}
2080
2081static void rdt_fs_context_free(struct fs_context *fc)
2082{
2083        struct rdt_fs_context *ctx = rdt_fc2context(fc);
2084
2085        kernfs_free_fs_context(fc);
2086        kfree(ctx);
2087}
2088
2089static const struct fs_context_operations rdt_fs_context_ops = {
2090        .free           = rdt_fs_context_free,
2091        .parse_param    = rdt_parse_param,
2092        .get_tree       = rdt_get_tree,
2093};
2094
2095static int rdt_init_fs_context(struct fs_context *fc)
2096{
2097        struct rdt_fs_context *ctx;
2098
2099        ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2100        if (!ctx)
2101                return -ENOMEM;
2102
2103        ctx->kfc.root = rdt_root;
2104        ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2105        fc->fs_private = &ctx->kfc;
2106        fc->ops = &rdt_fs_context_ops;
2107        put_user_ns(fc->user_ns);
2108        fc->user_ns = get_user_ns(&init_user_ns);
2109        fc->global = true;
2110        return 0;
2111}
2112
2113static int reset_all_ctrls(struct rdt_resource *r)
2114{
2115        struct msr_param msr_param;
2116        cpumask_var_t cpu_mask;
2117        struct rdt_domain *d;
2118        int i, cpu;
2119
2120        if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2121                return -ENOMEM;
2122
2123        msr_param.res = r;
2124        msr_param.low = 0;
2125        msr_param.high = r->num_closid;
2126
2127        /*
2128         * Disable resource control for this resource by setting all
2129         * CBMs in all domains to the maximum mask value. Pick one CPU
2130         * from each domain to update the MSRs below.
2131         */
2132        list_for_each_entry(d, &r->domains, list) {
2133                cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2134
2135                for (i = 0; i < r->num_closid; i++)
2136                        d->ctrl_val[i] = r->default_ctrl;
2137        }
2138        cpu = get_cpu();
2139        /* Update CBM on this cpu if it's in cpu_mask. */
2140        if (cpumask_test_cpu(cpu, cpu_mask))
2141                rdt_ctrl_update(&msr_param);
2142        /* Update CBM on all other cpus in cpu_mask. */
2143        smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2144        put_cpu();
2145
2146        free_cpumask_var(cpu_mask);
2147
2148        return 0;
2149}
2150
2151static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2152{
2153        return (rdt_alloc_capable &&
2154                (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2155}
2156
2157static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2158{
2159        return (rdt_mon_capable &&
2160                (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2161}
2162
2163/*
2164 * Move tasks from one to the other group. If @from is NULL, then all tasks
2165 * in the systems are moved unconditionally (used for teardown).
2166 *
2167 * If @mask is not NULL the cpus on which moved tasks are running are set
2168 * in that mask so the update smp function call is restricted to affected
2169 * cpus.
2170 */
2171static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2172                                 struct cpumask *mask)
2173{
2174        struct task_struct *p, *t;
2175
2176        read_lock(&tasklist_lock);
2177        for_each_process_thread(p, t) {
2178                if (!from || is_closid_match(t, from) ||
2179                    is_rmid_match(t, from)) {
2180                        t->closid = to->closid;
2181                        t->rmid = to->mon.rmid;
2182
2183#ifdef CONFIG_SMP
2184                        /*
2185                         * This is safe on x86 w/o barriers as the ordering
2186                         * of writing to task_cpu() and t->on_cpu is
2187                         * reverse to the reading here. The detection is
2188                         * inaccurate as tasks might move or schedule
2189                         * before the smp function call takes place. In
2190                         * such a case the function call is pointless, but
2191                         * there is no other side effect.
2192                         */
2193                        if (mask && t->on_cpu)
2194                                cpumask_set_cpu(task_cpu(t), mask);
2195#endif
2196                }
2197        }
2198        read_unlock(&tasklist_lock);
2199}
2200
2201static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2202{
2203        struct rdtgroup *sentry, *stmp;
2204        struct list_head *head;
2205
2206        head = &rdtgrp->mon.crdtgrp_list;
2207        list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2208                free_rmid(sentry->mon.rmid);
2209                list_del(&sentry->mon.crdtgrp_list);
2210                kfree(sentry);
2211        }
2212}
2213
2214/*
2215 * Forcibly remove all of subdirectories under root.
2216 */
2217static void rmdir_all_sub(void)
2218{
2219        struct rdtgroup *rdtgrp, *tmp;
2220
2221        /* Move all tasks to the default resource group */
2222        rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2223
2224        list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2225                /* Free any child rmids */
2226                free_all_child_rdtgrp(rdtgrp);
2227
2228                /* Remove each rdtgroup other than root */
2229                if (rdtgrp == &rdtgroup_default)
2230                        continue;
2231
2232                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2233                    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2234                        rdtgroup_pseudo_lock_remove(rdtgrp);
2235
2236                /*
2237                 * Give any CPUs back to the default group. We cannot copy
2238                 * cpu_online_mask because a CPU might have executed the
2239                 * offline callback already, but is still marked online.
2240                 */
2241                cpumask_or(&rdtgroup_default.cpu_mask,
2242                           &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2243
2244                free_rmid(rdtgrp->mon.rmid);
2245
2246                kernfs_remove(rdtgrp->kn);
2247                list_del(&rdtgrp->rdtgroup_list);
2248                kfree(rdtgrp);
2249        }
2250        /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2251        update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2252
2253        kernfs_remove(kn_info);
2254        kernfs_remove(kn_mongrp);
2255        kernfs_remove(kn_mondata);
2256}
2257
2258static void rdt_kill_sb(struct super_block *sb)
2259{
2260        struct rdt_resource *r;
2261
2262        cpus_read_lock();
2263        mutex_lock(&rdtgroup_mutex);
2264
2265        set_mba_sc(false);
2266
2267        /*Put everything back to default values. */
2268        for_each_alloc_enabled_rdt_resource(r)
2269                reset_all_ctrls(r);
2270        cdp_disable_all();
2271        rmdir_all_sub();
2272        rdt_pseudo_lock_release();
2273        rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2274        static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2275        static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2276        static_branch_disable_cpuslocked(&rdt_enable_key);
2277        kernfs_kill_sb(sb);
2278        mutex_unlock(&rdtgroup_mutex);
2279        cpus_read_unlock();
2280}
2281
2282static struct file_system_type rdt_fs_type = {
2283        .name                   = "resctrl",
2284        .init_fs_context        = rdt_init_fs_context,
2285        .parameters             = &rdt_fs_parameters,
2286        .kill_sb                = rdt_kill_sb,
2287};
2288
2289static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2290                       void *priv)
2291{
2292        struct kernfs_node *kn;
2293        int ret = 0;
2294
2295        kn = __kernfs_create_file(parent_kn, name, 0444,
2296                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2297                                  &kf_mondata_ops, priv, NULL, NULL);
2298        if (IS_ERR(kn))
2299                return PTR_ERR(kn);
2300
2301        ret = rdtgroup_kn_set_ugid(kn);
2302        if (ret) {
2303                kernfs_remove(kn);
2304                return ret;
2305        }
2306
2307        return ret;
2308}
2309
2310/*
2311 * Remove all subdirectories of mon_data of ctrl_mon groups
2312 * and monitor groups with given domain id.
2313 */
2314void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2315{
2316        struct rdtgroup *prgrp, *crgrp;
2317        char name[32];
2318
2319        if (!r->mon_enabled)
2320                return;
2321
2322        list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2323                sprintf(name, "mon_%s_%02d", r->name, dom_id);
2324                kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2325
2326                list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2327                        kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2328        }
2329}
2330
2331static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2332                                struct rdt_domain *d,
2333                                struct rdt_resource *r, struct rdtgroup *prgrp)
2334{
2335        union mon_data_bits priv;
2336        struct kernfs_node *kn;
2337        struct mon_evt *mevt;
2338        struct rmid_read rr;
2339        char name[32];
2340        int ret;
2341
2342        sprintf(name, "mon_%s_%02d", r->name, d->id);
2343        /* create the directory */
2344        kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2345        if (IS_ERR(kn))
2346                return PTR_ERR(kn);
2347
2348        /*
2349         * This extra ref will be put in kernfs_remove() and guarantees
2350         * that kn is always accessible.
2351         */
2352        kernfs_get(kn);
2353        ret = rdtgroup_kn_set_ugid(kn);
2354        if (ret)
2355                goto out_destroy;
2356
2357        if (WARN_ON(list_empty(&r->evt_list))) {
2358                ret = -EPERM;
2359                goto out_destroy;
2360        }
2361
2362        priv.u.rid = r->rid;
2363        priv.u.domid = d->id;
2364        list_for_each_entry(mevt, &r->evt_list, list) {
2365                priv.u.evtid = mevt->evtid;
2366                ret = mon_addfile(kn, mevt->name, priv.priv);
2367                if (ret)
2368                        goto out_destroy;
2369
2370                if (is_mbm_event(mevt->evtid))
2371                        mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2372        }
2373        kernfs_activate(kn);
2374        return 0;
2375
2376out_destroy:
2377        kernfs_remove(kn);
2378        return ret;
2379}
2380
2381/*
2382 * Add all subdirectories of mon_data for "ctrl_mon" groups
2383 * and "monitor" groups with given domain id.
2384 */
2385void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2386                                    struct rdt_domain *d)
2387{
2388        struct kernfs_node *parent_kn;
2389        struct rdtgroup *prgrp, *crgrp;
2390        struct list_head *head;
2391
2392        if (!r->mon_enabled)
2393                return;
2394
2395        list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2396                parent_kn = prgrp->mon.mon_data_kn;
2397                mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2398
2399                head = &prgrp->mon.crdtgrp_list;
2400                list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2401                        parent_kn = crgrp->mon.mon_data_kn;
2402                        mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2403                }
2404        }
2405}
2406
2407static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2408                                       struct rdt_resource *r,
2409                                       struct rdtgroup *prgrp)
2410{
2411        struct rdt_domain *dom;
2412        int ret;
2413
2414        list_for_each_entry(dom, &r->domains, list) {
2415                ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2416                if (ret)
2417                        return ret;
2418        }
2419
2420        return 0;
2421}
2422
2423/*
2424 * This creates a directory mon_data which contains the monitored data.
2425 *
2426 * mon_data has one directory for each domain whic are named
2427 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2428 * with L3 domain looks as below:
2429 * ./mon_data:
2430 * mon_L3_00
2431 * mon_L3_01
2432 * mon_L3_02
2433 * ...
2434 *
2435 * Each domain directory has one file per event:
2436 * ./mon_L3_00/:
2437 * llc_occupancy
2438 *
2439 */
2440static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2441                             struct rdtgroup *prgrp,
2442                             struct kernfs_node **dest_kn)
2443{
2444        struct rdt_resource *r;
2445        struct kernfs_node *kn;
2446        int ret;
2447
2448        /*
2449         * Create the mon_data directory first.
2450         */
2451        ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
2452        if (ret)
2453                return ret;
2454
2455        if (dest_kn)
2456                *dest_kn = kn;
2457
2458        /*
2459         * Create the subdirectories for each domain. Note that all events
2460         * in a domain like L3 are grouped into a resource whose domain is L3
2461         */
2462        for_each_mon_enabled_rdt_resource(r) {
2463                ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2464                if (ret)
2465                        goto out_destroy;
2466        }
2467
2468        return 0;
2469
2470out_destroy:
2471        kernfs_remove(kn);
2472        return ret;
2473}
2474
2475/**
2476 * cbm_ensure_valid - Enforce validity on provided CBM
2477 * @_val:       Candidate CBM
2478 * @r:          RDT resource to which the CBM belongs
2479 *
2480 * The provided CBM represents all cache portions available for use. This
2481 * may be represented by a bitmap that does not consist of contiguous ones
2482 * and thus be an invalid CBM.
2483 * Here the provided CBM is forced to be a valid CBM by only considering
2484 * the first set of contiguous bits as valid and clearing all bits.
2485 * The intention here is to provide a valid default CBM with which a new
2486 * resource group is initialized. The user can follow this with a
2487 * modification to the CBM if the default does not satisfy the
2488 * requirements.
2489 */
2490static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2491{
2492        unsigned int cbm_len = r->cache.cbm_len;
2493        unsigned long first_bit, zero_bit;
2494        unsigned long val = _val;
2495
2496        if (!val)
2497                return 0;
2498
2499        first_bit = find_first_bit(&val, cbm_len);
2500        zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2501
2502        /* Clear any remaining bits to ensure contiguous region */
2503        bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2504        return (u32)val;
2505}
2506
2507/*
2508 * Initialize cache resources per RDT domain
2509 *
2510 * Set the RDT domain up to start off with all usable allocations. That is,
2511 * all shareable and unused bits. All-zero CBM is invalid.
2512 */
2513static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2514                                 u32 closid)
2515{
2516        struct rdt_resource *r_cdp = NULL;
2517        struct rdt_domain *d_cdp = NULL;
2518        u32 used_b = 0, unused_b = 0;
2519        unsigned long tmp_cbm;
2520        enum rdtgrp_mode mode;
2521        u32 peer_ctl, *ctrl;
2522        int i;
2523
2524        rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2525        d->have_new_ctrl = false;
2526        d->new_ctrl = r->cache.shareable_bits;
2527        used_b = r->cache.shareable_bits;
2528        ctrl = d->ctrl_val;
2529        for (i = 0; i < closids_supported(); i++, ctrl++) {
2530                if (closid_allocated(i) && i != closid) {
2531                        mode = rdtgroup_mode_by_closid(i);
2532                        if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2533                                /*
2534                                 * ctrl values for locksetup aren't relevant
2535                                 * until the schemata is written, and the mode
2536                                 * becomes RDT_MODE_PSEUDO_LOCKED.
2537                                 */
2538                                continue;
2539                        /*
2540                         * If CDP is active include peer domain's
2541                         * usage to ensure there is no overlap
2542                         * with an exclusive group.
2543                         */
2544                        if (d_cdp)
2545                                peer_ctl = d_cdp->ctrl_val[i];
2546                        else
2547                                peer_ctl = 0;
2548                        used_b |= *ctrl | peer_ctl;
2549                        if (mode == RDT_MODE_SHAREABLE)
2550                                d->new_ctrl |= *ctrl | peer_ctl;
2551                }
2552        }
2553        if (d->plr && d->plr->cbm > 0)
2554                used_b |= d->plr->cbm;
2555        unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2556        unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2557        d->new_ctrl |= unused_b;
2558        /*
2559         * Force the initial CBM to be valid, user can
2560         * modify the CBM based on system availability.
2561         */
2562        d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2563        /*
2564         * Assign the u32 CBM to an unsigned long to ensure that
2565         * bitmap_weight() does not access out-of-bound memory.
2566         */
2567        tmp_cbm = d->new_ctrl;
2568        if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2569                rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2570                return -ENOSPC;
2571        }
2572        d->have_new_ctrl = true;
2573
2574        return 0;
2575}
2576
2577/*
2578 * Initialize cache resources with default values.
2579 *
2580 * A new RDT group is being created on an allocation capable (CAT)
2581 * supporting system. Set this group up to start off with all usable
2582 * allocations.
2583 *
2584 * If there are no more shareable bits available on any domain then
2585 * the entire allocation will fail.
2586 */
2587static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2588{
2589        struct rdt_domain *d;
2590        int ret;
2591
2592        list_for_each_entry(d, &r->domains, list) {
2593                ret = __init_one_rdt_domain(d, r, closid);
2594                if (ret < 0)
2595                        return ret;
2596        }
2597
2598        return 0;
2599}
2600
2601/* Initialize MBA resource with default values. */
2602static void rdtgroup_init_mba(struct rdt_resource *r)
2603{
2604        struct rdt_domain *d;
2605
2606        list_for_each_entry(d, &r->domains, list) {
2607                d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2608                d->have_new_ctrl = true;
2609        }
2610}
2611
2612/* Initialize the RDT group's allocations. */
2613static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2614{
2615        struct rdt_resource *r;
2616        int ret;
2617
2618        for_each_alloc_enabled_rdt_resource(r) {
2619                if (r->rid == RDT_RESOURCE_MBA) {
2620                        rdtgroup_init_mba(r);
2621                } else {
2622                        ret = rdtgroup_init_cat(r, rdtgrp->closid);
2623                        if (ret < 0)
2624                                return ret;
2625                }
2626
2627                ret = update_domains(r, rdtgrp->closid);
2628                if (ret < 0) {
2629                        rdt_last_cmd_puts("Failed to initialize allocations\n");
2630                        return ret;
2631                }
2632
2633        }
2634
2635        rdtgrp->mode = RDT_MODE_SHAREABLE;
2636
2637        return 0;
2638}
2639
2640static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2641                             struct kernfs_node *prgrp_kn,
2642                             const char *name, umode_t mode,
2643                             enum rdt_group_type rtype, struct rdtgroup **r)
2644{
2645        struct rdtgroup *prdtgrp, *rdtgrp;
2646        struct kernfs_node *kn;
2647        uint files = 0;
2648        int ret;
2649
2650        prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2651        rdt_last_cmd_clear();
2652        if (!prdtgrp) {
2653                ret = -ENODEV;
2654                rdt_last_cmd_puts("Directory was removed\n");
2655                goto out_unlock;
2656        }
2657
2658        if (rtype == RDTMON_GROUP &&
2659            (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2660             prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2661                ret = -EINVAL;
2662                rdt_last_cmd_puts("Pseudo-locking in progress\n");
2663                goto out_unlock;
2664        }
2665
2666        /* allocate the rdtgroup. */
2667        rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2668        if (!rdtgrp) {
2669                ret = -ENOSPC;
2670                rdt_last_cmd_puts("Kernel out of memory\n");
2671                goto out_unlock;
2672        }
2673        *r = rdtgrp;
2674        rdtgrp->mon.parent = prdtgrp;
2675        rdtgrp->type = rtype;
2676        INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2677
2678        /* kernfs creates the directory for rdtgrp */
2679        kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2680        if (IS_ERR(kn)) {
2681                ret = PTR_ERR(kn);
2682                rdt_last_cmd_puts("kernfs create error\n");
2683                goto out_free_rgrp;
2684        }
2685        rdtgrp->kn = kn;
2686
2687        /*
2688         * kernfs_remove() will drop the reference count on "kn" which
2689         * will free it. But we still need it to stick around for the
2690         * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2691         * here, which will be dropped inside rdtgroup_kn_unlock().
2692         */
2693        kernfs_get(kn);
2694
2695        ret = rdtgroup_kn_set_ugid(kn);
2696        if (ret) {
2697                rdt_last_cmd_puts("kernfs perm error\n");
2698                goto out_destroy;
2699        }
2700
2701        files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2702        ret = rdtgroup_add_files(kn, files);
2703        if (ret) {
2704                rdt_last_cmd_puts("kernfs fill error\n");
2705                goto out_destroy;
2706        }
2707
2708        if (rdt_mon_capable) {
2709                ret = alloc_rmid();
2710                if (ret < 0) {
2711                        rdt_last_cmd_puts("Out of RMIDs\n");
2712                        goto out_destroy;
2713                }
2714                rdtgrp->mon.rmid = ret;
2715
2716                ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2717                if (ret) {
2718                        rdt_last_cmd_puts("kernfs subdir error\n");
2719                        goto out_idfree;
2720                }
2721        }
2722        kernfs_activate(kn);
2723
2724        /*
2725         * The caller unlocks the prgrp_kn upon success.
2726         */
2727        return 0;
2728
2729out_idfree:
2730        free_rmid(rdtgrp->mon.rmid);
2731out_destroy:
2732        kernfs_remove(rdtgrp->kn);
2733out_free_rgrp:
2734        kfree(rdtgrp);
2735out_unlock:
2736        rdtgroup_kn_unlock(prgrp_kn);
2737        return ret;
2738}
2739
2740static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2741{
2742        kernfs_remove(rgrp->kn);
2743        free_rmid(rgrp->mon.rmid);
2744        kfree(rgrp);
2745}
2746
2747/*
2748 * Create a monitor group under "mon_groups" directory of a control
2749 * and monitor group(ctrl_mon). This is a resource group
2750 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2751 */
2752static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2753                              struct kernfs_node *prgrp_kn,
2754                              const char *name,
2755                              umode_t mode)
2756{
2757        struct rdtgroup *rdtgrp, *prgrp;
2758        int ret;
2759
2760        ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2761                                &rdtgrp);
2762        if (ret)
2763                return ret;
2764
2765        prgrp = rdtgrp->mon.parent;
2766        rdtgrp->closid = prgrp->closid;
2767
2768        /*
2769         * Add the rdtgrp to the list of rdtgrps the parent
2770         * ctrl_mon group has to track.
2771         */
2772        list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2773
2774        rdtgroup_kn_unlock(prgrp_kn);
2775        return ret;
2776}
2777
2778/*
2779 * These are rdtgroups created under the root directory. Can be used
2780 * to allocate and monitor resources.
2781 */
2782static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2783                                   struct kernfs_node *prgrp_kn,
2784                                   const char *name, umode_t mode)
2785{
2786        struct rdtgroup *rdtgrp;
2787        struct kernfs_node *kn;
2788        u32 closid;
2789        int ret;
2790
2791        ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2792                                &rdtgrp);
2793        if (ret)
2794                return ret;
2795
2796        kn = rdtgrp->kn;
2797        ret = closid_alloc();
2798        if (ret < 0) {
2799                rdt_last_cmd_puts("Out of CLOSIDs\n");
2800                goto out_common_fail;
2801        }
2802        closid = ret;
2803        ret = 0;
2804
2805        rdtgrp->closid = closid;
2806        ret = rdtgroup_init_alloc(rdtgrp);
2807        if (ret < 0)
2808                goto out_id_free;
2809
2810        list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2811
2812        if (rdt_mon_capable) {
2813                /*
2814                 * Create an empty mon_groups directory to hold the subset
2815                 * of tasks and cpus to monitor.
2816                 */
2817                ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2818                if (ret) {
2819                        rdt_last_cmd_puts("kernfs subdir error\n");
2820                        goto out_del_list;
2821                }
2822        }
2823
2824        goto out_unlock;
2825
2826out_del_list:
2827        list_del(&rdtgrp->rdtgroup_list);
2828out_id_free:
2829        closid_free(closid);
2830out_common_fail:
2831        mkdir_rdt_prepare_clean(rdtgrp);
2832out_unlock:
2833        rdtgroup_kn_unlock(prgrp_kn);
2834        return ret;
2835}
2836
2837/*
2838 * We allow creating mon groups only with in a directory called "mon_groups"
2839 * which is present in every ctrl_mon group. Check if this is a valid
2840 * "mon_groups" directory.
2841 *
2842 * 1. The directory should be named "mon_groups".
2843 * 2. The mon group itself should "not" be named "mon_groups".
2844 *   This makes sure "mon_groups" directory always has a ctrl_mon group
2845 *   as parent.
2846 */
2847static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2848{
2849        return (!strcmp(kn->name, "mon_groups") &&
2850                strcmp(name, "mon_groups"));
2851}
2852
2853static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2854                          umode_t mode)
2855{
2856        /* Do not accept '\n' to avoid unparsable situation. */
2857        if (strchr(name, '\n'))
2858                return -EINVAL;
2859
2860        /*
2861         * If the parent directory is the root directory and RDT
2862         * allocation is supported, add a control and monitoring
2863         * subdirectory
2864         */
2865        if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2866                return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2867
2868        /*
2869         * If RDT monitoring is supported and the parent directory is a valid
2870         * "mon_groups" directory, add a monitoring subdirectory.
2871         */
2872        if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2873                return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2874
2875        return -EPERM;
2876}
2877
2878static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2879                              cpumask_var_t tmpmask)
2880{
2881        struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2882        int cpu;
2883
2884        /* Give any tasks back to the parent group */
2885        rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2886
2887        /* Update per cpu rmid of the moved CPUs first */
2888        for_each_cpu(cpu, &rdtgrp->cpu_mask)
2889                per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2890        /*
2891         * Update the MSR on moved CPUs and CPUs which have moved
2892         * task running on them.
2893         */
2894        cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2895        update_closid_rmid(tmpmask, NULL);
2896
2897        rdtgrp->flags = RDT_DELETED;
2898        free_rmid(rdtgrp->mon.rmid);
2899
2900        /*
2901         * Remove the rdtgrp from the parent ctrl_mon group's list
2902         */
2903        WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2904        list_del(&rdtgrp->mon.crdtgrp_list);
2905
2906        /*
2907         * one extra hold on this, will drop when we kfree(rdtgrp)
2908         * in rdtgroup_kn_unlock()
2909         */
2910        kernfs_get(kn);
2911        kernfs_remove(rdtgrp->kn);
2912
2913        return 0;
2914}
2915
2916static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2917                                struct rdtgroup *rdtgrp)
2918{
2919        rdtgrp->flags = RDT_DELETED;
2920        list_del(&rdtgrp->rdtgroup_list);
2921
2922        /*
2923         * one extra hold on this, will drop when we kfree(rdtgrp)
2924         * in rdtgroup_kn_unlock()
2925         */
2926        kernfs_get(kn);
2927        kernfs_remove(rdtgrp->kn);
2928        return 0;
2929}
2930
2931static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2932                               cpumask_var_t tmpmask)
2933{
2934        int cpu;
2935
2936        /* Give any tasks back to the default group */
2937        rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2938
2939        /* Give any CPUs back to the default group */
2940        cpumask_or(&rdtgroup_default.cpu_mask,
2941                   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2942
2943        /* Update per cpu closid and rmid of the moved CPUs first */
2944        for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2945                per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2946                per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2947        }
2948
2949        /*
2950         * Update the MSR on moved CPUs and CPUs which have moved
2951         * task running on them.
2952         */
2953        cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2954        update_closid_rmid(tmpmask, NULL);
2955
2956        closid_free(rdtgrp->closid);
2957        free_rmid(rdtgrp->mon.rmid);
2958
2959        /*
2960         * Free all the child monitor group rmids.
2961         */
2962        free_all_child_rdtgrp(rdtgrp);
2963
2964        rdtgroup_ctrl_remove(kn, rdtgrp);
2965
2966        return 0;
2967}
2968
2969static int rdtgroup_rmdir(struct kernfs_node *kn)
2970{
2971        struct kernfs_node *parent_kn = kn->parent;
2972        struct rdtgroup *rdtgrp;
2973        cpumask_var_t tmpmask;
2974        int ret = 0;
2975
2976        if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2977                return -ENOMEM;
2978
2979        rdtgrp = rdtgroup_kn_lock_live(kn);
2980        if (!rdtgrp) {
2981                ret = -EPERM;
2982                goto out;
2983        }
2984
2985        /*
2986         * If the rdtgroup is a ctrl_mon group and parent directory
2987         * is the root directory, remove the ctrl_mon group.
2988         *
2989         * If the rdtgroup is a mon group and parent directory
2990         * is a valid "mon_groups" directory, remove the mon group.
2991         */
2992        if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
2993                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2994                    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2995                        ret = rdtgroup_ctrl_remove(kn, rdtgrp);
2996                } else {
2997                        ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2998                }
2999        } else if (rdtgrp->type == RDTMON_GROUP &&
3000                 is_mon_groups(parent_kn, kn->name)) {
3001                ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3002        } else {
3003                ret = -EPERM;
3004        }
3005
3006out:
3007        rdtgroup_kn_unlock(kn);
3008        free_cpumask_var(tmpmask);
3009        return ret;
3010}
3011
3012static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3013{
3014        if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3015                seq_puts(seq, ",cdp");
3016
3017        if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3018                seq_puts(seq, ",cdpl2");
3019
3020        if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3021                seq_puts(seq, ",mba_MBps");
3022
3023        return 0;
3024}
3025
3026static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3027        .mkdir          = rdtgroup_mkdir,
3028        .rmdir          = rdtgroup_rmdir,
3029        .show_options   = rdtgroup_show_options,
3030};
3031
3032static int __init rdtgroup_setup_root(void)
3033{
3034        int ret;
3035
3036        rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3037                                      KERNFS_ROOT_CREATE_DEACTIVATED |
3038                                      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3039                                      &rdtgroup_default);
3040        if (IS_ERR(rdt_root))
3041                return PTR_ERR(rdt_root);
3042
3043        mutex_lock(&rdtgroup_mutex);
3044
3045        rdtgroup_default.closid = 0;
3046        rdtgroup_default.mon.rmid = 0;
3047        rdtgroup_default.type = RDTCTRL_GROUP;
3048        INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3049
3050        list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3051
3052        ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3053        if (ret) {
3054                kernfs_destroy_root(rdt_root);
3055                goto out;
3056        }
3057
3058        rdtgroup_default.kn = rdt_root->kn;
3059        kernfs_activate(rdtgroup_default.kn);
3060
3061out:
3062        mutex_unlock(&rdtgroup_mutex);
3063
3064        return ret;
3065}
3066
3067/*
3068 * rdtgroup_init - rdtgroup initialization
3069 *
3070 * Setup resctrl file system including set up root, create mount point,
3071 * register rdtgroup filesystem, and initialize files under root directory.
3072 *
3073 * Return: 0 on success or -errno
3074 */
3075int __init rdtgroup_init(void)
3076{
3077        int ret = 0;
3078
3079        seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3080                     sizeof(last_cmd_status_buf));
3081
3082        ret = rdtgroup_setup_root();
3083        if (ret)
3084                return ret;
3085
3086        ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3087        if (ret)
3088                goto cleanup_root;
3089
3090        ret = register_filesystem(&rdt_fs_type);
3091        if (ret)
3092                goto cleanup_mountpoint;
3093
3094        /*
3095         * Adding the resctrl debugfs directory here may not be ideal since
3096         * it would let the resctrl debugfs directory appear on the debugfs
3097         * filesystem before the resctrl filesystem is mounted.
3098         * It may also be ok since that would enable debugging of RDT before
3099         * resctrl is mounted.
3100         * The reason why the debugfs directory is created here and not in
3101         * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3102         * during the debugfs directory creation also &sb->s_type->i_mutex_key
3103         * (the lockdep class of inode->i_rwsem). Other filesystem
3104         * interactions (eg. SyS_getdents) have the lock ordering:
3105         * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3106         * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3107         * is taken, thus creating dependency:
3108         * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3109         * issues considering the other two lock dependencies.
3110         * By creating the debugfs directory here we avoid a dependency
3111         * that may cause deadlock (even though file operations cannot
3112         * occur until the filesystem is mounted, but I do not know how to
3113         * tell lockdep that).
3114         */
3115        debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3116
3117        return 0;
3118
3119cleanup_mountpoint:
3120        sysfs_remove_mount_point(fs_kobj, "resctrl");
3121cleanup_root:
3122        kernfs_destroy_root(rdt_root);
3123
3124        return ret;
3125}
3126
3127void __exit rdtgroup_exit(void)
3128{
3129        debugfs_remove_recursive(debugfs_resctrl);
3130        unregister_filesystem(&rdt_fs_type);
3131        sysfs_remove_mount_point(fs_kobj, "resctrl");
3132        kernfs_destroy_root(rdt_root);
3133}
3134