linux/arch/x86/kernel/hpet.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
   6#include <linux/hpet.h>
   7#include <linux/cpu.h>
   8#include <linux/irq.h>
   9
  10#include <asm/hpet.h>
  11#include <asm/time.h>
  12
  13#undef  pr_fmt
  14#define pr_fmt(fmt) "hpet: " fmt
  15
  16enum hpet_mode {
  17        HPET_MODE_UNUSED,
  18        HPET_MODE_LEGACY,
  19        HPET_MODE_CLOCKEVT,
  20        HPET_MODE_DEVICE,
  21};
  22
  23struct hpet_channel {
  24        struct clock_event_device       evt;
  25        unsigned int                    num;
  26        unsigned int                    cpu;
  27        unsigned int                    irq;
  28        unsigned int                    in_use;
  29        enum hpet_mode                  mode;
  30        unsigned int                    boot_cfg;
  31        char                            name[10];
  32};
  33
  34struct hpet_base {
  35        unsigned int                    nr_channels;
  36        unsigned int                    nr_clockevents;
  37        unsigned int                    boot_cfg;
  38        struct hpet_channel             *channels;
  39};
  40
  41#define HPET_MASK                       CLOCKSOURCE_MASK(32)
  42
  43#define HPET_MIN_CYCLES                 128
  44#define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  45
  46/*
  47 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  48 */
  49unsigned long                           hpet_address;
  50u8                                      hpet_blockid; /* OS timer block num */
  51bool                                    hpet_msi_disable;
  52
  53#ifdef CONFIG_PCI_MSI
  54static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
  55static struct irq_domain                *hpet_domain;
  56#endif
  57
  58static void __iomem                     *hpet_virt_address;
  59
  60static struct hpet_base                 hpet_base;
  61
  62static bool                             hpet_legacy_int_enabled;
  63static unsigned long                    hpet_freq;
  64
  65bool                                    boot_hpet_disable;
  66bool                                    hpet_force_user;
  67static bool                             hpet_verbose;
  68
  69static inline
  70struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
  71{
  72        return container_of(evt, struct hpet_channel, evt);
  73}
  74
  75inline unsigned int hpet_readl(unsigned int a)
  76{
  77        return readl(hpet_virt_address + a);
  78}
  79
  80static inline void hpet_writel(unsigned int d, unsigned int a)
  81{
  82        writel(d, hpet_virt_address + a);
  83}
  84
  85static inline void hpet_set_mapping(void)
  86{
  87        hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  88}
  89
  90static inline void hpet_clear_mapping(void)
  91{
  92        iounmap(hpet_virt_address);
  93        hpet_virt_address = NULL;
  94}
  95
  96/*
  97 * HPET command line enable / disable
  98 */
  99static int __init hpet_setup(char *str)
 100{
 101        while (str) {
 102                char *next = strchr(str, ',');
 103
 104                if (next)
 105                        *next++ = 0;
 106                if (!strncmp("disable", str, 7))
 107                        boot_hpet_disable = true;
 108                if (!strncmp("force", str, 5))
 109                        hpet_force_user = true;
 110                if (!strncmp("verbose", str, 7))
 111                        hpet_verbose = true;
 112                str = next;
 113        }
 114        return 1;
 115}
 116__setup("hpet=", hpet_setup);
 117
 118static int __init disable_hpet(char *str)
 119{
 120        boot_hpet_disable = true;
 121        return 1;
 122}
 123__setup("nohpet", disable_hpet);
 124
 125static inline int is_hpet_capable(void)
 126{
 127        return !boot_hpet_disable && hpet_address;
 128}
 129
 130/**
 131 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
 132 */
 133int is_hpet_enabled(void)
 134{
 135        return is_hpet_capable() && hpet_legacy_int_enabled;
 136}
 137EXPORT_SYMBOL_GPL(is_hpet_enabled);
 138
 139static void _hpet_print_config(const char *function, int line)
 140{
 141        u32 i, id, period, cfg, status, channels, l, h;
 142
 143        pr_info("%s(%d):\n", function, line);
 144
 145        id = hpet_readl(HPET_ID);
 146        period = hpet_readl(HPET_PERIOD);
 147        pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
 148
 149        cfg = hpet_readl(HPET_CFG);
 150        status = hpet_readl(HPET_STATUS);
 151        pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
 152
 153        l = hpet_readl(HPET_COUNTER);
 154        h = hpet_readl(HPET_COUNTER+4);
 155        pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 156
 157        channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 158
 159        for (i = 0; i < channels; i++) {
 160                l = hpet_readl(HPET_Tn_CFG(i));
 161                h = hpet_readl(HPET_Tn_CFG(i)+4);
 162                pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
 163
 164                l = hpet_readl(HPET_Tn_CMP(i));
 165                h = hpet_readl(HPET_Tn_CMP(i)+4);
 166                pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
 167
 168                l = hpet_readl(HPET_Tn_ROUTE(i));
 169                h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 170                pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
 171        }
 172}
 173
 174#define hpet_print_config()                                     \
 175do {                                                            \
 176        if (hpet_verbose)                                       \
 177                _hpet_print_config(__func__, __LINE__); \
 178} while (0)
 179
 180/*
 181 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
 182 * timer 0 and timer 1 in case of RTC emulation.
 183 */
 184#ifdef CONFIG_HPET
 185
 186static void __init hpet_reserve_platform_timers(void)
 187{
 188        struct hpet_data hd;
 189        unsigned int i;
 190
 191        memset(&hd, 0, sizeof(hd));
 192        hd.hd_phys_address      = hpet_address;
 193        hd.hd_address           = hpet_virt_address;
 194        hd.hd_nirqs             = hpet_base.nr_channels;
 195
 196        /*
 197         * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 198         * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 199         * don't bother configuring *any* comparator interrupts.
 200         */
 201        hd.hd_irq[0] = HPET_LEGACY_8254;
 202        hd.hd_irq[1] = HPET_LEGACY_RTC;
 203
 204        for (i = 0; i < hpet_base.nr_channels; i++) {
 205                struct hpet_channel *hc = hpet_base.channels + i;
 206
 207                if (i >= 2)
 208                        hd.hd_irq[i] = hc->irq;
 209
 210                switch (hc->mode) {
 211                case HPET_MODE_UNUSED:
 212                case HPET_MODE_DEVICE:
 213                        hc->mode = HPET_MODE_DEVICE;
 214                        break;
 215                case HPET_MODE_CLOCKEVT:
 216                case HPET_MODE_LEGACY:
 217                        hpet_reserve_timer(&hd, hc->num);
 218                        break;
 219                }
 220        }
 221
 222        hpet_alloc(&hd);
 223}
 224
 225static void __init hpet_select_device_channel(void)
 226{
 227        int i;
 228
 229        for (i = 0; i < hpet_base.nr_channels; i++) {
 230                struct hpet_channel *hc = hpet_base.channels + i;
 231
 232                /* Associate the first unused channel to /dev/hpet */
 233                if (hc->mode == HPET_MODE_UNUSED) {
 234                        hc->mode = HPET_MODE_DEVICE;
 235                        return;
 236                }
 237        }
 238}
 239
 240#else
 241static inline void hpet_reserve_platform_timers(void) { }
 242static inline void hpet_select_device_channel(void) {}
 243#endif
 244
 245/* Common HPET functions */
 246static void hpet_stop_counter(void)
 247{
 248        u32 cfg = hpet_readl(HPET_CFG);
 249
 250        cfg &= ~HPET_CFG_ENABLE;
 251        hpet_writel(cfg, HPET_CFG);
 252}
 253
 254static void hpet_reset_counter(void)
 255{
 256        hpet_writel(0, HPET_COUNTER);
 257        hpet_writel(0, HPET_COUNTER + 4);
 258}
 259
 260static void hpet_start_counter(void)
 261{
 262        unsigned int cfg = hpet_readl(HPET_CFG);
 263
 264        cfg |= HPET_CFG_ENABLE;
 265        hpet_writel(cfg, HPET_CFG);
 266}
 267
 268static void hpet_restart_counter(void)
 269{
 270        hpet_stop_counter();
 271        hpet_reset_counter();
 272        hpet_start_counter();
 273}
 274
 275static void hpet_resume_device(void)
 276{
 277        force_hpet_resume();
 278}
 279
 280static void hpet_resume_counter(struct clocksource *cs)
 281{
 282        hpet_resume_device();
 283        hpet_restart_counter();
 284}
 285
 286static void hpet_enable_legacy_int(void)
 287{
 288        unsigned int cfg = hpet_readl(HPET_CFG);
 289
 290        cfg |= HPET_CFG_LEGACY;
 291        hpet_writel(cfg, HPET_CFG);
 292        hpet_legacy_int_enabled = true;
 293}
 294
 295static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
 296{
 297        unsigned int channel = clockevent_to_channel(evt)->num;
 298        unsigned int cfg, cmp, now;
 299        uint64_t delta;
 300
 301        hpet_stop_counter();
 302        delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
 303        delta >>= evt->shift;
 304        now = hpet_readl(HPET_COUNTER);
 305        cmp = now + (unsigned int)delta;
 306        cfg = hpet_readl(HPET_Tn_CFG(channel));
 307        cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
 308               HPET_TN_32BIT;
 309        hpet_writel(cfg, HPET_Tn_CFG(channel));
 310        hpet_writel(cmp, HPET_Tn_CMP(channel));
 311        udelay(1);
 312        /*
 313         * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 314         * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 315         * bit is automatically cleared after the first write.
 316         * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 317         * Publication # 24674)
 318         */
 319        hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
 320        hpet_start_counter();
 321        hpet_print_config();
 322
 323        return 0;
 324}
 325
 326static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
 327{
 328        unsigned int channel = clockevent_to_channel(evt)->num;
 329        unsigned int cfg;
 330
 331        cfg = hpet_readl(HPET_Tn_CFG(channel));
 332        cfg &= ~HPET_TN_PERIODIC;
 333        cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 334        hpet_writel(cfg, HPET_Tn_CFG(channel));
 335
 336        return 0;
 337}
 338
 339static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
 340{
 341        unsigned int channel = clockevent_to_channel(evt)->num;
 342        unsigned int cfg;
 343
 344        cfg = hpet_readl(HPET_Tn_CFG(channel));
 345        cfg &= ~HPET_TN_ENABLE;
 346        hpet_writel(cfg, HPET_Tn_CFG(channel));
 347
 348        return 0;
 349}
 350
 351static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
 352{
 353        hpet_enable_legacy_int();
 354        hpet_print_config();
 355        return 0;
 356}
 357
 358static int
 359hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
 360{
 361        unsigned int channel = clockevent_to_channel(evt)->num;
 362        u32 cnt;
 363        s32 res;
 364
 365        cnt = hpet_readl(HPET_COUNTER);
 366        cnt += (u32) delta;
 367        hpet_writel(cnt, HPET_Tn_CMP(channel));
 368
 369        /*
 370         * HPETs are a complete disaster. The compare register is
 371         * based on a equal comparison and neither provides a less
 372         * than or equal functionality (which would require to take
 373         * the wraparound into account) nor a simple count down event
 374         * mode. Further the write to the comparator register is
 375         * delayed internally up to two HPET clock cycles in certain
 376         * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 377         * longer delays. We worked around that by reading back the
 378         * compare register, but that required another workaround for
 379         * ICH9,10 chips where the first readout after write can
 380         * return the old stale value. We already had a minimum
 381         * programming delta of 5us enforced, but a NMI or SMI hitting
 382         * between the counter readout and the comparator write can
 383         * move us behind that point easily. Now instead of reading
 384         * the compare register back several times, we make the ETIME
 385         * decision based on the following: Return ETIME if the
 386         * counter value after the write is less than HPET_MIN_CYCLES
 387         * away from the event or if the counter is already ahead of
 388         * the event. The minimum programming delta for the generic
 389         * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 390         */
 391        res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 392
 393        return res < HPET_MIN_CYCLES ? -ETIME : 0;
 394}
 395
 396static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
 397{
 398        struct clock_event_device *evt = &hc->evt;
 399
 400        evt->rating             = rating;
 401        evt->irq                = hc->irq;
 402        evt->name               = hc->name;
 403        evt->cpumask            = cpumask_of(hc->cpu);
 404        evt->set_state_oneshot  = hpet_clkevt_set_state_oneshot;
 405        evt->set_next_event     = hpet_clkevt_set_next_event;
 406        evt->set_state_shutdown = hpet_clkevt_set_state_shutdown;
 407
 408        evt->features = CLOCK_EVT_FEAT_ONESHOT;
 409        if (hc->boot_cfg & HPET_TN_PERIODIC) {
 410                evt->features           |= CLOCK_EVT_FEAT_PERIODIC;
 411                evt->set_state_periodic = hpet_clkevt_set_state_periodic;
 412        }
 413}
 414
 415static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
 416{
 417        /*
 418         * Start HPET with the boot CPU's cpumask and make it global after
 419         * the IO_APIC has been initialized.
 420         */
 421        hc->cpu = boot_cpu_data.cpu_index;
 422        strncpy(hc->name, "hpet", sizeof(hc->name));
 423        hpet_init_clockevent(hc, 50);
 424
 425        hc->evt.tick_resume     = hpet_clkevt_legacy_resume;
 426
 427        /*
 428         * Legacy horrors and sins from the past. HPET used periodic mode
 429         * unconditionally forever on the legacy channel 0. Removing the
 430         * below hack and using the conditional in hpet_init_clockevent()
 431         * makes at least Qemu and one hardware machine fail to boot.
 432         * There are two issues which cause the boot failure:
 433         *
 434         * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
 435         *    the next interrupt is not delivered despite the HPET channel
 436         *    being programmed correctly. Reprogramming the HPET after
 437         *    switching to IOAPIC makes it work again. After fixing this,
 438         *    the next issue surfaces:
 439         *
 440         * #2 Due to the unconditional periodic mode availability the Local
 441         *    APIC timer calibration can hijack the global clockevents
 442         *    event handler without causing damage. Using oneshot at this
 443         *    stage makes if hang because the HPET does not get
 444         *    reprogrammed due to the handler hijacking. Duh, stupid me!
 445         *
 446         * Both issues require major surgery and especially the kick HPET
 447         * again after enabling IOAPIC results in really nasty hackery.
 448         * This 'assume periodic works' magic has survived since HPET
 449         * support got added, so it's questionable whether this should be
 450         * fixed. Both Qemu and the failing hardware machine support
 451         * periodic mode despite the fact that both don't advertise it in
 452         * the configuration register and both need that extra kick after
 453         * switching to IOAPIC. Seems to be a feature...
 454         */
 455        hc->evt.features                |= CLOCK_EVT_FEAT_PERIODIC;
 456        hc->evt.set_state_periodic      = hpet_clkevt_set_state_periodic;
 457
 458        /* Start HPET legacy interrupts */
 459        hpet_enable_legacy_int();
 460
 461        clockevents_config_and_register(&hc->evt, hpet_freq,
 462                                        HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 463        global_clock_event = &hc->evt;
 464        pr_debug("Clockevent registered\n");
 465}
 466
 467/*
 468 * HPET MSI Support
 469 */
 470#ifdef CONFIG_PCI_MSI
 471
 472void hpet_msi_unmask(struct irq_data *data)
 473{
 474        struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 475        unsigned int cfg;
 476
 477        cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 478        cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 479        hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 480}
 481
 482void hpet_msi_mask(struct irq_data *data)
 483{
 484        struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 485        unsigned int cfg;
 486
 487        cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 488        cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 489        hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 490}
 491
 492void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
 493{
 494        hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
 495        hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
 496}
 497
 498static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
 499{
 500        struct hpet_channel *hc = clockevent_to_channel(evt);
 501        struct irq_data *data = irq_get_irq_data(hc->irq);
 502        struct msi_msg msg;
 503
 504        /* Restore the MSI msg and unmask the interrupt */
 505        irq_chip_compose_msi_msg(data, &msg);
 506        hpet_msi_write(hc, &msg);
 507        hpet_msi_unmask(data);
 508        return 0;
 509}
 510
 511static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
 512{
 513        struct hpet_channel *hc = data;
 514        struct clock_event_device *evt = &hc->evt;
 515
 516        if (!evt->event_handler) {
 517                pr_info("Spurious interrupt HPET channel %d\n", hc->num);
 518                return IRQ_HANDLED;
 519        }
 520
 521        evt->event_handler(evt);
 522        return IRQ_HANDLED;
 523}
 524
 525static int hpet_setup_msi_irq(struct hpet_channel *hc)
 526{
 527        if (request_irq(hc->irq, hpet_msi_interrupt_handler,
 528                        IRQF_TIMER | IRQF_NOBALANCING,
 529                        hc->name, hc))
 530                return -1;
 531
 532        disable_irq(hc->irq);
 533        irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
 534        enable_irq(hc->irq);
 535
 536        pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
 537
 538        return 0;
 539}
 540
 541/* Invoked from the hotplug callback on @cpu */
 542static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
 543{
 544        struct clock_event_device *evt = &hc->evt;
 545
 546        hc->cpu = cpu;
 547        per_cpu(cpu_hpet_channel, cpu) = hc;
 548        hpet_setup_msi_irq(hc);
 549
 550        hpet_init_clockevent(hc, 110);
 551        evt->tick_resume = hpet_clkevt_msi_resume;
 552
 553        clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 554                                        0x7FFFFFFF);
 555}
 556
 557static struct hpet_channel *hpet_get_unused_clockevent(void)
 558{
 559        int i;
 560
 561        for (i = 0; i < hpet_base.nr_channels; i++) {
 562                struct hpet_channel *hc = hpet_base.channels + i;
 563
 564                if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
 565                        continue;
 566                hc->in_use = 1;
 567                return hc;
 568        }
 569        return NULL;
 570}
 571
 572static int hpet_cpuhp_online(unsigned int cpu)
 573{
 574        struct hpet_channel *hc = hpet_get_unused_clockevent();
 575
 576        if (hc)
 577                init_one_hpet_msi_clockevent(hc, cpu);
 578        return 0;
 579}
 580
 581static int hpet_cpuhp_dead(unsigned int cpu)
 582{
 583        struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
 584
 585        if (!hc)
 586                return 0;
 587        free_irq(hc->irq, hc);
 588        hc->in_use = 0;
 589        per_cpu(cpu_hpet_channel, cpu) = NULL;
 590        return 0;
 591}
 592
 593static void __init hpet_select_clockevents(void)
 594{
 595        unsigned int i;
 596
 597        hpet_base.nr_clockevents = 0;
 598
 599        /* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
 600        if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
 601                return;
 602
 603        hpet_print_config();
 604
 605        hpet_domain = hpet_create_irq_domain(hpet_blockid);
 606        if (!hpet_domain)
 607                return;
 608
 609        for (i = 0; i < hpet_base.nr_channels; i++) {
 610                struct hpet_channel *hc = hpet_base.channels + i;
 611                int irq;
 612
 613                if (hc->mode != HPET_MODE_UNUSED)
 614                        continue;
 615
 616                /* Only consider HPET channel with MSI support */
 617                if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
 618                        continue;
 619
 620                sprintf(hc->name, "hpet%d", i);
 621
 622                irq = hpet_assign_irq(hpet_domain, hc, hc->num);
 623                if (irq <= 0)
 624                        continue;
 625
 626                hc->irq = irq;
 627                hc->mode = HPET_MODE_CLOCKEVT;
 628
 629                if (++hpet_base.nr_clockevents == num_possible_cpus())
 630                        break;
 631        }
 632
 633        pr_info("%d channels of %d reserved for per-cpu timers\n",
 634                hpet_base.nr_channels, hpet_base.nr_clockevents);
 635}
 636
 637#else
 638
 639static inline void hpet_select_clockevents(void) { }
 640
 641#define hpet_cpuhp_online       NULL
 642#define hpet_cpuhp_dead         NULL
 643
 644#endif
 645
 646/*
 647 * Clock source related code
 648 */
 649#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
 650/*
 651 * Reading the HPET counter is a very slow operation. If a large number of
 652 * CPUs are trying to access the HPET counter simultaneously, it can cause
 653 * massive delays and slow down system performance dramatically. This may
 654 * happen when HPET is the default clock source instead of TSC. For a
 655 * really large system with hundreds of CPUs, the slowdown may be so
 656 * severe, that it can actually crash the system because of a NMI watchdog
 657 * soft lockup, for example.
 658 *
 659 * If multiple CPUs are trying to access the HPET counter at the same time,
 660 * we don't actually need to read the counter multiple times. Instead, the
 661 * other CPUs can use the counter value read by the first CPU in the group.
 662 *
 663 * This special feature is only enabled on x86-64 systems. It is unlikely
 664 * that 32-bit x86 systems will have enough CPUs to require this feature
 665 * with its associated locking overhead. We also need 64-bit atomic read.
 666 *
 667 * The lock and the HPET value are stored together and can be read in a
 668 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
 669 * is 32 bits in size.
 670 */
 671union hpet_lock {
 672        struct {
 673                arch_spinlock_t lock;
 674                u32 value;
 675        };
 676        u64 lockval;
 677};
 678
 679static union hpet_lock hpet __cacheline_aligned = {
 680        { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
 681};
 682
 683static u64 read_hpet(struct clocksource *cs)
 684{
 685        unsigned long flags;
 686        union hpet_lock old, new;
 687
 688        BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
 689
 690        /*
 691         * Read HPET directly if in NMI.
 692         */
 693        if (in_nmi())
 694                return (u64)hpet_readl(HPET_COUNTER);
 695
 696        /*
 697         * Read the current state of the lock and HPET value atomically.
 698         */
 699        old.lockval = READ_ONCE(hpet.lockval);
 700
 701        if (arch_spin_is_locked(&old.lock))
 702                goto contended;
 703
 704        local_irq_save(flags);
 705        if (arch_spin_trylock(&hpet.lock)) {
 706                new.value = hpet_readl(HPET_COUNTER);
 707                /*
 708                 * Use WRITE_ONCE() to prevent store tearing.
 709                 */
 710                WRITE_ONCE(hpet.value, new.value);
 711                arch_spin_unlock(&hpet.lock);
 712                local_irq_restore(flags);
 713                return (u64)new.value;
 714        }
 715        local_irq_restore(flags);
 716
 717contended:
 718        /*
 719         * Contended case
 720         * --------------
 721         * Wait until the HPET value change or the lock is free to indicate
 722         * its value is up-to-date.
 723         *
 724         * It is possible that old.value has already contained the latest
 725         * HPET value while the lock holder was in the process of releasing
 726         * the lock. Checking for lock state change will enable us to return
 727         * the value immediately instead of waiting for the next HPET reader
 728         * to come along.
 729         */
 730        do {
 731                cpu_relax();
 732                new.lockval = READ_ONCE(hpet.lockval);
 733        } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
 734
 735        return (u64)new.value;
 736}
 737#else
 738/*
 739 * For UP or 32-bit.
 740 */
 741static u64 read_hpet(struct clocksource *cs)
 742{
 743        return (u64)hpet_readl(HPET_COUNTER);
 744}
 745#endif
 746
 747static struct clocksource clocksource_hpet = {
 748        .name           = "hpet",
 749        .rating         = 250,
 750        .read           = read_hpet,
 751        .mask           = HPET_MASK,
 752        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 753        .resume         = hpet_resume_counter,
 754};
 755
 756/*
 757 * AMD SB700 based systems with spread spectrum enabled use a SMM based
 758 * HPET emulation to provide proper frequency setting.
 759 *
 760 * On such systems the SMM code is initialized with the first HPET register
 761 * access and takes some time to complete. During this time the config
 762 * register reads 0xffffffff. We check for max 1000 loops whether the
 763 * config register reads a non-0xffffffff value to make sure that the
 764 * HPET is up and running before we proceed any further.
 765 *
 766 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
 767 *
 768 * On non-SB700 based machines this check is only done once and has no
 769 * side effects.
 770 */
 771static bool __init hpet_cfg_working(void)
 772{
 773        int i;
 774
 775        for (i = 0; i < 1000; i++) {
 776                if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
 777                        return true;
 778        }
 779
 780        pr_warn("Config register invalid. Disabling HPET\n");
 781        return false;
 782}
 783
 784static bool __init hpet_counting(void)
 785{
 786        u64 start, now, t1;
 787
 788        hpet_restart_counter();
 789
 790        t1 = hpet_readl(HPET_COUNTER);
 791        start = rdtsc();
 792
 793        /*
 794         * We don't know the TSC frequency yet, but waiting for
 795         * 200000 TSC cycles is safe:
 796         * 4 GHz == 50us
 797         * 1 GHz == 200us
 798         */
 799        do {
 800                if (t1 != hpet_readl(HPET_COUNTER))
 801                        return true;
 802                now = rdtsc();
 803        } while ((now - start) < 200000UL);
 804
 805        pr_warn("Counter not counting. HPET disabled\n");
 806        return false;
 807}
 808
 809/**
 810 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 811 */
 812int __init hpet_enable(void)
 813{
 814        u32 hpet_period, cfg, id, irq;
 815        unsigned int i, channels;
 816        struct hpet_channel *hc;
 817        u64 freq;
 818
 819        if (!is_hpet_capable())
 820                return 0;
 821
 822        hpet_set_mapping();
 823        if (!hpet_virt_address)
 824                return 0;
 825
 826        /* Validate that the config register is working */
 827        if (!hpet_cfg_working())
 828                goto out_nohpet;
 829
 830        /*
 831         * Read the period and check for a sane value:
 832         */
 833        hpet_period = hpet_readl(HPET_PERIOD);
 834        if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 835                goto out_nohpet;
 836
 837        /* The period is a femtoseconds value. Convert it to a frequency. */
 838        freq = FSEC_PER_SEC;
 839        do_div(freq, hpet_period);
 840        hpet_freq = freq;
 841
 842        /*
 843         * Read the HPET ID register to retrieve the IRQ routing
 844         * information and the number of channels
 845         */
 846        id = hpet_readl(HPET_ID);
 847        hpet_print_config();
 848
 849        /* This is the HPET channel number which is zero based */
 850        channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 851
 852        /*
 853         * The legacy routing mode needs at least two channels, tick timer
 854         * and the rtc emulation channel.
 855         */
 856        if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
 857                goto out_nohpet;
 858
 859        hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
 860        if (!hc) {
 861                pr_warn("Disabling HPET.\n");
 862                goto out_nohpet;
 863        }
 864        hpet_base.channels = hc;
 865        hpet_base.nr_channels = channels;
 866
 867        /* Read, store and sanitize the global configuration */
 868        cfg = hpet_readl(HPET_CFG);
 869        hpet_base.boot_cfg = cfg;
 870        cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 871        hpet_writel(cfg, HPET_CFG);
 872        if (cfg)
 873                pr_warn("Global config: Unknown bits %#x\n", cfg);
 874
 875        /* Read, store and sanitize the per channel configuration */
 876        for (i = 0; i < channels; i++, hc++) {
 877                hc->num = i;
 878
 879                cfg = hpet_readl(HPET_Tn_CFG(i));
 880                hc->boot_cfg = cfg;
 881                irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 882                hc->irq = irq;
 883
 884                cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 885                hpet_writel(cfg, HPET_Tn_CFG(i));
 886
 887                cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 888                         | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 889                         | HPET_TN_FSB | HPET_TN_FSB_CAP);
 890                if (cfg)
 891                        pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
 892        }
 893        hpet_print_config();
 894
 895        /*
 896         * Validate that the counter is counting. This needs to be done
 897         * after sanitizing the config registers to properly deal with
 898         * force enabled HPETs.
 899         */
 900        if (!hpet_counting())
 901                goto out_nohpet;
 902
 903        clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 904
 905        if (id & HPET_ID_LEGSUP) {
 906                hpet_legacy_clockevent_register(&hpet_base.channels[0]);
 907                hpet_base.channels[0].mode = HPET_MODE_LEGACY;
 908                if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
 909                        hpet_base.channels[1].mode = HPET_MODE_LEGACY;
 910                return 1;
 911        }
 912        return 0;
 913
 914out_nohpet:
 915        kfree(hpet_base.channels);
 916        hpet_base.channels = NULL;
 917        hpet_base.nr_channels = 0;
 918        hpet_clear_mapping();
 919        hpet_address = 0;
 920        return 0;
 921}
 922
 923/*
 924 * The late initialization runs after the PCI quirks have been invoked
 925 * which might have detected a system on which the HPET can be enforced.
 926 *
 927 * Also, the MSI machinery is not working yet when the HPET is initialized
 928 * early.
 929 *
 930 * If the HPET is enabled, then:
 931 *
 932 *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
 933 *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
 934 *  3) Setup /dev/hpet if CONFIG_HPET=y
 935 *  4) Register hotplug callbacks when clockevents are available
 936 */
 937static __init int hpet_late_init(void)
 938{
 939        int ret;
 940
 941        if (!hpet_address) {
 942                if (!force_hpet_address)
 943                        return -ENODEV;
 944
 945                hpet_address = force_hpet_address;
 946                hpet_enable();
 947        }
 948
 949        if (!hpet_virt_address)
 950                return -ENODEV;
 951
 952        hpet_select_device_channel();
 953        hpet_select_clockevents();
 954        hpet_reserve_platform_timers();
 955        hpet_print_config();
 956
 957        if (!hpet_base.nr_clockevents)
 958                return 0;
 959
 960        ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
 961                                hpet_cpuhp_online, NULL);
 962        if (ret)
 963                return ret;
 964        ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
 965                                hpet_cpuhp_dead);
 966        if (ret)
 967                goto err_cpuhp;
 968        return 0;
 969
 970err_cpuhp:
 971        cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
 972        return ret;
 973}
 974fs_initcall(hpet_late_init);
 975
 976void hpet_disable(void)
 977{
 978        unsigned int i;
 979        u32 cfg;
 980
 981        if (!is_hpet_capable() || !hpet_virt_address)
 982                return;
 983
 984        /* Restore boot configuration with the enable bit cleared */
 985        cfg = hpet_base.boot_cfg;
 986        cfg &= ~HPET_CFG_ENABLE;
 987        hpet_writel(cfg, HPET_CFG);
 988
 989        /* Restore the channel boot configuration */
 990        for (i = 0; i < hpet_base.nr_channels; i++)
 991                hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
 992
 993        /* If the HPET was enabled at boot time, reenable it */
 994        if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
 995                hpet_writel(hpet_base.boot_cfg, HPET_CFG);
 996}
 997
 998#ifdef CONFIG_HPET_EMULATE_RTC
 999
1000/*
1001 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1002 * is enabled, we support RTC interrupt functionality in software.
1003 *
1004 * RTC has 3 kinds of interrupts:
1005 *
1006 *  1) Update Interrupt - generate an interrupt, every second, when the
1007 *     RTC clock is updated
1008 *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1009 *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1010 *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1011 *
1012 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1013 * DEFAULT_RTC_INT_FREQ.
1014 *
1015 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1016 *
1017 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1018 * if it's higher.
1019 */
1020#include <linux/mc146818rtc.h>
1021#include <linux/rtc.h>
1022
1023#define DEFAULT_RTC_INT_FREQ    64
1024#define DEFAULT_RTC_SHIFT       6
1025#define RTC_NUM_INTS            1
1026
1027static unsigned long hpet_rtc_flags;
1028static int hpet_prev_update_sec;
1029static struct rtc_time hpet_alarm_time;
1030static unsigned long hpet_pie_count;
1031static u32 hpet_t1_cmp;
1032static u32 hpet_default_delta;
1033static u32 hpet_pie_delta;
1034static unsigned long hpet_pie_limit;
1035
1036static rtc_irq_handler irq_handler;
1037
1038/*
1039 * Check that the HPET counter c1 is ahead of c2
1040 */
1041static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1042{
1043        return (s32)(c2 - c1) < 0;
1044}
1045
1046/*
1047 * Registers a IRQ handler.
1048 */
1049int hpet_register_irq_handler(rtc_irq_handler handler)
1050{
1051        if (!is_hpet_enabled())
1052                return -ENODEV;
1053        if (irq_handler)
1054                return -EBUSY;
1055
1056        irq_handler = handler;
1057
1058        return 0;
1059}
1060EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1061
1062/*
1063 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1064 * and does cleanup.
1065 */
1066void hpet_unregister_irq_handler(rtc_irq_handler handler)
1067{
1068        if (!is_hpet_enabled())
1069                return;
1070
1071        irq_handler = NULL;
1072        hpet_rtc_flags = 0;
1073}
1074EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1075
1076/*
1077 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1078 * is not supported by all HPET implementations for channel 1.
1079 *
1080 * hpet_rtc_timer_init() is called when the rtc is initialized.
1081 */
1082int hpet_rtc_timer_init(void)
1083{
1084        unsigned int cfg, cnt, delta;
1085        unsigned long flags;
1086
1087        if (!is_hpet_enabled())
1088                return 0;
1089
1090        if (!hpet_default_delta) {
1091                struct clock_event_device *evt = &hpet_base.channels[0].evt;
1092                uint64_t clc;
1093
1094                clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1095                clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1096                hpet_default_delta = clc;
1097        }
1098
1099        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1100                delta = hpet_default_delta;
1101        else
1102                delta = hpet_pie_delta;
1103
1104        local_irq_save(flags);
1105
1106        cnt = delta + hpet_readl(HPET_COUNTER);
1107        hpet_writel(cnt, HPET_T1_CMP);
1108        hpet_t1_cmp = cnt;
1109
1110        cfg = hpet_readl(HPET_T1_CFG);
1111        cfg &= ~HPET_TN_PERIODIC;
1112        cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1113        hpet_writel(cfg, HPET_T1_CFG);
1114
1115        local_irq_restore(flags);
1116
1117        return 1;
1118}
1119EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1120
1121static void hpet_disable_rtc_channel(void)
1122{
1123        u32 cfg = hpet_readl(HPET_T1_CFG);
1124
1125        cfg &= ~HPET_TN_ENABLE;
1126        hpet_writel(cfg, HPET_T1_CFG);
1127}
1128
1129/*
1130 * The functions below are called from rtc driver.
1131 * Return 0 if HPET is not being used.
1132 * Otherwise do the necessary changes and return 1.
1133 */
1134int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1135{
1136        if (!is_hpet_enabled())
1137                return 0;
1138
1139        hpet_rtc_flags &= ~bit_mask;
1140        if (unlikely(!hpet_rtc_flags))
1141                hpet_disable_rtc_channel();
1142
1143        return 1;
1144}
1145EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1146
1147int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1148{
1149        unsigned long oldbits = hpet_rtc_flags;
1150
1151        if (!is_hpet_enabled())
1152                return 0;
1153
1154        hpet_rtc_flags |= bit_mask;
1155
1156        if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1157                hpet_prev_update_sec = -1;
1158
1159        if (!oldbits)
1160                hpet_rtc_timer_init();
1161
1162        return 1;
1163}
1164EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1165
1166int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1167{
1168        if (!is_hpet_enabled())
1169                return 0;
1170
1171        hpet_alarm_time.tm_hour = hrs;
1172        hpet_alarm_time.tm_min = min;
1173        hpet_alarm_time.tm_sec = sec;
1174
1175        return 1;
1176}
1177EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1178
1179int hpet_set_periodic_freq(unsigned long freq)
1180{
1181        uint64_t clc;
1182
1183        if (!is_hpet_enabled())
1184                return 0;
1185
1186        if (freq <= DEFAULT_RTC_INT_FREQ) {
1187                hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1188        } else {
1189                struct clock_event_device *evt = &hpet_base.channels[0].evt;
1190
1191                clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1192                do_div(clc, freq);
1193                clc >>= evt->shift;
1194                hpet_pie_delta = clc;
1195                hpet_pie_limit = 0;
1196        }
1197
1198        return 1;
1199}
1200EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1201
1202int hpet_rtc_dropped_irq(void)
1203{
1204        return is_hpet_enabled();
1205}
1206EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1207
1208static void hpet_rtc_timer_reinit(void)
1209{
1210        unsigned int delta;
1211        int lost_ints = -1;
1212
1213        if (unlikely(!hpet_rtc_flags))
1214                hpet_disable_rtc_channel();
1215
1216        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1217                delta = hpet_default_delta;
1218        else
1219                delta = hpet_pie_delta;
1220
1221        /*
1222         * Increment the comparator value until we are ahead of the
1223         * current count.
1224         */
1225        do {
1226                hpet_t1_cmp += delta;
1227                hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1228                lost_ints++;
1229        } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1230
1231        if (lost_ints) {
1232                if (hpet_rtc_flags & RTC_PIE)
1233                        hpet_pie_count += lost_ints;
1234                if (printk_ratelimit())
1235                        pr_warn("Lost %d RTC interrupts\n", lost_ints);
1236        }
1237}
1238
1239irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1240{
1241        struct rtc_time curr_time;
1242        unsigned long rtc_int_flag = 0;
1243
1244        hpet_rtc_timer_reinit();
1245        memset(&curr_time, 0, sizeof(struct rtc_time));
1246
1247        if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1248                mc146818_get_time(&curr_time);
1249
1250        if (hpet_rtc_flags & RTC_UIE &&
1251            curr_time.tm_sec != hpet_prev_update_sec) {
1252                if (hpet_prev_update_sec >= 0)
1253                        rtc_int_flag = RTC_UF;
1254                hpet_prev_update_sec = curr_time.tm_sec;
1255        }
1256
1257        if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1258                rtc_int_flag |= RTC_PF;
1259                hpet_pie_count = 0;
1260        }
1261
1262        if (hpet_rtc_flags & RTC_AIE &&
1263            (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1264            (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1265            (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1266                rtc_int_flag |= RTC_AF;
1267
1268        if (rtc_int_flag) {
1269                rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1270                if (irq_handler)
1271                        irq_handler(rtc_int_flag, dev_id);
1272        }
1273        return IRQ_HANDLED;
1274}
1275EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1276#endif
1277