linux/arch/x86/kernel/kprobes/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *
   5 * Copyright (C) IBM Corporation, 2002, 2004
   6 *
   7 * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   8 *              Probes initial implementation ( includes contributions from
   9 *              Rusty Russell).
  10 * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  11 *              interface to access function arguments.
  12 * 2004-Oct     Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  13 *              <prasanna@in.ibm.com> adapted for x86_64 from i386.
  14 * 2005-Mar     Roland McGrath <roland@redhat.com>
  15 *              Fixed to handle %rip-relative addressing mode correctly.
  16 * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  17 *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  18 *              <prasanna@in.ibm.com> added function-return probes.
  19 * 2005-May     Rusty Lynch <rusty.lynch@intel.com>
  20 *              Added function return probes functionality
  21 * 2006-Feb     Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
  22 *              kprobe-booster and kretprobe-booster for i386.
  23 * 2007-Dec     Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
  24 *              and kretprobe-booster for x86-64
  25 * 2007-Dec     Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
  26 *              <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
  27 *              unified x86 kprobes code.
  28 */
  29#include <linux/kprobes.h>
  30#include <linux/ptrace.h>
  31#include <linux/string.h>
  32#include <linux/slab.h>
  33#include <linux/hardirq.h>
  34#include <linux/preempt.h>
  35#include <linux/sched/debug.h>
  36#include <linux/extable.h>
  37#include <linux/kdebug.h>
  38#include <linux/kallsyms.h>
  39#include <linux/ftrace.h>
  40#include <linux/frame.h>
  41#include <linux/kasan.h>
  42#include <linux/moduleloader.h>
  43
  44#include <asm/text-patching.h>
  45#include <asm/cacheflush.h>
  46#include <asm/desc.h>
  47#include <asm/pgtable.h>
  48#include <linux/uaccess.h>
  49#include <asm/alternative.h>
  50#include <asm/insn.h>
  51#include <asm/debugreg.h>
  52#include <asm/set_memory.h>
  53
  54#include "common.h"
  55
  56DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  57DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  58
  59#define stack_addr(regs) ((unsigned long *)regs->sp)
  60
  61#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  62        (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  63          (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  64          (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  65          (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  66         << (row % 32))
  67        /*
  68         * Undefined/reserved opcodes, conditional jump, Opcode Extension
  69         * Groups, and some special opcodes can not boost.
  70         * This is non-const and volatile to keep gcc from statically
  71         * optimizing it out, as variable_test_bit makes gcc think only
  72         * *(unsigned long*) is used.
  73         */
  74static volatile u32 twobyte_is_boostable[256 / 32] = {
  75        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  76        /*      ----------------------------------------------          */
  77        W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
  78        W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
  79        W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
  80        W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
  81        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  82        W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
  83        W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
  84        W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
  85        W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
  86        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  87        W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
  88        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
  89        W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
  90        W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
  91        W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
  92        W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
  93        /*      -----------------------------------------------         */
  94        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  95};
  96#undef W
  97
  98struct kretprobe_blackpoint kretprobe_blacklist[] = {
  99        {"__switch_to", }, /* This function switches only current task, but
 100                              doesn't switch kernel stack.*/
 101        {NULL, NULL}    /* Terminator */
 102};
 103
 104const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 105
 106static nokprobe_inline void
 107__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
 108{
 109        struct __arch_relative_insn {
 110                u8 op;
 111                s32 raddr;
 112        } __packed *insn;
 113
 114        insn = (struct __arch_relative_insn *)dest;
 115        insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
 116        insn->op = op;
 117}
 118
 119/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
 120void synthesize_reljump(void *dest, void *from, void *to)
 121{
 122        __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
 123}
 124NOKPROBE_SYMBOL(synthesize_reljump);
 125
 126/* Insert a call instruction at address 'from', which calls address 'to'.*/
 127void synthesize_relcall(void *dest, void *from, void *to)
 128{
 129        __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
 130}
 131NOKPROBE_SYMBOL(synthesize_relcall);
 132
 133/*
 134 * Skip the prefixes of the instruction.
 135 */
 136static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
 137{
 138        insn_attr_t attr;
 139
 140        attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 141        while (inat_is_legacy_prefix(attr)) {
 142                insn++;
 143                attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 144        }
 145#ifdef CONFIG_X86_64
 146        if (inat_is_rex_prefix(attr))
 147                insn++;
 148#endif
 149        return insn;
 150}
 151NOKPROBE_SYMBOL(skip_prefixes);
 152
 153/*
 154 * Returns non-zero if INSN is boostable.
 155 * RIP relative instructions are adjusted at copying time in 64 bits mode
 156 */
 157int can_boost(struct insn *insn, void *addr)
 158{
 159        kprobe_opcode_t opcode;
 160
 161        if (search_exception_tables((unsigned long)addr))
 162                return 0;       /* Page fault may occur on this address. */
 163
 164        /* 2nd-byte opcode */
 165        if (insn->opcode.nbytes == 2)
 166                return test_bit(insn->opcode.bytes[1],
 167                                (unsigned long *)twobyte_is_boostable);
 168
 169        if (insn->opcode.nbytes != 1)
 170                return 0;
 171
 172        /* Can't boost Address-size override prefix */
 173        if (unlikely(inat_is_address_size_prefix(insn->attr)))
 174                return 0;
 175
 176        opcode = insn->opcode.bytes[0];
 177
 178        switch (opcode & 0xf0) {
 179        case 0x60:
 180                /* can't boost "bound" */
 181                return (opcode != 0x62);
 182        case 0x70:
 183                return 0; /* can't boost conditional jump */
 184        case 0x90:
 185                return opcode != 0x9a;  /* can't boost call far */
 186        case 0xc0:
 187                /* can't boost software-interruptions */
 188                return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
 189        case 0xd0:
 190                /* can boost AA* and XLAT */
 191                return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
 192        case 0xe0:
 193                /* can boost in/out and absolute jmps */
 194                return ((opcode & 0x04) || opcode == 0xea);
 195        case 0xf0:
 196                /* clear and set flags are boostable */
 197                return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
 198        default:
 199                /* CS override prefix and call are not boostable */
 200                return (opcode != 0x2e && opcode != 0x9a);
 201        }
 202}
 203
 204static unsigned long
 205__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
 206{
 207        struct kprobe *kp;
 208        unsigned long faddr;
 209
 210        kp = get_kprobe((void *)addr);
 211        faddr = ftrace_location(addr);
 212        /*
 213         * Addresses inside the ftrace location are refused by
 214         * arch_check_ftrace_location(). Something went terribly wrong
 215         * if such an address is checked here.
 216         */
 217        if (WARN_ON(faddr && faddr != addr))
 218                return 0UL;
 219        /*
 220         * Use the current code if it is not modified by Kprobe
 221         * and it cannot be modified by ftrace.
 222         */
 223        if (!kp && !faddr)
 224                return addr;
 225
 226        /*
 227         * Basically, kp->ainsn.insn has an original instruction.
 228         * However, RIP-relative instruction can not do single-stepping
 229         * at different place, __copy_instruction() tweaks the displacement of
 230         * that instruction. In that case, we can't recover the instruction
 231         * from the kp->ainsn.insn.
 232         *
 233         * On the other hand, in case on normal Kprobe, kp->opcode has a copy
 234         * of the first byte of the probed instruction, which is overwritten
 235         * by int3. And the instruction at kp->addr is not modified by kprobes
 236         * except for the first byte, we can recover the original instruction
 237         * from it and kp->opcode.
 238         *
 239         * In case of Kprobes using ftrace, we do not have a copy of
 240         * the original instruction. In fact, the ftrace location might
 241         * be modified at anytime and even could be in an inconsistent state.
 242         * Fortunately, we know that the original code is the ideal 5-byte
 243         * long NOP.
 244         */
 245        if (probe_kernel_read(buf, (void *)addr,
 246                MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
 247                return 0UL;
 248
 249        if (faddr)
 250                memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
 251        else
 252                buf[0] = kp->opcode;
 253        return (unsigned long)buf;
 254}
 255
 256/*
 257 * Recover the probed instruction at addr for further analysis.
 258 * Caller must lock kprobes by kprobe_mutex, or disable preemption
 259 * for preventing to release referencing kprobes.
 260 * Returns zero if the instruction can not get recovered (or access failed).
 261 */
 262unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
 263{
 264        unsigned long __addr;
 265
 266        __addr = __recover_optprobed_insn(buf, addr);
 267        if (__addr != addr)
 268                return __addr;
 269
 270        return __recover_probed_insn(buf, addr);
 271}
 272
 273/* Check if paddr is at an instruction boundary */
 274static int can_probe(unsigned long paddr)
 275{
 276        unsigned long addr, __addr, offset = 0;
 277        struct insn insn;
 278        kprobe_opcode_t buf[MAX_INSN_SIZE];
 279
 280        if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 281                return 0;
 282
 283        /* Decode instructions */
 284        addr = paddr - offset;
 285        while (addr < paddr) {
 286                /*
 287                 * Check if the instruction has been modified by another
 288                 * kprobe, in which case we replace the breakpoint by the
 289                 * original instruction in our buffer.
 290                 * Also, jump optimization will change the breakpoint to
 291                 * relative-jump. Since the relative-jump itself is
 292                 * normally used, we just go through if there is no kprobe.
 293                 */
 294                __addr = recover_probed_instruction(buf, addr);
 295                if (!__addr)
 296                        return 0;
 297                kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
 298                insn_get_length(&insn);
 299
 300                /*
 301                 * Another debugging subsystem might insert this breakpoint.
 302                 * In that case, we can't recover it.
 303                 */
 304                if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
 305                        return 0;
 306                addr += insn.length;
 307        }
 308
 309        return (addr == paddr);
 310}
 311
 312/*
 313 * Returns non-zero if opcode modifies the interrupt flag.
 314 */
 315static int is_IF_modifier(kprobe_opcode_t *insn)
 316{
 317        /* Skip prefixes */
 318        insn = skip_prefixes(insn);
 319
 320        switch (*insn) {
 321        case 0xfa:              /* cli */
 322        case 0xfb:              /* sti */
 323        case 0xcf:              /* iret/iretd */
 324        case 0x9d:              /* popf/popfd */
 325                return 1;
 326        }
 327
 328        return 0;
 329}
 330
 331/*
 332 * Copy an instruction with recovering modified instruction by kprobes
 333 * and adjust the displacement if the instruction uses the %rip-relative
 334 * addressing mode. Note that since @real will be the final place of copied
 335 * instruction, displacement must be adjust by @real, not @dest.
 336 * This returns the length of copied instruction, or 0 if it has an error.
 337 */
 338int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
 339{
 340        kprobe_opcode_t buf[MAX_INSN_SIZE];
 341        unsigned long recovered_insn =
 342                recover_probed_instruction(buf, (unsigned long)src);
 343
 344        if (!recovered_insn || !insn)
 345                return 0;
 346
 347        /* This can access kernel text if given address is not recovered */
 348        if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
 349                return 0;
 350
 351        kernel_insn_init(insn, dest, MAX_INSN_SIZE);
 352        insn_get_length(insn);
 353
 354        /* Another subsystem puts a breakpoint, failed to recover */
 355        if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
 356                return 0;
 357
 358        /* We should not singlestep on the exception masking instructions */
 359        if (insn_masking_exception(insn))
 360                return 0;
 361
 362#ifdef CONFIG_X86_64
 363        /* Only x86_64 has RIP relative instructions */
 364        if (insn_rip_relative(insn)) {
 365                s64 newdisp;
 366                u8 *disp;
 367                /*
 368                 * The copied instruction uses the %rip-relative addressing
 369                 * mode.  Adjust the displacement for the difference between
 370                 * the original location of this instruction and the location
 371                 * of the copy that will actually be run.  The tricky bit here
 372                 * is making sure that the sign extension happens correctly in
 373                 * this calculation, since we need a signed 32-bit result to
 374                 * be sign-extended to 64 bits when it's added to the %rip
 375                 * value and yield the same 64-bit result that the sign-
 376                 * extension of the original signed 32-bit displacement would
 377                 * have given.
 378                 */
 379                newdisp = (u8 *) src + (s64) insn->displacement.value
 380                          - (u8 *) real;
 381                if ((s64) (s32) newdisp != newdisp) {
 382                        pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
 383                        return 0;
 384                }
 385                disp = (u8 *) dest + insn_offset_displacement(insn);
 386                *(s32 *) disp = (s32) newdisp;
 387        }
 388#endif
 389        return insn->length;
 390}
 391
 392/* Prepare reljump right after instruction to boost */
 393static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
 394                          struct insn *insn)
 395{
 396        int len = insn->length;
 397
 398        if (can_boost(insn, p->addr) &&
 399            MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
 400                /*
 401                 * These instructions can be executed directly if it
 402                 * jumps back to correct address.
 403                 */
 404                synthesize_reljump(buf + len, p->ainsn.insn + len,
 405                                   p->addr + insn->length);
 406                len += RELATIVEJUMP_SIZE;
 407                p->ainsn.boostable = true;
 408        } else {
 409                p->ainsn.boostable = false;
 410        }
 411
 412        return len;
 413}
 414
 415/* Make page to RO mode when allocate it */
 416void *alloc_insn_page(void)
 417{
 418        void *page;
 419
 420        page = module_alloc(PAGE_SIZE);
 421        if (!page)
 422                return NULL;
 423
 424        set_vm_flush_reset_perms(page);
 425        /*
 426         * First make the page read-only, and only then make it executable to
 427         * prevent it from being W+X in between.
 428         */
 429        set_memory_ro((unsigned long)page, 1);
 430
 431        /*
 432         * TODO: Once additional kernel code protection mechanisms are set, ensure
 433         * that the page was not maliciously altered and it is still zeroed.
 434         */
 435        set_memory_x((unsigned long)page, 1);
 436
 437        return page;
 438}
 439
 440/* Recover page to RW mode before releasing it */
 441void free_insn_page(void *page)
 442{
 443        module_memfree(page);
 444}
 445
 446static int arch_copy_kprobe(struct kprobe *p)
 447{
 448        struct insn insn;
 449        kprobe_opcode_t buf[MAX_INSN_SIZE];
 450        int len;
 451
 452        /* Copy an instruction with recovering if other optprobe modifies it.*/
 453        len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
 454        if (!len)
 455                return -EINVAL;
 456
 457        /*
 458         * __copy_instruction can modify the displacement of the instruction,
 459         * but it doesn't affect boostable check.
 460         */
 461        len = prepare_boost(buf, p, &insn);
 462
 463        /* Check whether the instruction modifies Interrupt Flag or not */
 464        p->ainsn.if_modifier = is_IF_modifier(buf);
 465
 466        /* Also, displacement change doesn't affect the first byte */
 467        p->opcode = buf[0];
 468
 469        /* OK, write back the instruction(s) into ROX insn buffer */
 470        text_poke(p->ainsn.insn, buf, len);
 471
 472        return 0;
 473}
 474
 475int arch_prepare_kprobe(struct kprobe *p)
 476{
 477        int ret;
 478
 479        if (alternatives_text_reserved(p->addr, p->addr))
 480                return -EINVAL;
 481
 482        if (!can_probe((unsigned long)p->addr))
 483                return -EILSEQ;
 484        /* insn: must be on special executable page on x86. */
 485        p->ainsn.insn = get_insn_slot();
 486        if (!p->ainsn.insn)
 487                return -ENOMEM;
 488
 489        ret = arch_copy_kprobe(p);
 490        if (ret) {
 491                free_insn_slot(p->ainsn.insn, 0);
 492                p->ainsn.insn = NULL;
 493        }
 494
 495        return ret;
 496}
 497
 498void arch_arm_kprobe(struct kprobe *p)
 499{
 500        text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
 501}
 502
 503void arch_disarm_kprobe(struct kprobe *p)
 504{
 505        text_poke(p->addr, &p->opcode, 1);
 506}
 507
 508void arch_remove_kprobe(struct kprobe *p)
 509{
 510        if (p->ainsn.insn) {
 511                free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
 512                p->ainsn.insn = NULL;
 513        }
 514}
 515
 516static nokprobe_inline void
 517save_previous_kprobe(struct kprobe_ctlblk *kcb)
 518{
 519        kcb->prev_kprobe.kp = kprobe_running();
 520        kcb->prev_kprobe.status = kcb->kprobe_status;
 521        kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
 522        kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
 523}
 524
 525static nokprobe_inline void
 526restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 527{
 528        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 529        kcb->kprobe_status = kcb->prev_kprobe.status;
 530        kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
 531        kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
 532}
 533
 534static nokprobe_inline void
 535set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 536                   struct kprobe_ctlblk *kcb)
 537{
 538        __this_cpu_write(current_kprobe, p);
 539        kcb->kprobe_saved_flags = kcb->kprobe_old_flags
 540                = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 541        if (p->ainsn.if_modifier)
 542                kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
 543}
 544
 545static nokprobe_inline void clear_btf(void)
 546{
 547        if (test_thread_flag(TIF_BLOCKSTEP)) {
 548                unsigned long debugctl = get_debugctlmsr();
 549
 550                debugctl &= ~DEBUGCTLMSR_BTF;
 551                update_debugctlmsr(debugctl);
 552        }
 553}
 554
 555static nokprobe_inline void restore_btf(void)
 556{
 557        if (test_thread_flag(TIF_BLOCKSTEP)) {
 558                unsigned long debugctl = get_debugctlmsr();
 559
 560                debugctl |= DEBUGCTLMSR_BTF;
 561                update_debugctlmsr(debugctl);
 562        }
 563}
 564
 565void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 566{
 567        unsigned long *sara = stack_addr(regs);
 568
 569        ri->ret_addr = (kprobe_opcode_t *) *sara;
 570        ri->fp = sara;
 571
 572        /* Replace the return addr with trampoline addr */
 573        *sara = (unsigned long) &kretprobe_trampoline;
 574}
 575NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 576
 577static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
 578                             struct kprobe_ctlblk *kcb, int reenter)
 579{
 580        if (setup_detour_execution(p, regs, reenter))
 581                return;
 582
 583#if !defined(CONFIG_PREEMPT)
 584        if (p->ainsn.boostable && !p->post_handler) {
 585                /* Boost up -- we can execute copied instructions directly */
 586                if (!reenter)
 587                        reset_current_kprobe();
 588                /*
 589                 * Reentering boosted probe doesn't reset current_kprobe,
 590                 * nor set current_kprobe, because it doesn't use single
 591                 * stepping.
 592                 */
 593                regs->ip = (unsigned long)p->ainsn.insn;
 594                return;
 595        }
 596#endif
 597        if (reenter) {
 598                save_previous_kprobe(kcb);
 599                set_current_kprobe(p, regs, kcb);
 600                kcb->kprobe_status = KPROBE_REENTER;
 601        } else
 602                kcb->kprobe_status = KPROBE_HIT_SS;
 603        /* Prepare real single stepping */
 604        clear_btf();
 605        regs->flags |= X86_EFLAGS_TF;
 606        regs->flags &= ~X86_EFLAGS_IF;
 607        /* single step inline if the instruction is an int3 */
 608        if (p->opcode == BREAKPOINT_INSTRUCTION)
 609                regs->ip = (unsigned long)p->addr;
 610        else
 611                regs->ip = (unsigned long)p->ainsn.insn;
 612}
 613NOKPROBE_SYMBOL(setup_singlestep);
 614
 615/*
 616 * We have reentered the kprobe_handler(), since another probe was hit while
 617 * within the handler. We save the original kprobes variables and just single
 618 * step on the instruction of the new probe without calling any user handlers.
 619 */
 620static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
 621                          struct kprobe_ctlblk *kcb)
 622{
 623        switch (kcb->kprobe_status) {
 624        case KPROBE_HIT_SSDONE:
 625        case KPROBE_HIT_ACTIVE:
 626        case KPROBE_HIT_SS:
 627                kprobes_inc_nmissed_count(p);
 628                setup_singlestep(p, regs, kcb, 1);
 629                break;
 630        case KPROBE_REENTER:
 631                /* A probe has been hit in the codepath leading up to, or just
 632                 * after, single-stepping of a probed instruction. This entire
 633                 * codepath should strictly reside in .kprobes.text section.
 634                 * Raise a BUG or we'll continue in an endless reentering loop
 635                 * and eventually a stack overflow.
 636                 */
 637                pr_err("Unrecoverable kprobe detected.\n");
 638                dump_kprobe(p);
 639                BUG();
 640        default:
 641                /* impossible cases */
 642                WARN_ON(1);
 643                return 0;
 644        }
 645
 646        return 1;
 647}
 648NOKPROBE_SYMBOL(reenter_kprobe);
 649
 650/*
 651 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 652 * remain disabled throughout this function.
 653 */
 654int kprobe_int3_handler(struct pt_regs *regs)
 655{
 656        kprobe_opcode_t *addr;
 657        struct kprobe *p;
 658        struct kprobe_ctlblk *kcb;
 659
 660        if (user_mode(regs))
 661                return 0;
 662
 663        addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
 664        /*
 665         * We don't want to be preempted for the entire duration of kprobe
 666         * processing. Since int3 and debug trap disables irqs and we clear
 667         * IF while singlestepping, it must be no preemptible.
 668         */
 669
 670        kcb = get_kprobe_ctlblk();
 671        p = get_kprobe(addr);
 672
 673        if (p) {
 674                if (kprobe_running()) {
 675                        if (reenter_kprobe(p, regs, kcb))
 676                                return 1;
 677                } else {
 678                        set_current_kprobe(p, regs, kcb);
 679                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 680
 681                        /*
 682                         * If we have no pre-handler or it returned 0, we
 683                         * continue with normal processing.  If we have a
 684                         * pre-handler and it returned non-zero, that means
 685                         * user handler setup registers to exit to another
 686                         * instruction, we must skip the single stepping.
 687                         */
 688                        if (!p->pre_handler || !p->pre_handler(p, regs))
 689                                setup_singlestep(p, regs, kcb, 0);
 690                        else
 691                                reset_current_kprobe();
 692                        return 1;
 693                }
 694        } else if (*addr != BREAKPOINT_INSTRUCTION) {
 695                /*
 696                 * The breakpoint instruction was removed right
 697                 * after we hit it.  Another cpu has removed
 698                 * either a probepoint or a debugger breakpoint
 699                 * at this address.  In either case, no further
 700                 * handling of this interrupt is appropriate.
 701                 * Back up over the (now missing) int3 and run
 702                 * the original instruction.
 703                 */
 704                regs->ip = (unsigned long)addr;
 705                return 1;
 706        } /* else: not a kprobe fault; let the kernel handle it */
 707
 708        return 0;
 709}
 710NOKPROBE_SYMBOL(kprobe_int3_handler);
 711
 712/*
 713 * When a retprobed function returns, this code saves registers and
 714 * calls trampoline_handler() runs, which calls the kretprobe's handler.
 715 */
 716asm(
 717        ".text\n"
 718        ".global kretprobe_trampoline\n"
 719        ".type kretprobe_trampoline, @function\n"
 720        "kretprobe_trampoline:\n"
 721        /* We don't bother saving the ss register */
 722#ifdef CONFIG_X86_64
 723        "       pushq %rsp\n"
 724        "       pushfq\n"
 725        SAVE_REGS_STRING
 726        "       movq %rsp, %rdi\n"
 727        "       call trampoline_handler\n"
 728        /* Replace saved sp with true return address. */
 729        "       movq %rax, 19*8(%rsp)\n"
 730        RESTORE_REGS_STRING
 731        "       popfq\n"
 732#else
 733        "       pushl %esp\n"
 734        "       pushfl\n"
 735        SAVE_REGS_STRING
 736        "       movl %esp, %eax\n"
 737        "       call trampoline_handler\n"
 738        /* Replace saved sp with true return address. */
 739        "       movl %eax, 15*4(%esp)\n"
 740        RESTORE_REGS_STRING
 741        "       popfl\n"
 742#endif
 743        "       ret\n"
 744        ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
 745);
 746NOKPROBE_SYMBOL(kretprobe_trampoline);
 747STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
 748
 749static struct kprobe kretprobe_kprobe = {
 750        .addr = (void *)kretprobe_trampoline,
 751};
 752
 753/*
 754 * Called from kretprobe_trampoline
 755 */
 756__used __visible void *trampoline_handler(struct pt_regs *regs)
 757{
 758        struct kprobe_ctlblk *kcb;
 759        struct kretprobe_instance *ri = NULL;
 760        struct hlist_head *head, empty_rp;
 761        struct hlist_node *tmp;
 762        unsigned long flags, orig_ret_address = 0;
 763        unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 764        kprobe_opcode_t *correct_ret_addr = NULL;
 765        void *frame_pointer;
 766        bool skipped = false;
 767
 768        preempt_disable();
 769
 770        /*
 771         * Set a dummy kprobe for avoiding kretprobe recursion.
 772         * Since kretprobe never run in kprobe handler, kprobe must not
 773         * be running at this point.
 774         */
 775        kcb = get_kprobe_ctlblk();
 776        __this_cpu_write(current_kprobe, &kretprobe_kprobe);
 777        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 778
 779        INIT_HLIST_HEAD(&empty_rp);
 780        kretprobe_hash_lock(current, &head, &flags);
 781        /* fixup registers */
 782        regs->cs = __KERNEL_CS;
 783#ifdef CONFIG_X86_32
 784        regs->cs |= get_kernel_rpl();
 785        regs->gs = 0;
 786#endif
 787        /* We use pt_regs->sp for return address holder. */
 788        frame_pointer = &regs->sp;
 789        regs->ip = trampoline_address;
 790        regs->orig_ax = ~0UL;
 791
 792        /*
 793         * It is possible to have multiple instances associated with a given
 794         * task either because multiple functions in the call path have
 795         * return probes installed on them, and/or more than one
 796         * return probe was registered for a target function.
 797         *
 798         * We can handle this because:
 799         *     - instances are always pushed into the head of the list
 800         *     - when multiple return probes are registered for the same
 801         *       function, the (chronologically) first instance's ret_addr
 802         *       will be the real return address, and all the rest will
 803         *       point to kretprobe_trampoline.
 804         */
 805        hlist_for_each_entry(ri, head, hlist) {
 806                if (ri->task != current)
 807                        /* another task is sharing our hash bucket */
 808                        continue;
 809                /*
 810                 * Return probes must be pushed on this hash list correct
 811                 * order (same as return order) so that it can be popped
 812                 * correctly. However, if we find it is pushed it incorrect
 813                 * order, this means we find a function which should not be
 814                 * probed, because the wrong order entry is pushed on the
 815                 * path of processing other kretprobe itself.
 816                 */
 817                if (ri->fp != frame_pointer) {
 818                        if (!skipped)
 819                                pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
 820                        skipped = true;
 821                        continue;
 822                }
 823
 824                orig_ret_address = (unsigned long)ri->ret_addr;
 825                if (skipped)
 826                        pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
 827                                ri->rp->kp.addr);
 828
 829                if (orig_ret_address != trampoline_address)
 830                        /*
 831                         * This is the real return address. Any other
 832                         * instances associated with this task are for
 833                         * other calls deeper on the call stack
 834                         */
 835                        break;
 836        }
 837
 838        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 839
 840        correct_ret_addr = ri->ret_addr;
 841        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 842                if (ri->task != current)
 843                        /* another task is sharing our hash bucket */
 844                        continue;
 845                if (ri->fp != frame_pointer)
 846                        continue;
 847
 848                orig_ret_address = (unsigned long)ri->ret_addr;
 849                if (ri->rp && ri->rp->handler) {
 850                        __this_cpu_write(current_kprobe, &ri->rp->kp);
 851                        ri->ret_addr = correct_ret_addr;
 852                        ri->rp->handler(ri, regs);
 853                        __this_cpu_write(current_kprobe, &kretprobe_kprobe);
 854                }
 855
 856                recycle_rp_inst(ri, &empty_rp);
 857
 858                if (orig_ret_address != trampoline_address)
 859                        /*
 860                         * This is the real return address. Any other
 861                         * instances associated with this task are for
 862                         * other calls deeper on the call stack
 863                         */
 864                        break;
 865        }
 866
 867        kretprobe_hash_unlock(current, &flags);
 868
 869        __this_cpu_write(current_kprobe, NULL);
 870        preempt_enable();
 871
 872        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 873                hlist_del(&ri->hlist);
 874                kfree(ri);
 875        }
 876        return (void *)orig_ret_address;
 877}
 878NOKPROBE_SYMBOL(trampoline_handler);
 879
 880/*
 881 * Called after single-stepping.  p->addr is the address of the
 882 * instruction whose first byte has been replaced by the "int 3"
 883 * instruction.  To avoid the SMP problems that can occur when we
 884 * temporarily put back the original opcode to single-step, we
 885 * single-stepped a copy of the instruction.  The address of this
 886 * copy is p->ainsn.insn.
 887 *
 888 * This function prepares to return from the post-single-step
 889 * interrupt.  We have to fix up the stack as follows:
 890 *
 891 * 0) Except in the case of absolute or indirect jump or call instructions,
 892 * the new ip is relative to the copied instruction.  We need to make
 893 * it relative to the original instruction.
 894 *
 895 * 1) If the single-stepped instruction was pushfl, then the TF and IF
 896 * flags are set in the just-pushed flags, and may need to be cleared.
 897 *
 898 * 2) If the single-stepped instruction was a call, the return address
 899 * that is atop the stack is the address following the copied instruction.
 900 * We need to make it the address following the original instruction.
 901 *
 902 * If this is the first time we've single-stepped the instruction at
 903 * this probepoint, and the instruction is boostable, boost it: add a
 904 * jump instruction after the copied instruction, that jumps to the next
 905 * instruction after the probepoint.
 906 */
 907static void resume_execution(struct kprobe *p, struct pt_regs *regs,
 908                             struct kprobe_ctlblk *kcb)
 909{
 910        unsigned long *tos = stack_addr(regs);
 911        unsigned long copy_ip = (unsigned long)p->ainsn.insn;
 912        unsigned long orig_ip = (unsigned long)p->addr;
 913        kprobe_opcode_t *insn = p->ainsn.insn;
 914
 915        /* Skip prefixes */
 916        insn = skip_prefixes(insn);
 917
 918        regs->flags &= ~X86_EFLAGS_TF;
 919        switch (*insn) {
 920        case 0x9c:      /* pushfl */
 921                *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
 922                *tos |= kcb->kprobe_old_flags;
 923                break;
 924        case 0xc2:      /* iret/ret/lret */
 925        case 0xc3:
 926        case 0xca:
 927        case 0xcb:
 928        case 0xcf:
 929        case 0xea:      /* jmp absolute -- ip is correct */
 930                /* ip is already adjusted, no more changes required */
 931                p->ainsn.boostable = true;
 932                goto no_change;
 933        case 0xe8:      /* call relative - Fix return addr */
 934                *tos = orig_ip + (*tos - copy_ip);
 935                break;
 936#ifdef CONFIG_X86_32
 937        case 0x9a:      /* call absolute -- same as call absolute, indirect */
 938                *tos = orig_ip + (*tos - copy_ip);
 939                goto no_change;
 940#endif
 941        case 0xff:
 942                if ((insn[1] & 0x30) == 0x10) {
 943                        /*
 944                         * call absolute, indirect
 945                         * Fix return addr; ip is correct.
 946                         * But this is not boostable
 947                         */
 948                        *tos = orig_ip + (*tos - copy_ip);
 949                        goto no_change;
 950                } else if (((insn[1] & 0x31) == 0x20) ||
 951                           ((insn[1] & 0x31) == 0x21)) {
 952                        /*
 953                         * jmp near and far, absolute indirect
 954                         * ip is correct. And this is boostable
 955                         */
 956                        p->ainsn.boostable = true;
 957                        goto no_change;
 958                }
 959        default:
 960                break;
 961        }
 962
 963        regs->ip += orig_ip - copy_ip;
 964
 965no_change:
 966        restore_btf();
 967}
 968NOKPROBE_SYMBOL(resume_execution);
 969
 970/*
 971 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
 972 * remain disabled throughout this function.
 973 */
 974int kprobe_debug_handler(struct pt_regs *regs)
 975{
 976        struct kprobe *cur = kprobe_running();
 977        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 978
 979        if (!cur)
 980                return 0;
 981
 982        resume_execution(cur, regs, kcb);
 983        regs->flags |= kcb->kprobe_saved_flags;
 984
 985        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 986                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 987                cur->post_handler(cur, regs, 0);
 988        }
 989
 990        /* Restore back the original saved kprobes variables and continue. */
 991        if (kcb->kprobe_status == KPROBE_REENTER) {
 992                restore_previous_kprobe(kcb);
 993                goto out;
 994        }
 995        reset_current_kprobe();
 996out:
 997        /*
 998         * if somebody else is singlestepping across a probe point, flags
 999         * will have TF set, in which case, continue the remaining processing
1000         * of do_debug, as if this is not a probe hit.
1001         */
1002        if (regs->flags & X86_EFLAGS_TF)
1003                return 0;
1004
1005        return 1;
1006}
1007NOKPROBE_SYMBOL(kprobe_debug_handler);
1008
1009int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1010{
1011        struct kprobe *cur = kprobe_running();
1012        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1013
1014        if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1015                /* This must happen on single-stepping */
1016                WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1017                        kcb->kprobe_status != KPROBE_REENTER);
1018                /*
1019                 * We are here because the instruction being single
1020                 * stepped caused a page fault. We reset the current
1021                 * kprobe and the ip points back to the probe address
1022                 * and allow the page fault handler to continue as a
1023                 * normal page fault.
1024                 */
1025                regs->ip = (unsigned long)cur->addr;
1026                /*
1027                 * Trap flag (TF) has been set here because this fault
1028                 * happened where the single stepping will be done.
1029                 * So clear it by resetting the current kprobe:
1030                 */
1031                regs->flags &= ~X86_EFLAGS_TF;
1032
1033                /*
1034                 * If the TF flag was set before the kprobe hit,
1035                 * don't touch it:
1036                 */
1037                regs->flags |= kcb->kprobe_old_flags;
1038
1039                if (kcb->kprobe_status == KPROBE_REENTER)
1040                        restore_previous_kprobe(kcb);
1041                else
1042                        reset_current_kprobe();
1043        } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1044                   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1045                /*
1046                 * We increment the nmissed count for accounting,
1047                 * we can also use npre/npostfault count for accounting
1048                 * these specific fault cases.
1049                 */
1050                kprobes_inc_nmissed_count(cur);
1051
1052                /*
1053                 * We come here because instructions in the pre/post
1054                 * handler caused the page_fault, this could happen
1055                 * if handler tries to access user space by
1056                 * copy_from_user(), get_user() etc. Let the
1057                 * user-specified handler try to fix it first.
1058                 */
1059                if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1060                        return 1;
1061        }
1062
1063        return 0;
1064}
1065NOKPROBE_SYMBOL(kprobe_fault_handler);
1066
1067int __init arch_populate_kprobe_blacklist(void)
1068{
1069        int ret;
1070
1071        ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
1072                                         (unsigned long)__irqentry_text_end);
1073        if (ret)
1074                return ret;
1075
1076        return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1077                                         (unsigned long)__entry_text_end);
1078}
1079
1080int __init arch_init_kprobes(void)
1081{
1082        return 0;
1083}
1084
1085int arch_trampoline_kprobe(struct kprobe *p)
1086{
1087        return 0;
1088}
1089